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Determination of optimal controllers.
Comparison of two methods for electric network chain
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Abstract. In the paper the comparison of two methods for calculation optimal gains is considered. One method using a Kalman procedure and
one using a Riccati equation are compared. It is proved that a Kalman procedure is much better.
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1. Introduction

Let us consider the following optimal control problem:
The state equation has the form [8]

x(t) = Ax(t) + Bu(t), t € [0, o], x(0) = xq. (1)

The quality functional is
J(u) = ; [0 0x(0) + u'(0) Ru(e)]ar. )

The matrices A, B, Q and R are constants with appropriates
dimensions. The state vector is n-dimensional and the control
vector is r dimensional. The horizon of control it is time 7 = co.
Without loss of generality we assume that matrices QO and R
are symmetric and matrix Q is nonnegative determined and R
is positive determined.

Theorem 1. [1] The necessary and sufficient condition of the
existence of optimal control is the existence of the integral (2)
for the admissible control. For that we assume the asymptotic
stability of the state matrix A.

2. The methods of determination
the optimal controllers

2.1. Riccati equation.

Theorem 2. [1-4, 10] Optimal control is described by the equa-
tion

u(t) = —-R'B'Kx(1), t >0 3)
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where matrix K is constant and may be calculated from the
Riccati equation

KBR'B'K —ATK —KA—Q=0. (4)
We look for the solution
K=K">0. (5)

The system (1) has the unique solution and the closed optimal
control system is stable and determined by the equation

%(t) = (A — BR'BTK) x(¢). (6)

From the symmetry of the matrix K follows that the equation
(4) has 14n(n 4 1) scalar equations of the second degree.

2.2. Kalman equation.

Theorem 3. [1, 7] The transfer function of the system described
by the equation (1) is equal

G(s) = (sI — A)'B. (7)
Denoting by

M(s) = det(s] — A) )

which is the denominator of the transfer function of the open
system (7), we can write for the denominator of the transfer
function of the optimal closed system M_(s)

det[M, ()M, (—s)| = (-1)"M (s) M (—s)det[I +

T ©)
+ R7'G'(-s5)0G(s)).

This is Kalman equation [9].
In the case of one dimensional system, when the control and
output are scalars and

R=0=1 (10)
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the Kalman equation simplifies to

det[M, ()M (~s)| = (—1)"M (s) M (~s)det[] +

+ GG, .
The transfer function of the open loop system is
G(s) = AL;(SS)) . (12)
Finally
AMM0) = CIMOME

Theorem 4. [1] Let us numerator of the transfer function be
a polynomial of the degree

L(s) = Miy(s — 2:) (14)
where z; are zeros of L(s) and the denominator be of the poly-
nomial degree n

M(s) = IL_i(s —p,) (15)
where p; are zeros of M(s), it means poles of the transfer func-
tion G(s).

Let the characteristic polynomial of the optimal closed

system be
i—1(s = 5). (16)
The Kalman equation gives the relation between the poles of

the optimal control system and the poles and zeros of the open
loop system in the form

(P = 87) =111, (s* —p?) +

(7

+ (1) (57 - 2f) = 0
Now we compare effectiveness of these two methods on an
example of the electric network chain.

3. Optimal controllers of electric network chain

3.1. Description of the system. The chain composed of n-equal
elements R, L, C, G type is considered. In the Fig. 1 the chain
is shown.

From the Kirchhoff laws applied to the elementary system
we obtain:

di,
Uy lmR_E_um_o (18)

d
iy — iy oy — Gty —C2m =0, m=1,2, ...n (19)

i
Y m+1

Fig. 1. Element R, L, C, G

or in the matrix form:

di,,
Mar |_[R [ ] [
CddL;" 1 -G Up im+1

Denoting the state vector of the whole system by x, and the
input voltage by u, where

(20)

x = [ip g, ooy iy 11,]" @1
we obtain
%:Ax—l—Bu (22)
where
U= u (23)
and A is (2nx2n) matrix:
L o2 |
g Cop 00 0 0
Lo —Ti Leg 0 0 - 0
0 Cwj -+ —Cof 0 - 0
A= ¢ ’ (24)
L w2
0 7 Cawj
2 1
_ 0 0 Lof 7 |
and
1
1|0
B=—]|. 25
AR (25)
0
L
TL:E
C
TC:E (26)
1
2
0y = —
" Ic
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3.2. Eigenvalues. We consider the case of different eigen-
values. The characteristic polynomial of the matrix A is de-
noted by P,,():

A+ Cw? 0 0 0 - 0
I
~Lof A++ Lof 0 0 0
0 -Co} A+L Ca} 0 - 0
1 2
0 0 . —Lof At

The principal minor whose rows and columns have indices
k+1,k+2,..,k+;0<k<2n-1,1<7<2n—kisde-
noted by P;(1) if k is even and by Q;(4) if k is odd. Developing
determinant P;(1) along its first row we obtain following re-
currence formula:

M@=Q+£)Q4M+%Bdbﬂéléhw%)

Analogically we have

gxm=@+;ymw+wwHw,

(29)
4<1<2n
and
_ 1 2
P y(A) = <)L + TL) 013(A) + 05 P_4(2), (30)
5<1<2n
From (28), (29) and (30) we have the equation
1 1
PA) — /1+)</1+)+2w2]13 )+
0= |+ g) (e )+ 2eifpame

+ wgP_4(A) =0, 5<1<2n.

From (31) we can calculate P;(1), separately for /-even knowing
P,, P, and for l-odd knowing P, P;.
The initial values from (27) are:

. (32)
el

2 2
Py(A) = (/1+ i) (H i) + (H i)(ﬂ l)swg + o
L)\ T

For the sequences P, Ps, ..., and P,, Py, ..., we can treat (31)
as a difference equation of the second order with the charac-
teristic equation:

Bull. Pol. Ac.: Tech. 66(3) 2018

P2 — [(&Jrl) (A+1)+2w§]r+w3 =0. (33
1 Te
The roots are
1 1 1 P
=—[{A+= {1+ = 2 +
r=allem) o) o]
(34)
L A ! ﬂ,—l—l —|—2a)22 o
+ /= — — — .
2| \AT I T 0 0
We put
1 i—&—i A—l—i + 2wk | = wicos (35)
2 T, T 0| = @WoCOoSP
where ¢ may be a complex number. We have
r = o3 (cose + ising). (36)
The formulas (32) are now
1
P(A)=-1+—
(2= A+
Py(A) = (2cosp — 1) w}
(37
1) >
P(A)=2 (l + ) ®;COSP
7;
PyA) = [4(COS(p)2 — 2cosp — l]a)f;
The solutions of (31) are
P, = [ci(cosme + isinme) + %)
+ ¢;(cosmp — isinme)|wg"
Py, = [e3(cosmep + isinme) + @9
+ ¢4(cosme — isinme)|wg"
The constants ¢y, ..., ¢4 are determined by (37):
_ 1 T—cosp.
“a= 2+ 2—sin(ol
_ 1 1T—cosp.
2= 2 2—sing ! (40)
1
7).
Cy=—C4=——F—"—1I
} ! 2w}sing

We can assume ¢ # 0 because the polynomial under the square
root in (34) is not identically equal zero.
Substitution of (40) into (38) and (39) gives:
2m

20
P2m:

—[sin(m + 1)@ —sinme], m = 1,2, ...,n (41)
sing
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(A + Ti) oi" 2
Py, = L sinmp, m=1,2,...,n (42)
sing
We have from (28):
1
Pon() = (A4 ) Qom0+ 03P a2) 9
L
and
1
Pan (D)= (14 1) Qon(+ 03P @), o
L
According to (41)+(44) we have
w8m72 1 ]
Oopp1(A)=— (/1+>51nm(p, m=1,2,...,n.(45)
sing L
Oyn(A) = ——[sin(m + 1) — sinme]. (46)
sing
The eigenvalues A,,i =1, 2, ..., 2n of the whole system we
obtain from (41) putting m = n
sin(n 4+ 1) —sinng = 0 (47)

and taking into account (35). From (41) and (42) we have:

i"cos(2n + 1) g

Py, (A) = - (48)
COS—
2
and
(l + Ti)a)g"*zsin ne
Py (A) = —— (49)
sing
Finally from (48) we have the eigenvalues
2j— )
_@-vr Ji=1,...,n. (50)
2n 41

3.3. The transfer function. By putting m + 1 in place m in the
equation (18) after using Laplace transform we obtain:

(U1 — Up) F iy f(R+sL)=0, m=1,2,...,n. (51)
After elimination currents #,, — i,,,; from equation (19) and

using equations (18), (21) and i, = u,, /R, we obtain the fol-
lowing relation between voltages:

270

Uy +AS) Uy — =0, m=0,1,...,n—1 (52)

1+ sT;)

-u, |+ [A(s) -1+ R( R }un =0, m=n (53)
0

where

A(s):a:% [<s+TlL> <s+T1C>+2co3].

For the unloaded chain the resistance Ry = oo and current

(34

in+1 =0.
The recurrent relation (52) can be written in the matrix form:
[As) -1 0 - 0 0 |[u | Jul
-1 A(s) -1 - 0 0 Uy 0
0 -1 A(s) -+ 0 0 u 0
) 0] s
0 0 0 A(s) =1 | |u,_y 0
0 0 0 -1 B(s)_ u, | 0 |
where
B(s)=A(s) — 1. (56)
Let 7,(s) denote the nxn matrix presented by (55).
The determinant
M, (s) = detT,(s) (57)
is the polynomial of 2n-th degree.
The eigenvalues accordingly are for P,,(1) =0
cos(2n + l)izo =0 (58)
2j —1
o 0T o (59)
2n+1
Then, using (35)
1 1 ., 2Dz
A+ =) (1+ = 4@lsin?~~——= =0,
( +TL)( +TC)+ 0 4n + 2 (60)
j=12,...,n.
Finally
1 1 2/ — O
A=A+ =)+ 20} (1 - cos-Z—2=) =0,
( n)( Tc) °< 2n + 1 ) (61)

j=1,2,..,n—1.

Applying Cramers method to the matrix equation (55), we find
that

Mi'l —m (S)
M, (s)

U,(s) = ug(s) for m=1,2,...,n (62)

Bull. Pol. Ac.: Tech. 66(3) 2018
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(which may be proved by inspection), where

def

My(s) =1, M,(s) = B(s), My(s)=A(s)B(s) — 1. (63)
The transfer function is equal to

1
M, (s)

H(s) =

(64)

The poles of the transfer function it is the roots of the equation

M,(s)=0 (65)
are the eigenvalues determined by equations (61) and we have
no zeros of the transfer function (64).

The Kalman equation (17) in this case takes a form

Joi (87 = 67) =T (8° = A7) + (1) =0 (66)
where the roots 4; from equation (60) are
1(1 1
Aijr,=—=|=—4+—|=%
2 2 (TL - Tc)
2 ;
.22 —1 67
LV e @ r] 6D
4 TL TC ETC 4” + 2
j=12,..,n
(s =2 =(s*=22)(s* =A%), j=12,..,n
Finally
<8a)(2)sin2 (ij - 1)2”>TL2TC2 TP T2
(SZ—/IJ-Z):s4—|— nt st
TPT¢
- 2@ -7 (68)
8wﬁs1n2( ;
L4251 1
po 2 16wgsm47( j—r —+1
T, To 4n +2 T, T¢
j=12,...,n

and the poles of the transfer function of the closed system can
be calculated from the Kalman equation (69)

715 ) =T {2 23]+ (1 =0,

j=1L2,....n.

(69)

From the other side, after using Laplace transform to the op-
timal equation (6), we have

M,(s) = |[s] — A] + [BR'B'K]| (70)

M,(s) = |[sI — A + BB'K]| (71)
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and
M (s)M(=s) = |[s] — A + BBK]| o)
[-sI —A + BB'K]|.
Finally
M ()M (-s) =
stz tKn Coj+K, Ky Ky 0 K,
L
—Lo? st+  Loj 0 - 0
C
1
0 —Cw} st+7 Cwf - 0 |
0 0 0 —Cof s+4 Co}
L
0 0 0 0 -Lw} s+
SR )
_S+TLL+K11 CCU%"‘KQ K13 K14 Kln
~L} fs+Ti Lo 0 0
C
0 “Ca? —sgi L 2. 0
Cawy s+TL Cwy _o.
0 0 0 —Co} —s+Tl Cor}
L
0 0 0 0 —Lao} s+t
Tc

Comparing (69) and (73) we obtain the relations for optimal
coefficients K.

In the simple case, for » = 1 we have (in the case of using
Kalman equation)

M

c

(s)M.(s) = Iy (s = 67) =

<8w§sin2g>TL2TC2 —T} -T2
=stt 52+

T2T? (74)
8(0%sinZE 1
+—— L 16olsin' T+ —— +2=0.
T, Tc 6 TTé
From other side using equation (73)
1 2
s+— Coj
7; 1 K K
mmg=| B e ol
Loy s+ T 12 K2
—s 4 Cw} 1 K. K 7
7
2L . _|_|: j|[1 0]|: 11 12:| — O
Loy —s+ T 0 Ky Ky
C
271
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s+-  Caoj
O R A B

P 2]
s+TL Cwj +|:K11 K12j| _
~L} fs—i—Ti 0 0

c

s+tH+K Coj+Kp||-s+++K,; Coj+Kp
L L

(76)

1 2 1
~Lj = —Lw =S+ =
0 T 0 T

4 [2(TT0f + TP TELOYK , — K\ T, T8) — T2 — T2 — KR TETZ |
s+ 2 s+
T2
2 2 2
(1 + oy T, T+ Log T, K, + KIITL)
T'T¢

=0.

Comparing (74) and (76) we obtain the relations for calculation
K, and K».

<8w(2,sin2%>TL2T§ 1?12

= 2(12 13w} +

T/T?
(77)
+ TPTELoK,, — Ky T, T2) — T2 — T7 —
— KAT712] /(T772)
8wisin®= 1
% L 16wisin*t + —— +2 =
T, T, 6 TPT? (78)

= [(1 + i T, T, + Lag T, T.K + KHTL)Z]/(TfTé).

From relations (77) and (78) we have the linear equation for K,

Sa)ﬁTLsinz% — 20T} + 2Ky, + T, K}

K, = 79

12 2Lo3T, (79)
and the equation of 2-nd degree for K,

8wisin®~ . ! !

——— +16wgsin®~ + — >+ 1 =K +
I, T 6 PTE 2

(T, + Te)Kn (80)

I Tc

1+ T, T + %TC(STLco%sinzg —2Lo{nT)
+ .

I Tc
In the case of using Riccati equation we have in this case the

relations (81+90) from which we obtain for K;; the equation
4-th degree (90) which is not usefull for practice.
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A=| 1 (81)
Lo} ——
Tc
1
B=|" (82)
0
R=1] (83)
00
= 84
o=y 1) 54
K= |:Kll KIZJ (85)
K12 K22
From (4) we have
2
% + % —2Lw3K;, E
L R =0 (86)
E K12 2 2KZZ
?—cma)OKlz—‘rTC—l
where
KK, K K,
E = 7111‘2 12 + TILZ _L(O(Z)Kzz + CCO(%KH + Tilj
From (86) we have
Ki L2 ek, — 0 (87)
IE T, 04212
KK, K K
E==""2 4 —2 _ LojKy, + CojKy + —> =0 (88)
L T, Te
Kp 2 2Ky,
L Te
Solving (87), (88) and (89) we obtain
Koy —  To| Kp(Kyp +2L) — L
22 — ) L2
1 (K3T, + 2K, L2
11410 11
Kip =7 (32)
LT, wj
%[—TéK{‘l TP — AT2KAT I + (CAT,ToLY — 4L4T7 —
— 4T2L — ALY} TPTE) K + (-8L°wf T, TE — 90)

— 8L°T. — 8L°T,) Ky, + 4L%03 T2 T2 /
[P T 203 LT, + KT, + 2K, L2 — I°T;)] = 0.

Bull. Pol. Ac.: Tech. 66(3) 2018
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4. Numerical example
Let
TLZO.S, TC:1, L:1,

6()0:1, CZI

In the case of using Kalman method we have from (74)
M(s)Mo(=s) = s* — 35> 4+ 10
and from (76)

Mc(s)Mc(=s) = s*
+ [6 + 2K, + 2K,
— 4(1.5 4 0.5K;,)?] s?
+ 4(1.5+ 0.5K, + 0.5K)%.

Comparing coefficients we have relations for calculation K,
and K|,

6 + 2K}, + 2K}, — 4(1.5+ 0.5K,)* = -3
4(1.5 4 0.5K, + 0.5K;;)* = 10.

and solving we obtain
K, = 0.053613 K, = 0.108664

After using Riccati equation we have from (87), (88) and (89)
folowing relations

K+ 4K, — 2K, =0
Ky Ky + 3K, — Ky + K =0
Kp + 2K, +2Ky — 1 =0
and solving we obtain
K;; =0.053613

K, =0.108664 Ky, = 0.385432

where K, is not needed for control (3).

Bull. Pol. Ac.: Tech. 66(3) 2018

5. Conclusions

1. For n-order system with a scalar control the proposed Kal-
man procedure needs only n equations for calculation n
optimal gains.

2. The Riccati method requires 1/27(n + 1) equations for cal-
culation optimal gains.

Some extensions for MIMO systems are possible. Authors are
working on such generalizations.

Remark. In [6] the following theorem is proposed: the analytic
solution of the differential Riccati equation can be expressed
as a linear function of the known algebraic Riccati equation.
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