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ANDRZEJ BUCHACZ ∗

ANALYSIS OF BEAM HYPERGRAPHS BY MEANS OF EXACT
AND APPROXIMATE METHODS AS MODELS OF TRANSVERSE

VIBRATING SUBSYSTEMS IN THE SYNTHESIS
OF MECHANICAL AND MECHATRONIC SYSTEMS

In this paper, the author compares the of characteristics of subsystems obtained
by the approximate and exact method in order to answer to the question – if the
approximate method can be used to nominate the characteristics of mechatronic
systems. Frequency – modal analysis has been presented for a mechanical system,
i.e. transverse-vibrating clamped-free beam. Consequently, the model of the beam
was presented in a five-vertex hypergraph. This model, in the case of approximate
frequency-modal analysis, can be imitated in a three-vertex hypergraph. Such formu-
lation could be the introduction to synthesis of transverse-vibrating complex beam
systems with constant cross-section.

1. Introduction

The problems of analysis of vibrating beam systems, discrete and discrete-
continuous mechanical systems by means of the structural numbers methods
modelled by graphs and hypergraphs have been investigated in the Gliwice re-
search Centre (e.g.[1, 2]). The problems of synthesis of electrical systems [3]
and of a selected class of continuous, discrete - continuous discrete mechan-
ical systems and active mechanical systems have been dealt with [4-8,10].
The continuous-discrete torsionally and transverse vibrating mechatronic sys-
tems were considered in [9-12]. The approximate method of analysis, called
the Galerkin’s method, has been used to obtain the frequency-modal char-
acteristics. To compare the obtained dynamical characteristics – dynamical
flexibilities only for mechanical torsionally vibrating bar and transverse vi-
brating beam being a parts of complex mechatronic systems, we used an
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exact method and the Galerkin’s method [9, 11, 12]. In this paper, frequency
– modal analysis is presented for a mechanical system, a transverse-vibrating
clamped-free beam. The model of the beam is presented in a five-vertex
hypergraph, which in the case of approximate frequency-modal analysis we
can imitate in a three-vertex hypergraph. Such formulation could be the in-
troduction to synthesis of transverse-vibrating complex beam systems with
constant cross-section.

2. Vibration free beam as the subsystem of beam-system

2.1. The dynamical flexibility of the beam – solution by the exact
method

We consider a beam – treated as a subsystem of a mechatronic system∗ –
with constant cross section, clamped on the left end and free on the right one,
with harmonic excitation force in the form P(t) = P0 sinωt. The equation of
motion of the beam takes the form

EJZ y(x, t),xxxx + ρAy(x, t),tt = 0, (1)

where: y(x, t) – deflection at the time moment t of the lining beam section
within the distance x from the origin of the system,E – Young’s modulus,
ρ – mass density of material of the beam, JZ – polar inertia moment of the
beam cross section, A – area of the beam cross section.

The boundary conditions on the beam ends are the following

y(0, t) = 0, y(0, t),x = 0, y(l, t),xx = 0, EJZ y(l, t),xxx = −P(t), (2)

where: l – length of the beam.
The solution y(x, t) to equation (1) is a harmonic function

y(x, t) = X(x) sinωt. (3)

Determining suitable derivatives of (3) and substituting them into (2) the set
of equations, we obtain, after transformations


A(cosh kl − cos kl) + B(sin kl + sinh kl) =

−P0

EJZk3 ,

A(sinh kl − sin kl) + B(cosh kl + cos kl) = 0.
. (4)

which can be written in matrix form

WA = F, (5)

∗ The mechatronic system was considered in [11].
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where:

W =

∣∣∣∣∣∣∣
(cosh kl − cos kl), (sin kl + sinh kl)
(sinh kl − sin kl), (cosh kl + cos kl)

∣∣∣∣∣∣∣ ,A =

∣∣∣∣∣∣∣
A
B

∣∣∣∣∣∣∣ ,F =

∣∣∣∣∣∣∣∣

−P0

EJZk3

0

∣∣∣∣∣∣∣∣
.

The main determinant of the set of equations (5) is equal to

|W| = 2(1 − cos kl cosh kl) (6)

To determine the constants A, B, we should calculate the following determi-
nants

|WA| =
∣∣∣∣∣∣∣∣

−P0

EJZk3 (sin kl + sinh kl)

0 cosh kl − cos kl

∣∣∣∣∣∣∣∣
= − P0

EJZk3 (cosh kl − cos kl), (7)

|WB| =
∣∣∣∣∣∣∣∣
(cosh kl − cos kl)

−P0

EJZk3

(sinh kl − sin kl) 0

∣∣∣∣∣∣∣∣
=

P0

EJZk3 (sinh kl − sin kl). (8)

According to (4-8), the constants A, B are equal to:

A = −C =
|WA|
|W| = − P0(cosh kl − cos kl)

2EJZk3(1 + cos kl cosh kl)
. (9)

B = −D =
|WB|
|W| =

P0(cos kl + cosh kl)
2EIk3(1 + cos kl cosh kl)

. (10)

Substituting expressions (9) and (10) into (3), after transformations, we obtain
the beam deflection function

y(x, t) = −P0 sinωt
[
(cosh kl − cos kl)(sin x + sinh kx)−

2EJZk3(1 − cos kl cosh kl)

(sinh kl − sin kl)(cos kx + cosh kx)
] . (11)

Dynamic flexibility, calculated according to its definition on the basis of (11),
takes the form

Y = − (cosh kl − cos kl)(sin x + sinh kx) − (sinh kl − sin kl)(cos kx + cosh kx)
2EJZk3(1 − cos kl cosh kl)

.

(12)
The graph of absolute value of dynamical flexibility (12) is drawn in Fig. 1
for x = l, which means αY = |Y |.
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Fig. 1. The plot of dynamical flexibility of transverse vibrating continuous system

2.2. Galerkin’s method of calculation of dynamical
flexibility of the beam

It should be considered that, if the shaft is under the action of mo-
ment with continuous factorization through the beam length with the value
F (x) sinωt on the length unit – then the equation of motion of the element
of length dx located at the point x is:

EJZy,xxxxdx + ρAy,ttdx = F(x) sinωtdx, (13)

To determine the dynamic flexibility, we must find the factors, which depend
on the concentrated loading F (x) sinωt acting at the point z. The loading
can be considered as a limit of the concentrated loading through the length-
as follows:

F(x) =


F
h

when z − h ≤ x ≤ z,

0 in other section
(14)

and the equation of excited vibrations of the beam can be written as

EIy′xxxx + ρAy′tt = P0 sinωt (15)

where: P0 =
F
h

.
The deflection of beam – the solution to (15) by means of the Galerkin’s

method is given in the form

y(x, t) =

∞∑

n=1

yn(x, t) =

∞∑

n=1

An sin
[
(2n − 1)

π

2l
x
]
sinωt. (16)
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Substituting the following derivative of function (16) into (15) we obtain

EIAn

[
(2n − 1)

π

2l

]4
sin

[
(2n − 1)

π

2l
x
]
sinωt+

ρAAnω
2 sin

[
(2k − 1)

π

2l
x
]
sinωt = P0 sinωt

. (17)

After transformations, the value of amplitude An of the vibrations takes the
form

An =
P0

ρA − EI
[
(2n − 1) π2l

]4 . (18)

Using equation (18) and putting it into (16), we get the dynamical flexibility

Y (n)
xl =

sin
[
(2n − 1) π2l x

]

ρAω2 − EI
[
(2n − 1) π2l

]4 . (19)

In the global case, the dynamical flexibility at the end of the beam takes the
form

Yxl =

∞∑

n=1

Y (n)
xl =

∞∑

n=1

sin
[
(2n − 1) π2l x

]

ρAω2 − EI
[
(2n − 1) π2l

]4 . (20)

The plot of the value of dynamical flexibility defined by expression (20) is
shown in Fig. 2 for the sum k =1,2,3.

Fig. 2. The plot of absolute value of dynamical flexibility for the sum n=1, 2, 3 mode vibration
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On the basis of the obtained formulas, derived by means of the exact
method and approximate methods, it is possible to analyze the considered
class of vibrating mechanical systems. Moreover, it is possible to analyze
mechatronic systems where mechanical parts are vibrating beams using only
approximate methods.

When boundary conditions of mechanical parts of mechatronic systems,
i.e. beams, are different, it is necessary to use the solutions derived in this
paper. These problems will be the subject of future research works.

3. Model of beam system represented by hypergraphs

To specify the meaning of necessary terms and symbols, a review of
essential concepts of graph theory will be presented before modeling the
torsionally vibrating continuous bar systems. The weighted hypergraphs (in
this paper also called the weighted block graphs or weighted graphs of cat-
egory k) have been applied to modeling the considered mechanical systems.
Definitions of graphs as mathematical objects are presented on the basis of
the literature. The bibliography of this subject is very extensive and concerns
the theory as well as applications of hypergraphs (see [1-6, 14]).

3.1. Basic concepts concerning the class of applied graphs

Using the symbols introduced in papers [1,2,5], we name the following
couple

X =
(

1X, 2X
)
, (21)

a graph, where: 1X = {1x0, 1x1, 1x2, ..., 1xn} – finite set of vertices, 2X =

{2x1, 2x2, ..., 2xm} – family of edges being two-element subsets of vertices, in
the form of 2xk =

(
1xi, 1x j

)
(i, j = 0,1, ... ,n ) (of. [14]).

The couple
kX =

(
1X, k2X

)
, (22)

is called a hypergraph, where: 1X is the set as in (21), and k
2X =

(
k
2X

(i)/i ∈ N
)
,

(k=2,3, ... ∈N) is a family of subsets of set 1X; the family k
2X is called a

hypergraph over 1X as well, and k
2X =

{
k
2X

(1), k2X
(2), ..., k2X

(m)
}
is a set of edges

[14], called hyperedges or blocks, if

(i) k
2X , ∅(i ∈ N),

(ii) ∪
i∈I

k
2X

(i)=1X.

If a subset from the family of subsets of vertices with nz ≤ n, is distin-
guished from the hypergraph kX with n vertices, then the complete graph of
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hypergraph kX is the graph XZ . In this graph, each pair of vertices is incident,

and graph XZ has m=


n
2

 edges.

The skeleton kX0 of hypergraph kX is a graph obtained as the result
of substitution of each subset of vertices by the tree X

0
, composed of one-

dimensional edges and spread over all vertices of the hypergraph kX. The
tree X

0
of graph X with n vertices and m edges is a connected subgraph with

the same number of vertices and with m
0

= n − 1 edges, in which there are

no circuits and loops. Then, every skeleton of subsets of vertices is a tree of
a substitute-complete graph.

A tree in which every vertex 1xi (i = 1, . . . , n) is incident with the vertex
1x0 by the edge 2xk = (1xi, 1x0), (k= 1, ... ,m

0
), (see e.g. [1,5]) is called the

Lagrange skeleton.
Planar geometrical representation of the graphs X and the hypergraphs

kX is shown in Fig. 3. The sets of edges 2X are marked by lines, the sub-
sets of family k

2X (hyperedges or blocks) – two-dimensional continuum with
enhanced vertices, have the shape of circles.

In this paper, the hypergraphs – graphs of category k – kX (k = 2,3) are
used, which will be clearly mentioned each time. We also use the graphs X,
called the graphs of the first category – 1X (see [1, 5, 14]).

The basic notions, written in italics, are shown in Fig. 3.
These elements, taken from the graphs and hypergraphs theory, constitute

the collection of formal means, which will be applied in this article and in
future works.

3.2. Hypergraphs as models of vibrating beam analyzed by exact and
approximate method

We consider the transverse vibrating beam (i) with constant cross-section
and constant flexible rigidity (EJz)(i)(where E(i) – Young’s modulus of the
beam, J (i)

z – polar moment of inertia of cross-section of the beam) and length
l(i). The applied model has the form of a determined and continuous system.
In this model, generalized displacements – deflections 1s

(i)
1 and 1s

(i)
2 corre-

spond to its extreme points. Moreover, generalized displacements 1s
(i)
3 and

1s
(i)
4 – the slopes of the beam – correspond to its extreme points. These general

displacements are measured in the inertial system of reference. The origin
of the inertial system of reference has the generalized coordinate 1s

(i)
0 = 0

assigned to it. Then, the set of generalized displacements of a transverse
vibrating beam can be formulated as follows:
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Fig. 3. Basic notions concerning the class of graphs, which are used in this paper: a) set of

vertices of hypergraph, b) graphical representation of three-block graph, c) complete graphs of

hypergraph blocks, d) complete oriented graphs of three-vertex blocks and of a two-vertex block,

e) optionally selected tree-skeletons of hypergraph blocks, f) skeleton of hypergraph, g) Lagrange

skeleton of hypergraph
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1S(i) =
{

1s
(i)
0 ,1s

(i)
1 = 0,1s

(i)
2 ,1 s(i)

3 = 0,1 s(i)
4

}
, while the set of its dynamical flexi-

bilities can be denoted as Y (i) =
{
Y (i)

i j

} (
Y (i)

i j = Y (i)
ji , i, j = 1, ..., 4

)
.

By a mutual one-to-one transformation in the form of

f :1 S(i) → 1X (i), (23)

in such a way that
f

(
1s

(i)
j

)
=1 x(i)

j , (24)

where: 1s
(i)
j ∈1 S(i),1 x(i)

j ∈1 X (i), 1s
(i)
j ∈1 S(i),1 x(i)

j ∈1 X (i), j = 0,1,2,3,4
we obtain thefive-vertex hypergraph as a model of transverse vibrating

beam with constant cross-section
(i)
2X
f

=


(i)
2X, f

 , (25)

where: k
2X

(i) – one-element family – five-element subset of vertices 1X (i).
Graphical representation of transformations (23) made according to (24)

in the case of the transverse vibrating beam with constant cross-section is
shown in Fig. 4.

Fig. 4. Hypergraph of model of transverse-vibrating free beam with constant cross-section as

graphical representation of transformations (24) and (25)

The couple
(i)
2X
1

=


(i)
2X
f
, f1

 (26)

is called theweighted hypergraph, where: f1 is the function which assigns
the generalized displacements, i.e. deflections: 1s

(i)
1 and 1s

(i)
2 the slopes of the

beam – 1s
(i)
3 and 1s

(i)
4 to vertices 1x

(i)
j of hypergraph

(i)
2X
f

as

f 1

(
1x

(i)
j

)
=1 s(i)

j , j = 0, 1, . . ., 4. (27)
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On the basis of, for example the Galerkin’s transformation∗∗ , the five-vertex
hypergraph (Fig. 5a) will be transformed into the three-vertex block graph
(Fig. 5b,c).

Fig. 5. The illustration of transformation of five-vertex hypergraph into three-vertex one using the

Galerkin’s method

The complete weighted graph – the substitute graph

2X (i)
Z

12
=


2X (i)

Z
f
, f1, f2


(28)

is obtained:
– after transformations [according to (26-27)] which assign the values of

generalized co-ordinates to vertices of complete graph 2X (i)
Z
f

of the hyper-

graph 3X (i)

f
(that means the hypergraph after Galerkin’s transformation)

and

– after transformation f2 which assigns dynamical flexibilities to edges of
the complete graph , which were defined in following way

f2
({

1x
(i)
0 , 1x

(i)
0

}
,
{
1x

(i)
0 , 1x

(i)
2

}
,
{
1x

(i)
1 , 1x

(i)
2

})
=

({
Y (i)

11

}
,
{
Y (i)

22

}
,
{
Y (i)

12

})
, (29)

where: Y (i)
11 ,Y

(i)
22 ,Y

(i)
12 are dynamical flexibilities obtained by means of the

Galerkin’s method.
∗∗ There could be a different approximate method of analysis, for example the orthogonaliza-

tion method [13].
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Theweighted Lagrange’s skeleton of hypergraph 3X (i)

f

2X (i)
0

12
=


2X (i)

Z
f
, f1, f2


, (30)

is the weighted subgraph of the weighted complete graph – the substitute one
2X (i)

Z
12

. Graphical representation of these subgraphs are shown in [1, 2, 5].

In the case of synthesis of n-segment model of the system, composed of
subsystems with constant cross-section area, the transverse-vibrating system
is modeled by the loaded graph of the third category – after Galerkin’s
transformation – with n three-vertices-blocks, connected to those vertices to
which the corresponding generalized coordinates are assigned.

The use of a weighted hypergraph and its weighted subgraphs (as a
model of a transverse vibrating system) in this way may provide the basis
for the formalization, which is the necessary condition of discretization of
the considered class of continuous mechanical systems.

4. Concluding remarks

On the basis of the obtained formulas and transformations, it is possible
to analyze the considered class of vibrating mechanical and mechatronic
systems, The presented method could be an introduction to the synthesis of
such systems. The problems of synthesis will be the subject of future research
works by the author.

This work has been conducted as a part of research project N R03 0072
06//2009 supported by the Ministry of Science and Higher Education in
2009-2011.
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Hipergrafy belek analizowanych metodą dokładną i przybliżoną jako modele podukładów
drgających giętnie w syntezie układów mechanicznych i mechatronicznych

S t r e s z c z e n i e

W pracy porównano charakterystyki podukładów otrzymanych metodą przybliżoną i dokładną,
aby odpowiedzieć na pytanie: czy metoda przybliżona może być stosowana do wyznaczania charak-
terystyk układów mechatronicznych. Analizę widmowo-modalną przeprowadzano w przypadku dr-
gającej giętnie belki wysięgnikowej. Następnie model belki odwzorowano w pięciowierzchołkowy
hipergraf, który to model, w wyniku zastosowania przybliżonej metody analizy widmowo – modal-
nej, można przedstawić w postaci hipergrafu trójwierzchołkowego. Takie ujęcie może stanowić
wprowadzenie do syntezy drgających giętnie złożonych układów belkowych o odcinkowo stałym
przekroju.


