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Abstract 

The paper presents a method of developing a variable structure measurement system with intelligent components

for flight vehicles. In order to find a distinguishing feature of a variable structure, a numerical criterion for selecting 

measuring sensors is proposed by quantifying the observability of different states of the system. Based on the Peter 
K. Anokhin’s theory of functional systems, a mechanism of  “action acceptor” is built with intelligent components, 

e.g. self-organization algorithms. In this mechanism, firstly, prediction models of system states are constructed 

using self-organization algorithms; secondly, the predicted and measured values are compared; thirdly, an optimal 

structure of the measurement system is finally determined based on the results of comparison. According to the 

results of simulation with practical data and experiments obtained during field tests, the novel developed 

measurement system has the properties of high-accuracy, reliable operation and fault tolerance. 

Keywords: flight vehicle, variable structure measurement system, the degree of observability, self-organization 

algorithm, integrated navigation system. 
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1. Introduction 
 

Vehicles that are capable of sustained motion through air and space are termed as flight 
vehicles (FV), and they are generally classified as aircrafts, space-crafts and rockets. All flight 

vehicles require manipulation (i.e. control or adjustment) of their position, velocity and 
orientation for efficient completion of flight missions based upon the measurement information 
about operation states [1]. However, in practice the measurement information is usually 

disturbed by internal and external noise. Thus, in order to improve accuracy of on-board 
measurement systems, a novel design scheme is developed with intelligent components based 

on the Peter K. Anokhin’s functional system theory [2, 3]. 
As we all know, on-board measurement systems usually consist of an inertial navigation 

system (INS), a global navigation satellite system (GNSS), a ground-based radio navigation 

system (GRNS), a terrain-referenced navigation system (TRNS), a continuous visual 
navigation system (CVNS) etc. [4]. The above mentioned systems are generally integrated using 

Kalman filtering [4, 5] to fuse navigation information with different characteristics. However, 
the operability of those sensors varies all the time with changes of external environment. 

For example, when our flight vehicles are working in a battlefield environment, it may be 
impossible to access the position, navigation, and timing (PNT) information with ordinary 
GNSS receivers. Therefore, the novel measurement system presented in this paper is designed 

with a variable structure. To achieve this goal, some selection criteria of measurement 
information, e.g. a numerical criterion of the degree of observability (DoO), must be formulated 

for time-varying conditions. 
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In addition, according to the Peter K. Anokhin functional system theory, a mechanism 

of “acceptor of the results of action” [2] (or just “action acceptor”) is necessary for our new 
developed measurement system, because it can help us to select an optimal combination 
of measuring sensors and to determine a better measurement structure for a current working 

period. To introduce this mechanism, self-organization algorithms (SOA) [6] functioning as an 
intelligent component are suggested to be put into use. 

The paper is organized as follows. In Section 2, a methodology of quantitative observability 
analysis with the degree of observability, functioning as a kind of selection criterion 
of measurement information, is introduced for linear time-varying (LTV) systems. In Section 3, 

self-organization algorithms used for constructing prediction models are briefly examined. 
In Section 4, an analytical methodology for optimizing system parameters and modelling 

in synthesis of a measurement system is presented. In Section 5, a novel measurement system 
is developed on the basis of the Peter K. Anokhin’s functional system theory. In order to clearly 
demonstrate performance and effectiveness of the proposed measurement system, the results 

of simulation using practical data and field test results are presented. 
 

2. Measurement selection criterion and degree of observability 

 
In this section, we are interested in finding a figure of merit for each state-variable that can 

reflect how observable the state-variable is. A criterion having this function may be termed the 
numerical criterion of the degree of observability. Moreover, the degree of observability can 

further serve as an indicator in selecting better measuring sensors for a current working period 
in formulating variable structure measurement systems [1]. As we have mentioned above, 
the external environment and internal system states are continuously changing in time. 

Therefore, the system of interest is commonly expressed as a linear time-varying system: 

                                                           
, 1 1 1k k k k k− − −

= +x F x w ,                                                           (1) 

                                                               
k k k k
= +z H x v ,                                                                (2) 

where 
k

x  is a vector of state; 
1k−

w  is a vector of input noise; 
k

z  is a vector of measurement; 

k
v  is a vector of measurement noise; 

, 1k k−
F  is a state transfer matrix; 

k
H  is a measurement 

matrix. 

We assume that the input 
1k−

w  and measurement 
k

v  noise is the white Gaussian noise, and 

there is no evident correlation between them, i.e. 0
T

j k
E   = v w  for any j  and k . 

In respect to the system represented by (1) and (2), a measurement 
k
z  may be reformulated 

as follows [7]: 
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where n  is the order of the system. 
Then, we can rewrite the expression (3) in a matrix form as: 
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A matrix 
k

O  is termed the local observability matrix of an LTV system [8]. To examine 

the local observability over a period from k  to 1k n+ − , we can use as the observability rank 

criterion being the local observability matrix 
k

O  of rank n  for the period, i.e. 

                                                                               { }krank n=O .                                                                (5) 

Considering (4), we can step by step obtain a relationship of state-variables and measurement 
as: 

                                                        T T T

k k k k k k k

∗ ∗

= +O z O O x O v ,                                                       (6) 

or 

                                                       T T T

k k k k k k k

∗ ∗

= −O O x O z O v ,                                                         (7) 

then 

                                           
1 1

T T T T

k k k k k k k k k

− −
∗ ∗   = −   x O O O z O O O v ,                                                (8) 

and finally 

                                                              † †

k k k k k

∗ ∗

= −x O z O v ,                                                                    (9) 

where † means the Moore-Penrose pseudoinverse of matrix. 

Let †

k k k

∗

=y O z , considering (4), we can obtain a scalar form of vector 
k

y  as: 
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k k k k k n k k n
y a z a z a z

+ + −
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where i

k
y  is the i-th component of vector 

k
y , 

,

( 1, , )i

j ka j n= ⋯  are time-varying elements of the 

i-th row in the matrix †

k
O . 

Correspondingly, the measurement noise * † *

k k k
=ς O v  in a scalar form is: 

                                                 
*
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k k k k k n k k n
a v a v a vς
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where *i

k
ς  is the i-th component of vector *

k
ς . 

Furthermore, the variance of measurement noise *i

k
ς  may be expressed as: 

                                            ( ) ( ) ( )
2 2 2

*

1, 2, ,

i i i i

k k k n k k
R a a a R

+ = + + +  
⋯ ,                                           (12) 

where 
k

R
+  is the variance of direct measurement noise 

k
v
+ . 

Therefore, the degree of observability for an LTV system can be defined as [7]: 
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From (12), we know that the ratio of the variance values of measurement noise is ( )
2

,

1

,

n
i

j k

j

a

=

∑  

thus we can rewrite (13) and finally obtain: 
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In practice, ( )
2

i
E x 
  

 and ( )
2
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 in (14) are usually calculated as: 
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It is apparent from (14) that the system parameters in the matrix 
, 1k k−

F  have an indirect 

influence on the degree of observability by the elements 
,

( 1, , )i

j ka j n= ⋯  in the pseudoinverse 

matrix of observability †

k
O . In practical applications, this feature makes it possible to optimize 

physical model parameters and to determine optimal variable structures for measurement 

systems. 
 

3. Algorithms for constructing prediction models 

 

In order to guarantee high-precision selection and fusion of information, the mechanism 
of “action acceptor” is necessary in our novel variable structure measurement systems. In this 
mechanism, except for the application of the degree of observability, algorithms for 

constructing prediction models are also required for further comparing the a posteriori and 
predicted information. From the results of comparison [2, 9], an optimal structure of the 

measurement system can be finally determined for the current working period in accordance 
with the operation conditions of flight vehicles. In this section, we shall introduce some 
algorithms, e.g. self-organization algorithms, for constructing mathematical prediction models. 

In general, we define a mathematical prediction model as: 

                                                             ( )
1

,

L

k i i i k

i

M a f xµ

=

=∑ ,                                                        (17) 

where 
i

µ  is a basic function from the function set 
s

F  ( ){ }( ), | 1, ,
s i i i k

F a f x i Lµ= = ⋯  and 
i
a  is 

an amplitude, 
i
f  is a frequency, L  is the number of basic functions. 

As the basic functions, we usually select three types of functions to build mathematical 
prediction models owing to the dynamic features of flight vehicles. 
a) A linear trend (function) has a form: 

                                                    ( )ˆ ,
L l l

k l l k k k
x a b k t d= + ,                                                          (18) 

 where ˆL
k
x  is a predicted value, ,

l l

k k
k d  are a slope and a constant of the linear function, ,

l l
a b  

are coordinates of the reference point. 

b) A nonlinear harmonic trend (function) is: 

                                            ( ) ( )ˆ sin cos
N s s c c

k k k k k k k k k
x A t B tω ϕ ω ϕ= + + + ,                      (19) 

 where ˆN
k
x  is a predicted value, , , , , ,

s c s c

k k k k k k
A B ω ω ϕ ϕ  are amplitudes, frequencies and phases 

of the trigonometric functions. 
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c) A Modified Demark trend is expressed as: 

                                                      
1 1
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− −

= + ,                                                        (20) 

where ˆD
k
x  is a predicted value and 

                                              1 1 1 1 1
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,                                                       (21) 

where 
1 1
,

L N

k k
ζ ζ

− −

 are weighing factors within a range from 0 to 1. 

In order to find an optimal solution 
j

χ  for mathematical prediction models, we would like 

to introduce a quadratic criterion [10] with respect to the amplitude 
i
a  as: 
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Then, we may differentiate it by the amplitude 
i
a  and obtain: 
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With (23) we can easily find a good optimal solution of prediction models based on the self-
organization selection criteria [6]: 

a) the minimum deviation criterion:  

                                              

( )
2

2 1

2

1

ˆ ˆ
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L
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i
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where ˆP
i
x  and ˆQ

i
x  designate two parts of a predicted value, 

i
z  is a measurement value. 

b) the regularity criterion: 
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z x
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−
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,                                              (25) 

where ˆ
i
x  is a predicted value. 

Based on the above-mentioned basic functions (18) ‒ (20), we can thus build some self-

organization algorithms by utilizing the self-organization selection criteria (24) and (25). One 
of the most effective algorithms is a so-called self-organization algorithm with redundant 

trends, as shown in Fig. 1, where SC are selection criteria, C are competitive prediction models. 
 
 

 
Fig. 1. A functional scheme of self-organization algorithm with redundant trends. 
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Similarly, evolutionary algorithms, e.g. genetic algorithms and neural networks, can also 

function as tools for building prediction models. Eventually, we can obtain an optimal 
mathematical prediction model using the above proposed algorithms. 
 

4. Analytical methodology for optimizing system parameters and modelling 

 

On the basis of the concept of measurement system synthesis [1, 9], it is necessary to 
rationally reduce the number of model parameters of the system. For this purpose, we would 
like to introduce a practical methodology for optimizing system parameters in accordance with 

the external and internal changes. 
In the practical implementation of parameter optimization, we can simply divide the system 

parameters into three types considering the changing rates of parameter values. For example, 
all the system parameters are classified as “slow”, “normal” and “fast” variables. 
Correspondingly, during processing the measurement information in practice, we may make 

some modifications, as follows: slow changing parameters are replaced with constants; fast 
changing parameters are replaced with their average values. Next, according to the problem 

statement, the clarification (or correction) of variables is made. As a result, an hierarchy 
diagram of optimizing system parameters considering their changing rates is formulated, as 
shown in Fig. 2. 

 

 

Fig. 2. An hierarchy diagram of optimizing system parameters considering their changing rates. 

 
The presented hierarchy method of optimizing system parameters can be applied in the 

mechanism of “action acceptor” to building measurement systems with intelligent components. 
In respect to the modelling optimization with optimizing parameters, based on the theory 

of system synthesis [9], a novel practical methodology for modelling is developed by adopting 
the numerical criteria of the degree of observability and the criteria of self-organization 
selection. A functional diagram of modelling in measurement systems with intelligent 

components is presented in Fig. 3. 
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Fig. 3. A functional diagram of modelling in measurement systems with intelligent components. 

 
In Fig. 3, dominant parameters are selected using the criterion of the degree of observability 

with a low threshold. Furthermore, different types of models are formulated depending on the 
operation modes of flight vehicles. However, it should be noted that for intensive manoeuvring 

modes a high threshold value of the degree of observability is further suggested to be used to 
guarantee effective information processing and high accuracy of parameter determination. 

In this section, we examine the analytical methodology for optimizing system parameters 
and modelling, and illustrate practical techniques by their functional diagrams. According to 
the above proposed design concepts, the novel developed measurement system structure is 

guaranteed to be compact, which is beneficial in practical applications. 
 

5. Variable structure measurement system with intelligent components 

 

Rapid development of cybernetics, computer engineering, biotechnology and artificial 
intelligence leads to the appearance of measurement systems with intelligent components. 
Based on the systematic synthesis concept and the Peter K. Anokhin’s functional system theory 

[1, 3], in this section we present a new type of measurement system with a variable structure 
and show its working principles as well as practical advantages. 

As we all know, the operation environments (external and internal) of flight vehicles are 
constantly changing. Thus, a variable structure of the measurement system should be designed 
to adapt to those changes. In order to do that, the degree of observability must be used as an 
automatic selection criterion (or indicator) of measurement information. Except for that, the 
mechanism of “action acceptor”, consisting of a block of information fusion and selection 

(BIFS), an algorithm for constructing models (ACM) and a block of prediction algorithms 
(BPA), also needs to be formulated. 

Based on the above-mentioned numerical criterion of the degree of observability, self-
organization algorithms and other practical methodologies, a novel variable structure 
measurement system with intelligent components has been developed, as shown in Fig. 4, where 

Sensor 1 is the basic navigation sensor (e.g. an inertial navigation system), Sensors 2 ‒ N are 
external supporting navigation systems (e.g. GNSS, TRNS, CVNS, and so on) [4, 11, 12], BEA 

is a block of estimation algorithms (e.g. Kalman filtering [5, 13]), θ is actual navigation 



 

K. Shen, M. S. Selezneva, et al.: NOVEL VARIABLE STRUCTURE MEASUREMENT SYSTEM … 

 

information, x is a navigation error, z is measurement information, x̂  is an estimate, ˆ̂x  is 

a predicted value, xɶ  is an estimation error. 

 

 

Fig. 4. A functional scheme of a novel variable structure measurement system with intelligent components. 

 
In the block of information fusion and selection, the optimal structure of measurement 

system is determined by comparing the measured and predicted information on the basis of the 

degree of observability. With the changes of external and internal conditions, the structure 
of measurement systems is always in the process of change. Therefore, this process is similar 

to an intelligent decision-making procedure and thus guarantees the optimization of the system 
structure. 

In order to comprehensively explain the working principles of the proposed novel 
measurement system, we carried out simulations with the use of practical data. To measure the 
position and velocity of our flight vehicles, we used GNSS receivers, TRNS and CVNS 

cameras. Accordingly, the degrees of observability of velocity errors obtained by using different 
measuring sensors were calculated, as shown in Fig. 5. 

 

 

Fig. 5. The degrees of observability of navigation errors obtained by different sensors. 

 
Figure 5 clearly shows the variant trend and the percentage of having the degree 

of observability for different navigation sensors. The results are advantageous in calculation 
of information-sharing factors during the information fusion [13, 14]. In addition, the calculated 
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degree of observability can serve as an indicator in selection of better external supporting 

navigation systems for a current working period. 
On the basis of the above results, it is easy to decide which of the supporting sensors should 

be selected during a current period and how to change or optimize the structure of the 
measurement system in order to adapt to the changes of internal states and external conditions. 

Moreover, the field tests were also carried out in a semi-real environment. During the tests, 
we set a change period of the measurement structure equal to 20 seconds taking into account 
the practical requirement and on-board computation capability. The test results are shown in 
Fig. 6. 

 

 

Fig. 6. The field test results of the novel developed variable structure measurement system. 

 
As shown in Fig. 6, based on analysis of the observability, a combination of basic INS and 

supporting TRNS worked with a better accuracy than that of other measurement functional 
structures in an interval from 640 to 660 sec. Thus, in order to obtain an optimal measurement 

structure, TRNS was selected as the external supporting navigation system. Similarly, in the 
next intervals CVNS and GNSS were successively selected. According to the results 
of simulation and experiments, the novel developed measurement system is characterized by 

high accuracy, self-adaption and fault tolerance. 
In the novel developed measurement system, we set INS as the basic navigation system, 

because it has the advantages of strong autonomy, instantaneous navigation parameters and 
good concealment, which lead to the all-weather global operation of the system. During 
functioning of the novel developed measurement system, we always select only one external 

supporting sensor to combine with the INS in each time interval, which can guarantee strong 
anti-interference capability (e.g. anti-electromagnetic interference in battlefield environments) 

of the whole measurement system. 
 

6. Conclusions 

 

The paper presents a method of developing a variable structure measurement system with 

intelligent components. In order to achieve this goal, a numerical criterion of the degree 
of observability and algorithms for constructing prediction algorithms (e.g. modified self-
organization algorithms) are proposed. On the basis of the Peter K. Anokhin’s functional system 

theory, a novel measurement system with a variable structure is developed for improving 
accuracy of the system and adapting it to changes of environment. The new proposed 

measurement system has an intelligent decision-making capability and guarantees continuous 
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optimization of the system structure. According to the results of simulation with the use 

of practical data as well as the results of field tests, the novel developed measurement system 
is characterized by high accuracy, self-adaption, strong anti-interference capability and fault 
tolerance. 
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