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Abstract 

EEG signal-based sleep stage classification facilitates an initial diagnosis of sleep disorders. The aim of this study 

was to compare the efficiency of three methods for feature extraction: power spectral density (PSD), discrete 

wavelet transform (DWT) and empirical mode decomposition (EMD) in the automatic classification of sleep stages 

by an artificial neural network (ANN). 13650 30-second EEG epochs from the PhysioNet database, representing 
five sleep stages (W, N1-N3 and REM), were transformed into feature vectors using the aforementioned methods 

and principal component analysis (PCA). Three feed-forward ANNs with the same optimal structure (12 input 

neurons, 23 + 22 neurons in two hidden layers and 5 output neurons) were trained using three sets of features, 

obtained with one of the compared methods each. Calculating PSD from EEG epochs in frequency sub-bands 

corresponding to the brain waves (81.1% accuracy for the testing set, comparing with 74.2% for DWT and 57.6% 

for EMD) appeared to be the most effective feature extraction method in the analysed problem. 

Keywords: sleep stage classification, EEG signal, power spectral density, discrete wavelet transform, empirical 

mode decomposition, artificial neural network. 
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1. Introduction 

 

Sleep is one of the basic modes of human brain activity. It is a recurring state of mind and 
body characterised by altered consciousness and body stillness. It is well known that adults 
spend about 1/3 of their life in sleeping, therefore a right quality and amount of sleep have 

a significant impact on human mood and health. 
There is a large group of sleep disorders related to the respiratory, nervous and other 

physiological systems, typically monitored by polysomnography [1]. Among them, 
hyperventilation and sleep apnea are the most prevalent ones. Interrelations between pathology, 

system functions and recorded biophysical signals are generally complex [2]. One 
of approaches to improve at-home patient care is the use of tele-monitoring [3]. 

Loomis at al. were the first observing that the pattern of brain potentials alters systematically 

in a sleeping person [4]. These cyclic shifts of brain waves are known as the sleep phases. 
Asernisky and Kleitman observed that normal, healthy sleep is divided into two main phases: 

REM (Rapid Eye Movement) and NREM (Non-Rapid Eye Movement) [5]. REM sleep is also 
known as paradoxical or active sleep, which generally occurs about from 90 to 120 minutes 
during sleep in adults [6]. The remaining time of sleep is NREM sleep and night awakenings. 

There has been reported recently that the sleep macrostructure is strongly associated with apnea 
episodes [7]. 

The most important signal for the classification of sleep stages is the electroencephalogram 
(EEG), one of signals recorded during polysomnography (PSG) [8]. It is used for distinguishing 
the wake and sleep phases [6]. The first EEG was recorded by Hans Berger. He was also the first 

who observed the brain waves and described two of them: the alpha (8−14 Hz) and beta 
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(14−30 Hz) waves [9]. The other brain waves are delta (0.5−4 Hz), theta (4−8 Hz) and gamma 

(30−80 Hz) ones [6]. Other brain activities, besides the waves, are artefacts like: saw-tooth 
waves, sleep spindles and K complexes [6]. 

Because of EEG signal complexity, the traditional manual sleep stage classification is time-
consuming and depends on knowledge and experience of the expert. Therefore, an automatic 

sleep stage classification is expected to be more objective, faster and more efficient. There are 
two approaches to scoring the sleep stages [6]. The first one follows the standardised scoring 

systems introduced by Rechtschaffen and Kales [10], where the following phases are 
distinguished: wakefulness (W), rapid eye movement (REM), non-rapid eye movement (NREM) 
and movement time (MT). The NREM phase is additionally divided into light sleep (S1 and S2 

stages) and deep sleep (S3 and S4 stages) [10]. Currently, a new method proposed by the 
American Academy of Sleep Medicine is used [1]. The main difference in stage definition is 

that the S1-S4 stages are replaced by N1, N2 and N3 (joined S3 and S4) ones and the MT stage 
is no longer distinguished [1].  

An automatic sleep stage classification usually takes the following steps: dataset preparation, 

signal pre-processing, feature extraction and final classification [11, 12]. The dataset 
preparation includes splitting the EEG signal into 30-second epochs and organising subsets 

of epochs from the same sleep stages: W, REM, N1, N2 and N3. The pre-processing consists 
mainly of filtering and normalisation of the signals. The crucial step is, however, the extraction 
of discriminative features form the prepared epochs, simultaneously reducing the number of 

data for further processing. It is usually performed in the time, frequency or time-
frequency/scale domains. Particularly the analyses in the frequency domain are very fruitful 

[13, 14]. The time domain methods include statistical analyses [12, 15−20], the Hjorth approach 

focused on activity, mobility and complexity [12, 16, 20, 21], and singular spectrum analysis 
(SSA) [22]. The methods in the frequency or time-frequency/scale domains describe the EEG 

spectral or scale properties using the Fourier transform (FT) [11, 23, 24], power spectral 
density (PSD) [12, 25], short-time Fourier transform (STFT) [12, 26], adaptive directional 
time-frequency distribution (ADTFD) [27], Wigner-Ville distribution (WV) [12, 16], matching 

pursuit (MP) [28], wavelet transform (WT) [12, 15, 16, 18, 29, 30], empirical mode 

decomposition (EMD) [19, 31−35] or Hilbert-Huang transform (HHT) [36]. The methods most 
commonly used for classification are artificial neural networks (ANN) [11, 12, 15, 16, 18, 20, 

23−25, 30, 32, 37], support vector machine (SVM) [12, 16, 17, 22, 23, 38], decision trees (DT) 
[16, 19, 33], random forest algorithm (RF) [12, 16, 29], and fuzzy systems [39]. 

The best reported accuracy of sleep stage classification exceeded 90%, e.g. 97.03% [16], 

96.75% [40], 95.42% [18], 93.93% [41], 93.84% [42], 93.0% [15] and 90.11% [33]. In these 
works, the discriminative features were extracted using, among others, such methods as power 

spectral density (PSD) [41], discrete wavelet transform (DWT) [15, 16], complex wavelet 
transform [18, 42] and empirical mode decomposition (EMD) [19, 33, 34]. Simultaneously, 
ANNs were used as classifiers in some of these approaches, e.g. [15, 16, 18, 40, 42]. 

It follows from the literature survey that often different classifiers of sleep stages were 
compared using only one feature extraction method [16, 19, 23]. There are only a few works 

analysing combinations of some feature extractors and classifiers [22, 40], therefore comparing 
effects of the most promising feature extraction methods on the automatic sleep stage 

classification results is desirable. For this reason, in this paper we examine three of such 
methods: power spectral density (PSD), discrete wavelet transform (DWT) and empirical mode 
decomposition (EMD) applied to signals from a single EEG channel, using a feedforward 

multilayer neural network (FFNN) as the automatic sleep stage classifier. 
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2. Materials and methods  

 

An automatic classification of sleep phases proposed in this work assumes the following 
steps: preparation of a database, signal pre-processing, feature extraction and final classification. 

All the above processes were performed using MATLAB software (The MathWorks, USA). 

 

2.1. Data 

 

Data from the Sleep-EDF Database, available at the PhysioBank, were used. This dataset 

contains polysomnographic (PSG) recordings from 10 healthy females and 10 males (25−34 

years old) without any medication, registered during two subsequent day-night periods (about 
20 hours in total each). One of these 40 records had been destroyed, so we have analysed all 

remaining 39 files. The sleep recordings include signals from two EEG channels (Fpz-Cz and 
Pz-Oz) and the horizontal EEG, sampled with 100 Hz. All hypnograms were manually scored 

by well-trained technicians according to the Rechtschaffen and Kales manual [10] (based, 
however, on Fpz-Cz/Pz-Oz instead of C4-A1/C3-A2 EEGs). The signals were divided into 30-
second epochs and each epoch was assigned to one of the following sleep stages: W, S1, S2, 

S3, S4 and REM. From these sets we selected 13650 epochs of a single Pz-Oz EEG channel 
(2730 epochs for each sleep stage) to prepare a maximally large and evenly distributed database. 

Finally, the selected epochs were organized into 5 classes: W, N1, N2, N3 (combined S3 and 
S4) and REM, according to the AASM scoring system [1]. 

 

2.2. Signal pre-processing 

 

At the beginning, the linear trend was removed from each of EEG epochs to eliminate the 
effect of a slow drift of electrode potential, amending the low frequency spectrum of a signal 
[44]. Then the epochs were normalised into a range between –1 and 1, aligning the energy 

of signals coming from different subjects, electrodes and periods [44]. 
 

2.3. Feature extraction 

 
The aim of feature extraction is to transform the 3000-sample epochs into much smaller, yet 

still containing maximally discriminative information, vectors – i.e. into the feature vectors 
(FVs). The main idea of this work is to compare the three popular data processing methods used 

for extraction of features from an EEG signal, which are: power spectral density, wavelet 
transform and empirical mode decomposition. 

 

2.3.1. Power spectral density 

 

Power spectral density (PSD) describes the distribution of average signal power in the 
frequency domain. The used Welch method is one of the most popular approaches to calculating 

PSD from the fast Fourier transform [45]. It averages signal spectra from succeeding, 
overlapping time intervals, returning the estimate called a periodogram. In this work, the 
analysed epochs consisting of 3000 samples were split up into 512-sample segments, 

overlapped by 50%, and then windowed using the Hanning window. As a result, 257 PSD 
values were received in a range from 0 Hz to 50 Hz with a resolution of approximately 0.19 Hz.  

Admittedly, all the brain waves (delta, theta, alpha, beta and gamma) can be observed in 
each of the sleep stages, yet in a given stage some of them are dominant. Since the periodograms 

characterising diverse sleep stages are different [6, 8], they can be used to generate 
discriminative features. The available frequency range of PSD was divided into five bands 
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corresponding to the five brain waves spectra. Power density in each of the bands was integrated 

over three equal intervals (with midpoints at 0.59, 1.56, 2.54, 3.81, 5.37, 7.03, 8.69, 10.35, 
12.11, 14.94, 18.95, 23.05, 29.20, 37.4 and 45.70 Hz), resulting in 15-element FVs 
characterising the analysed epochs. 

 

2.3.2. Discrete wavelet transform 

 

Discrete wavelet transform (DWT) enables the time-frequency (or time-scale) analysis 
of non-stationary signals and it is often used to study EEG [46]. This transform is similar to the 

Fourier one, but it applies wavelets as the basic functions instead of sinusoids. A single wavelet, 
discretely sampled at n, is given in a general form as: 
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where ψ is a wavelet prototype (or mother-wavelet). Wavelets are localised in time (a shift 
parameter k) and frequency (a scale parameter j), have a limited duration, zero mean and 

normalised energy [46].  
Using DWT, an original signal is decomposed by low-pass and high-pass filters, returning 

appropriate signal components together with approximation coefficients a and detailed 
coefficients d for a given level, respectively. Then the low-frequency component can be further 
processed at the next level of decomposition. Finally, the signal x is decomposed into 

a weighted sum of J-level series of basic wavelet functions ψ and a scaling function φ (covering 
all wavelets of higher levels) [15]: 
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The sets of detailed coefficients Dj = {dj,k} and approximation coefficients AJ = {aJ,k} are 
then commonly used to create the FVs. 

Practical application of DWT requires identification of an appropriate wavelet type, which 
should be similar to the analysed signal [15]. EEG signals are usually decomposed using the 

Daubechies wavelets of order 2 or 4 [15, 16, 29, 47], so in this work the wavelet of order 3 
(db3), particularly well resembling a local structure of this signal sampled with 100 Hz, has 
been applied. Additionally, it is necessary to determine the maximal level of decomposition, 

depending on the required frequency range. Because EEG carries important information in a 

range of 0.5−50 Hz, 5 levels of decomposition have been chosen, resulting in the following 

frequency sub-bands: D1 (25−50 Hz), D2 (12.5−25 Hz), D3 (6.25−12.5 Hz), D4 (3.125−6.25 Hz), 

D5 (1.5625−3.125 Hz), and A5 (0−1.5625). 

The last step of extracting features using DWT is transforming the wavelet coefficients into 

numbers. Finally, the average powers Pj of D1−D5 and A5 are calculated in each sub-band [15, 
16, 18, 29, 30, 47], and expressed in dB (first six entries of the FV): 
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where cj,k denotes dj,k or aJ,k, and Nj is the number of coefficients in the respective set at level j, 

as well as standard deviations Sj of these coefficients [15, 16, 18, 47] (next six entries): 
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where c ̄j are appropriate means. Although both Pj and Sj are proportional to epoch energy, this 

energy is then such nonlinearly transformed, that Pj represents small differences between the 
features with higher resolution, improving the discriminative properties of the FV. Finally, each 
EEG epoch is represented by a 12-element vector of features extracted from the wavelet 

decomposition. 
 

2.3.3. Empirical mode decomposition  

 

Empirical mode decomposition (EMD) is a method used in analysing nonlinear and 

nonstationary signals, and it is often applied to EEGs [19, 31−35]. EMD is implemented as an 

efficient iterative algorithm, which decomposes a signal into a finite number of non-parametric 
intrinsic mode functions (IMFs), having two properties [31]: 1) the number of extrema is the 

same as the number of zero crossings (± 1); and 2) their envelopes are symmetrical in relation 
to the zero line. A signal x(t) after decomposition is represented as:  

 )()()(
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where: p is the number of IMFs depending on signal complexity; cj(t) are IMFs and rp(t) is the 
final residue. The iterative procedure is automatically terminated when either cj or rp are 

negligible, or rp becomes a monotonic function. 
It is common to further apply the Hilbert transform to each of IMFs (the combined procedure 

known as the Hilbert-Huang transform, HHT) to compute the instantaneous frequencies and 
amplitudes of these signals [36]. In this work, however, the FVs of the EEG epochs are 
calculated directly from IMFs as the average powers of IMFs expressed in dB (according to 

(3)). 
 

2.3.4. Alignment of feature vectors 

 
Three methods used for feature extraction from EEG epochs were based on PSD, DWT and 

EMD. They returned, however, feature vectors of different lengths: 15, 12 and 12−22, 
respectively. To objectively compare efficiency of these methods in classification of sleep 

stages, the same classifier should be used, i.e. an ANN with a fixed structure, particularly with 
the same number of input neurons. Next, the principal component analysis (PCA) of the FVs 
obtained from PSD and EMD arranged as matrices was applied. This procedure transforms 

orthogonally an original feature matrix F into a matrix S of linearly uncorrelated columns called 
the principal components, ordered according to the decreasing variabilities of data (related to 

their discriminative abilities) [48]: 
 S = FQ, (6) 

where Q is a matrix constructed with eigenvectors of FTF. Finally, 12 first principal 

components of the transformed PSD and EMD features were chosen for classification purposes, 
after standardisation of relevant Fs. 

 

2.4. Classification 

 

Artificial neural networks (ANNs) are widely applied to automatic classification of sleep 

stages using an EEG signal [11, 15, 16, 18, 20, 23−25, 30, 32, 37]. They are popular for their 
high classification efficiency and relatively simple implementation [25]. A very important task 

when creating an ANN is selecting a type and architecture of the network. Generally, an ANN 
consists of several layers of neurons: the input layer, one or more hidden layers and the output 

layer. The numbers of hidden layers and neurons within them influence the ANN classification 
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capability [25]. It is known that an ANN with two hidden layers can approximate any 

continuous mapping arbitrarily well. Also, most of classification problems can be solved by 
ANNs with only one hidden layer [25, 49]. 

In this paper, a feedforward neural network (FFNN) with the input layer consisting of 12 

neurons (the size of FVs), two hidden layers with neurons characterised by a log-sigmoid 
transfer function and the output layer with 5 linear nodes (indicating the sleep stages: W, N1, 

N2, N3, and REM) was used as the classifier. The optimal number of hidden neurons depends 
on the numbers of input and output neurons, the volume of training data and information 
covered by the data. It is common to determine it empirically. Thus, the FFNN structure was 

selected by training FFNNs with different numbers of hidden neurons using the FVs obtained 
from PSD. Performance of each FFNN was assessed regarding the classification mean squared 

error (MSE) and classification accuracy (a percentage of properly identified sleep phases) [25]. 
The whole procedure of classification was carried out in the following steps. For the three 

examined feature extraction methods, the training, validation and testing sets were prepared by 

randomly selecting feature vectors in a proportion of 70%, 15% and 15%, respectively. In each 
of these sets, the classes were systematically mixed in the sequence: W, N1, N2, N3 and REM. 

Next, the PSD and EMD feature vectors were reduced to 12 principal components applying the 
PCA procedure (validation and testing matrices F were transformed into S according to (6), 
using standardisation parameters and matrices Q computed from the training sets). To find the 

optimal FFNN structure, the supervised training process with an increasing number of hidden 
neurons (until 10 consecutive MSEs were larger than the smallest one) was performed by the 

Levenberg-Marquardt algorithm, using the PSD features. It began with a random initialisation 
of neurons’ biases and weights [25], and took into account the validation set. In each case this 
process was restarted 30 times to increase the chance of finding the global minimum. The best 

FFNN structure (returning the minimal MSE), found using the PSD data, was then used also 
for classifications based on the features obtained from DWT and EMD, repeating the training 

procedure with 30 random initialisations. Such an approach enabled to show the differences 
in discriminative potential of the three examined methods of feature extraction from EEG 

epochs. 
 

3. Results 

 

To analyse the feature extraction methods, 13650 30-second epochs of an EEG signal, 

suitable for this work and assigned by the experts to 5 sleep stages, were finally extracted from 
the PhysioNet database, with the same number of elements in each class (2730 epochs). These 
data were evenly and randomly divided into the training (9100 epochs), validation and testing 

sets (2275 epochs each). 
PSD was used as the first feature extraction method of calculating the average signal power 

in 15 frequency intervals. The resulting feature vectors representing the N1, N2, N3, and REM 
sleep stages from the testing set (before PCA) are shown in Fig. 1. 

The second method to concisely characterise the EEG epochs was DWT. According to the 

characteristic spectrum of EEG signal sampled with 100 Hz, 5 levels of decomposition were 
chosen, resulting in 6 vectors of detailed and approximation coefficients for each EEG epoch 

(Fig. 2), recalculated then into average powers and standard deviations. 
Similarly, all EEG epochs were processed by EMD, returning from 12 to 22 intrinsic mode 

functions (Fig. 3), and then averaged powers and standard deviations were calculated from these 

components. 
The next step of the study, where FFNNs with different numbers of neurons in two hidden 

layers were trained using the 12-element feature vectors obtained from PSD and PCA, yielded 
the optimal structure of this classifier, i.e. the FFNN with 23+22 hidden neurons (Fig. 4a), 
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characterised by the minimal MSE (0.0567) and the classification accuracy of 81.1% (Fig. 4b). 

FFNNs with the same optimal architecture were further used to test the efficiency of sleep 
stage classification based on the features extracted from the EEG epochs also by DWT and 
EMD. The final results are summarised in Table 1. 

 
 

 

Fig. 1. Original features extracted by PSD for: N1(a); N2 (b); N3 (c) and REM sleep stages (d). 

 
 

 
Fig. 2. Approximation and detailed coefficients from DWT (db3 wavelet) of an EEG epoch representing  

the REM sleep stage. 
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Fig. 3. Intrinsic mode functions (from 3 to 8 of 18 IMFs ) derived by EMD from an EEG epoch  

representing the REM sleep stage. 

 
a) 

 

 

Fig. 4. The optimal structure of classifier –FFNN with 23+22 neurons in the hidden layers (a); 

 dependencies of MSE and classification accuracy on the number of hidden neurons for the testing set  

(the best results from repetitions of training restarted 30 times) (b). 

 
Table 1. Accuracy of sleep stage classification using the FFNN with 23+22 hidden neurons  

and the feature vectors extracted from EEG epochs by PSD, DWT and EMD. 

Data 
Classification accuracy (%) 

PSD DWT EMD 

Training set 81.2 74.2 58.7 

Testing set 81.1 74.2 57.6 
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4. Discussion 

 

The aim of this work was to compare the feature extraction efficiency of three methods: PSD, 
DWT and EMD in the automatic classification of sleep stages with the use of an ANN as the 

classifier. 
The feature vectors extracted from PSD of N1, N2, N3 and REM sleep stages are shown 

in Fig. 1. A pretty wide dispersion of values for particular features can be observed within 
a single sleep stage and similarities between FVs of N1 and REM, as well as FVs of N2 and 
N3. The differences represent the inter-subject variability following the fact that the analysed 

epochs are obtained from two all-night EEGs of 20 subjects (10 females and 10 males). The 
widest dispersion of averaged powers can be observed during the N1 stage. This is possible 

because N1 is the first stage of sleep, accompanying the process of falling asleep. N2 and N3 

sleep stages characterise slow-wave sleep in which the delta waves (0.5−4 Hz) dominate, but 

there are also the theta waves (4−8 Hz) during the N2 stage – the longest part of sleep. The 
similarity between the N1 and REM stages is caused by a large variety of frequencies within 

them. Nevertheless, during the N1 stage the highest amplitude is in a range of 2−7 Hz. 
An example of approximation and detailed coefficients from DWT of one EEG epoch is 

shown in Fig. 2. In this work, the EEG signal is transformed using the Daubechies wavelets 

of order 3 (db3) at 5 levels of decomposition. In the literature, the Daubechies wavelets of order 
2 [15, 29, 47] or 4 [16] were often used. Moreover, they were analysed for 4 [47] to 7 levels 

[15]. An additional difference is that usually FVs were prepared using far more features, such 
as: energy of coefficients in selected sub-bands, total energy, ratio of different energy values, 
or standard deviation and mean of the absolute values of coefficients in each sub-band [15, 47]. 

In the work [29] also 5 levels of DWT were used, but the coefficients were transformed into 
a more rich FV by computing their variance, skewness and kurtosis. 

Figure 3 presents intrinsic mode functions (from 3 to 8 of 18 IMFs in this case) derived by 
EMD from one EEG epoch. In this work, the FVs are created by calculating only average 
powers and standard deviations from all IMFs for each epoch, and then selecting the first 12 

principal components using the PCA procedure. Because EMD yields different numbers 
of IMFs for different epochs, preselected quantities of IMFs are used in the literature to produce 

larger feature vectors. For example, the features based on statistical moments (mean, variance, 
skewness and kurtosis) were calculated from the first 4 IMFs [19], and from the first 7 IMFs 
[34]. 

The optimal structure of FFNN for the PSD feature vectors with 12 neurons in the input 
layer, 23 + 22 neurons in two hidden layers, and 5 neurons in the output layer has been found 

in this work (Fig. 4a). In the literature, other structures of FFNN for the PSD FVs were used. 
For example, a network with 30 input neurons (PSD for 30 spectral bands from 0.5 Hz to 30 
Hz), 6 output neurons (W, S1, S2, S3, S4 and REM) and 11 neurons in one hidden layer revealed 

a classification accuracy of 76.7%, and an ANN with 4 output neurons (W, S1/S2, S3/S4 and 
REM) and 7+7 neurons in two hidden layers demonstrated a classification accuracy of 81.5% 

[25]. Hsu et al. [11] proposed an FFNN with 6 input neurons, 6 neurons in one hidden layer and 
5 output neurons with a classification accuracy of 81.1% as the optimal structure from the three 

types of neuron classifiers: Elman Recurrent ANN, FFNN and Probabilistic ANN. In another 
work, a structure with 15 input neurons, 32 neurons in the hidden layer and 3 output neurons 
(alert, drowsy and sleep) was chosen, returning accuracies over 92% [47]. That work, however, 

was not focused on the classification of sleep phases. 
The final classification results are presented in Table 1. The best accuracy (81.1% for the 

testing set) is obtained for extracting the features from EEG epochs by PSD and then calculating 
averaged powers in 15 sub-bands related to the brain waves spectra. This result is comparable 
to the former works using ANNs [11, 25]. The primary difference between the used feature 
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extraction methods based on PSD, DWT and EMD is that the first one takes directly into 

account the bounds of spectra of the brain waves, and the other two do not. Achieving higher 
accuracy for 5 classes using only the EEG signal is very difficult, because of the similarities 
between the N1 and REM, and the N2 and N3 sleep stages (compare Fig. 1). This is due to the 

fact that PSD presents information about the average spectral nature of signal in 30-second 
epochs. The classification results obtained with DWT could be probably better if the FVs were 

extended by either such features like energy of coefficients [15, 47] or statistical features: mean, 
variance, skewness and kurtosis [29], or by using DWT with the Daubechies wavelets of order 
other than 3 [16]. Especially the approach combining the decomposition coefficients related to 

the specific brain wave bounds seems to be very promising [15]. A classification accuracy with 
FVs from EMD is surprisingly low (57.6%). Moreover, this approach is computationally less 

efficient due to an iterative procedure of finding the intrinsic mode functions. Probably better 
results can be achieved if the Hilbert transform is applied to IMFs (the Hilbert-Huang 
Transform [31]) and then specific frequency sub-bands are selected to produce features [36], or 

if the statistical features of the IMFs are also taken into account [19, 34]. The best reported 
results of sleep stage classification from an EEG signal (e.g. [16, 18, 41, 42]) used mixed signals 

or methods of feature extraction and larger FVs, but such approaches are beyond the scope of 
this paper. 
 

5. Conclusion 

 

Three methods of feature extraction from EEG epochs: power spectral density, discrete 
wavelet transform and empirical mode decomposition, were tested for the purpose of sleep 
stage classification by artificial neural networks with the same structure. The best result, 

characterised by a classification accuracy of 81.1%, was yielded when the features were 
prepared using averaged powers from the frequency sub-bands of PSD and a feedforward neural 

network with 12 input neurons, 23 + 22 hidden neurons and 5 output neurons was applied as 
the classifier. Such an outcome shows that the efficiency of PSD is better than DWT and EMD 

in this specific classification problem. Also, it stresses the importance of using the frequency 
sub-bands characteristic for the brain waves to detect the sleep stages from EEG. 

Although this preliminary study has unambiguously shown that PSD returns the best results 

in comparison with other tested methods of feature extraction, it is worth to continue this study 
focusing on some selected issues. First of all, a possibility of extracting the characteristic 

frequency sub-bands from DWT (by combining selected approximation and detailed 
coefficients) and EMD (by using the Hilbert transform) should be tested. Also, computing 
larger sets of features within these approaches to EEG processing, besides average powers and 

standard deviations used in this work, can be tried. And finally, other classification methods, 
e.g. the support vector machine or decision trees, may suit better dealing with this particular 

problem. Analysing all the above possibilities should lead to obtaining even better classification 
accuracy than that achieved in this study. 
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