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Abstract. A new generalized discrete Fourier transform DFT that allows for sample shift δ  2 [0, T/N ] in time-domain is defined. Two relations 
are proved for the sum of errors between generalized DFT coefficients and theirs theoretical values. The first is the equation for samples re-
ceived for continuous and piecewise–smooth functions. The second relation is the inequality for samples generated by discontinuous functions. 
Moreover, the influence of samples shift on generalized DFT coefficients values, which leads to aliasing phenomenon, is presented.
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and they enable introduce the complex form for Fourier series 
in the form of

	 f(t) =  lim
N!1

SN(t) =  lim
N!1

±N

h=0, ±1, ±2, …

∑ chexp(jhω t).� (5)

Usually, the integrals (4) are approximated by means of for-
mula “value of each sample is multiplied by subinterval length”. 
This formula defines discrete Fourier transform DFT [2‒4]. Let 
us obtain the sequence of N samples as particular values of signal 
f ( ) on N subsequent subintervals of length ∆t = T/N . The sam-
ples are distanced equally, shifted of δ  2 [0, T/N ], i.e. each of 
them is placed on closed subinterval [0, ∆t] as shown in Fig. 1.

Basing on shifted samples set generalized DFT coefficients 
are now defined as follows

	 ch
(DFT)

 
df
=  1

T

N¡1

k=0
∑ f (k∆t + δ )exp(– jhωk∆t)∆t ,� (6)

1.	 Introduction

Numerical approaches to generalized discrete Fourier trans-
form (DFT), allowing for sample shift, are presented. First, 
two relations are presented: equality and inequality for sum of 
modulus of generalized DFT Fourier coefficients versus theirs 
theoretical values. Subsequently, some aliasing examples for 
shifted samples sets are investigated.

2.	 Discrete Fourier transform for shifted samples

Fourier series for signal f ( ) for t 2 ∆ = [a, b] = [a, a + T ] is 
given as follows

	 SN(t)
a0

2
 + 

N

h=1
∑ {ahcos(hω t) + bhsin(hω t)},� (1)

where the coefficients are equal to

	

ah =  2
T

b

a
∫ f (t)cos(hω t)dt

bh =  2
T

b

a
∫ f (t)sin(hω t)dt ,

� (2)

and angular speed

	 ω  = 
2π
T

.� (3)

The complex Fourier series coefficients ch are defined as given

	 ch =  1
T

b

a
∫ f (t)exp(–jhω t)dt =  1

2
(ah ¡ jbh) = c*

–h ,� (4)
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Fig. 1. Indexation of signal samples (black points) in time-domain for 
shift δ  2 [0, T/N ]
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or equivalently

	 ch
(DFT)

 =  1
N

N¡1

k=0
∑ fkWN

kh,� (7)

where it is denoted as

	 WN = exp(– j 2π
N ) .� (8)

The samples can be placed either at the beginnings or in the 
middles or at others places of each subintervals, i.e.

	 fk = f (k T
N

 + δ) =  f (k∆t + δ ),� (9)

for k = 0, 1, …, N ¡ 1. From the mathematical point of view, 
the sample shift δ  2 [0, ∆t] = [0, T/N ] defines a generalized 
formula of DFT defined below by (6). For classical DFT it 
is set δ  = 0. From the technical point of view, the process of 
sample acquisition is not often free from the shift δ   6= 0, which 
is caused by many miscellaneous reasons [6, 7] particularly for 
the non-periodic samples.

3.	 Error analysis of generalized DFT coefficients

The main theoretical problem is to calculate the errors eh be-
tween values ch

(DFT)

 given by generalized discrete Fourier trans-

form DFT (6) and appropriate theoretical values

	 ch
(theor)

 = ch =  1
2

(ah ¡ jbh),� (10)

defined as follows

	 eh =  ch
(DFT)

 ¡  ch
(theor)

 =  ch
(DFT)

 ¡ ch .� (11)

Let us assume that the function f ( ) is continuous and piece-
wise–smooth (piecewise of the class C1 i.e. has a bounded de-
rivative which is continuous everywhere except a finite number 
of points at which left- and right-sided derivatives exist). The 
finite number of points at which the derivative does not exist are 
denoted by tk. Furthermore, a finite number of points at which 
the first derivative is not continuous may appear on each subin-
terval [tk, tk + ∆t]. These points are called irregular points. For 
error analysis of coefficients (6) purpose, on each subinterval 
having at least one irregular point, the function it is replaced by 
a secant line (Fig. 2). Function g( ) equals to f ( ) times either 
cos( ) or sin( ) for error analysis of either real or imaginary 
parts of (6), subsequently. Furthermore, functions e.g. f ( ), g( ) 
mean the modified (i.e. replaced) by secants functions. For the 
modified functions the discontinuity points of first derivative 
could appear only at the ends of subintervals [tk, tk + ∆t]. This 
replacement does not change functions values at the beginnings 
of each subinterval.

Definition (6) for shifted and periodic samples set leads 
to the same results as the classical DFT with δ  = 0 i.e. the 
coefficients modules jchj are the same but the arguments are 
shifted. However, for non-periodic samples set the definition 
(6) is essentially different from the classical one.

The real part of complex Fourier coefficients error ek on k th 
subinterval for hth harmonic (h and N are not denoted explicitly) 
is equal to

	
Re{ek} =  1

T
f (k∆t + δ )cos(hωk∆t)∆t ¡

Re{ek} ¡  1
T

tk+∆t

tk

∫ f(t)cos(hω t)dt .
� (12)

The multiplication of function f ( ) of class C1 and function 
cos( ) is the function gc( ) of class C1, too. For the imaginary 
part of error analysis the function is multiplied by sin( ) and 
gives function gs( ) of class C1.

The well-known theorem about mean value on the closed 
interval [1] firstly for the integral of gc(t), and secondly for the 
difference gc(k∆t + δ) ¡ gc(t̃ ) = gcꞌ(t̃̃)∆t leads to the equalities

	 Re{ek} = [gc(k∆t + δ ) ¡ gc(t̃ )]/N = gcꞌ(t̃̃)∆t/N,� (13)

where t̃  is a point on [tk, tk + ∆t], t̃̃  is a certain point placed be-
tween points k∆t + δ  and t̃  (is on [tk, tk + ∆t], too). According 
to function gc( ) periodicity is satisfied for the whole time-pe-
riod T [t0, t0 + T ] implication

	
N¡1

k=0
∑ ∆gck = 0  ⇒ 

N¡1

k=0
∑ gcꞌ(t̃k)∆t = 0 ,� (14)

where t̃k denotes a certain point on k th subintervals. The sum of 
real parts of errors from (13) – for harmonic h – is equal

Fig. 2. Error analysis of coefficients ch
(DFT)

 given by DFT – points and 

subintervals notations
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Re{ ch
(DFT)

¡ ch} = 
N¡1

k=0
∑Re{ek} = T

N¡1

k=0
∑ gcꞌ(t̃k)/N 2 +

Re{ ¡ ch} + T
N¡1

k=0
∑ (gcꞌ(t̃̃) ¡ gcꞌ(t̃k))/N 2.

� (15)

Due to (14) and continuity of derivative g’( ) one obtains

	 jRe{ ch
(DFT)

¡ ch}j ∙ T
N¡1

k=0
∑Mk j t̃̃  ¡ t̃k j/N 2,� (16)

thus

	 jRe{ ch
(DFT)

¡ ch}j ∙ T 2
N¡1

k=0
∑Mk /N 3 = MavT 2/N 2,� (17)

where Mav is the arithmetic mean value of Lipschitz constants 
Mk for subinterval [tk, tk + ∆t] (is a limited number).

Analogous inequality is satisfied for imaginary parts of er-
rors. Hence, for complex coefficients the following inequality 
holds

	 j ch
(DFT)

¡ ch j ∙ MT 2/N 2 .� (18)

On the limited number of subintervals [tk, tk + ∆t] the function 
f ( ) was replaced by the secant line, for which the real part of 
error is limited by TMkjt̃̃  ¡ t̃kj/N 2. The corrections denoted by 
∆ek for real part are graphically represented by the area between 
the function and the secant (Fig. 2; rk denotes the number of 
points with discontinuous first derivative) and they are equal 
to the sum of (rk + 1) differences as follows

∆ek = 
rk

i=0
∑ gc(ξi)(xi+1 ¡ xi) –0.5(gck + gck+1)∆ t =

∆ek = 
rk

i=0
∑ (gc(ξi) ¡ gck, i)(xi+1 ¡ xi) ¡

∆ek ¡ 
rk

i=0
∑ (gck, i ¡ gc0)(xi+1 ¡ xi) ¡

∆ek ¡ 
rk

i=0
∑ (gckav ¡ gk, 0)(xi+1 ¡ xi) =

∆ek = 
rk

i=0
∑ (gck(ξi) ¡ gck, i)(xi+1 ¡ xi) ¡

∆ek = 
rk

i=0
∑ (xi+1 ¡ xi) 

i¡1

j=0
∑ (gck, j+1 ¡ gck, j) ¡

∆ek ¡ (gckav ¡ gk, 0)∆t .

� (19)

where gckav = 0.5(gck + gck+1) is the mean value of the function 
on k th subinterval, ξi denotes a certain point on [xi, xi+1]. Each 

difference appearing in (19) is bounded by module either j∆tj or 
jgcꞌ( )jj∆tj, thus the correction ∆ek of error the inequality holds

	 j∆ekj ∙ A(∆t)2 =  AT 2

N2
.� (20)

Similar inequality can be written for imaginary part of error 
correction.

Hence, the inequality (18) is satisfied for continuous and 
piecewise–smooth functions (now the replacement by the se-
cant is recalled). Finally, from the relations (18) and (20) for 
continuous and piecewise–smooth functions results relation 1 
i.e. equality

	 lim
N!1

N/2

h=0
∑ j ch

(DFT)

¡ ch j = 0 .� (21)

It should be pointed out that the decreasing rule of the order 
1/ N 2 given by inequality (18) is faster than the decreasing rule 
of the order 1/N  proved for integral piecewise–constant ap-
proximation [2, 4]. That fact results directly from the relation 
(14) valid for periodic and piecewise–smooth functions. The 
equality (26) yields the coefficients convergence

	 lim
N!1

ch
(DFT)

 = ch .� (22)

On the contrary, when on k th subinterval appears disconti-
nuity of the function the error formula (18) is not valid, i.e. the 
error can not be bounded with the help of decreasing rule of the 
order 1/ N 2. Subsequently, the real part of error (13) is bounded 
by the step–change ∆ck as follows

	 jRe{ek}j = jgc(k∆t + δ ) ¡ gc(t̃ )j/N ∙ j∆ckj/N ,� (23)

where the errors bounded by decreasing rule of 1/ N 2 are omitted 
because they do not contribute to the error sum, finally. Hence, 
for all discontinuity points

	 jRe{ ch
(DFT)

¡ ch}j ∙ 
s

k=0
∑ j∆ckj/N ,� (24)

where s is the number of all discontinuity points (steps) on 
interval [t0, t0 + T ].

Analogously, for imaginary parts

	 jIm{ ch
(DFT)

¡ ch}j ∙ 
s

k=0
∑ j∆skj/N ,� (25)

where ∆sk denotes the step-change of function f ( ) multiplied 
by sin( ) i.e. gs( ) – see comments below (12). The inequalities 
(24) and (25) lead to the coefficients convergence in the form 
of (22), too. In this case in spite of relation (21) for the function 



278

D. Spałek

Bull.  Pol.  Ac.:  Tech.  66(3)  2018

having s discontinuity points is valid the following relation 2 
i.e. inequality

	
N/2

h=0
∑ j ch

(DFT)

¡ ch j ∙ 
s

k=0
∑ (0.5 + N –1)(j∆ckj + j∆skj) ,� (26)

because the sum of errors bounded according to formula (17) 
is omitted as the term decreasing stronger then 1/ N . The sum 
is convergent (as bounded and not decreasing [1]), thus exists 
the limit

	 lim
N!1

N/2

h=0
∑ j ch

(DFT)

¡ ch j ∙  1
2

s

k=0
∑ (j∆ckj + j∆skj) .� (27)

The analysis conclusions and properties of error for gen-
eralized DFT coefficients are presented in Table 1 and [8‒11].

In order to present the two new formulated properties for 
generalized DFT coefficients (the last two rows in Table 1) 
a global error EG of the sum of modulus is defined in the form of

	 EG 
df
= 

N/2

h=0
∑ jRe{ ch

(DFT)

¡ ch}j +  j
N/2

h=0
∑ jIm{ ch

(DFT)

¡ ch}j .� (28)

Exemplary, the generated sample series are considered. 
The first example is basing on two-pulse (full-wave) function 
(Fig. 3). For Relation 1 (equality) it is satisfied and the global 
error EG vanishes, respectively (Table 2). The second example 
is for step-changes function (Fig. 4) – Relation 2 (inequality) 
is satisfied and global error EG does not vanish (Table 3). The 

Table 1 
Generalized Fourier coefficients analysis

Assumptions satisfied for theorem I theorem II

The sample function

Convergence of Fourier series Fourier series converges absolutely 
lim

N!1
jSN(t)j < 1

and uniformly on the interval ∆
lim

N!1
SN(t) 

(26) 







s

k
kk

N

h
hh Ncc

0
sc

1
2/

0 )DFT(
))(5,0( ,  (26) 

because the sum of errors bounded according to formula 
 (17) is omitted as the term decreasing stronger then 1/N. 
The sum is convergent (as bounded and not decreasing 
 [1]), thus exists the limit 

(27) 





s

k
kk

N

h
hhN

cc
0

sc

2/

0 )DFT(
)(

2
1lim .    (27) 

The analysis conclusions and properties of error for 
generalized DFT coefficients are presented in Table 1 
and  [8],  [9],  [10],  [11] 
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Convergence  

of Fourier series 

Fourier series converges 

absolutely 




)(lim tS NN
 

and uniformly on the interval  

)()(lim tftS NN



 

Fourier series converges 

at each point t ϵ  

))()((
2
1)(lim 

 tftftSNN
 

Gibbs phenomenon Does not appear Appears at discontinuity point  

Coefficients convergence  

)DFT(
lim hN

c


  
hhN

cc 
 )DFT(

lim  hhN
cc 

 )DFT(
lim  
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





2/

0 )DFT(
lim

N

h
hhN

cc  
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0lim
2/

0 )DFT(





N

h
hhN

cc  

 

Relation II: Inequality  







s

k
kk

N

h
hhN

cc
0

sc

2/

0 )DFT(
)(

2
1lim  

 
In order to present the two new formulated 

properties for generalized DFT coefficients (the last two 

rows in the T able.1) a global error EG of the sum of 

modulus is defined in the form of 

(28) 



2/

0 )DFT(

2/

0 )DFT(

df

G }Im{j}Re{
N

h
hh

N

h
hh ccccE .  (28) 

Exemplary, there are considered samples series 

generated. First example is basing on two-pulse (full-

wave) function (F ig.3). For the relation I (equality) is 

satisfied and the global error EG vanishes, respectively 

(T able.2). The second example is for step-changes 

function (F ig.4) – the relation II (inequality) is satisfied 

and global error EG does not vanish (T able.3). The shift 

δ does not change these two relations. The global error 

EG either vanishes to zero (relation I) or is limited 

(relation II) while N increases infinitely. 

 

 

  f (t)

Fourier series converges
at each point t 2 ∆

lim
N!1

SN(t) = 
1
2

( f (t–) + f (t+))

Gibbs phenomenon Does not appear Appears at discontinuity point 

Coefficients convergence 
lim

N!1
ch

(DFT)

lim
N!1

ch
(DFT)

 = ch lim
N!1

ch
(DFT)

 = ch

The two new relations for generalized 
DFT coefficients modules sum

lim
N!1

N/2

h=0
∑ j ch

(DFT)

¡ ch j
Relation 1: Equality 

lim
N!1

N/2

h=0
∑ j ch

(DFT)

¡ ch j = 0

Relation 2: Inequality 

lim
N!1

N/2

h=0
∑ j ch

(DFT)

¡ ch j ∙ 
1
2

s

k=0
∑ (j∆ckj + j∆skj)

Fig. 3. Example of continuous function – two-pulse (full-wave) curve 
(points – samples, line – Fourier series)
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Table 3 
Global error EG between DFT and theoretical values of coefficients – step function

Number of samples N 
(hmax = N/2)

Samples of step-changes function – Fig. 4

Real part Imaginary part

δ  = 0

N = 25 = 128 0.4999999999999990 0.1434132784778930

N = 210 = 1 024 0.4999999999999470 0.1437429132295530

N = 215 = 32 768 0.5000000000063420 0.1437432391969320

N = 220 = 1 048 576 0.4999999993747650 0.1437432400165020

N = 225 = 33 554 432 0.4999999902712390 0.1437432454268770

δ  = ∆t/2

N = 25 = 128 0.0631536391042182 0.0341652413292065

N = 210 = 1 024 0.0636723443287259 0.0334916406441515

N = 215 = 32 768 0.0636728497689771 0.0334909796137696

N = 220 = 1 048 576 0.0636728508794668 0.0334909784892709

N = 225 = 33 554 432 0.0636728600809515 0.0334909739728020

Table 2 
Global error EG between DFT and theoretical values of coefficients – continuous function

Number of samples N 
(hmax = N/2)

Samples of two-pulse (full-wave) function – Fig. 3 

Real part Imaginary part

δ  = 0

N = 25 = 128 0.0228252788779130 0.0000000000000002

N = 210 = 1 024 0.0006244818592422 0.0000000000000214

N = 215 = 32 768 0.0000194308084530 0.0000000000020136

N = 220 = 1 048 576 0.0000006071617167 0.0000000001370209

N = 225 = 33 554 432 0.0000000193399901 0.0000000016686864

δ  = ∆t/2

N = 25 = 128 0.0067326078091597 0.0093678784334546

N = 210 = 1 024 0.0001958442739652 0.0002533303009525

N = 215 = 32 768 0.0000061050462541 0.0000078797609253

N = 220 = 1 048 576 0.0000001907461125 0.0000002463437141

N = 225 = 33 554 432 0.0000000060411680 0.0000000093625601
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Fig. 4. Example of discontinuous function – step-changes curve (points 
– samples, line – Fourier series)

1.5

1

0.5

0

–0.5

–1.5

–1

0 0.5
■ data given (real)  ─ Fourier series result

1

Fig. 5. Fourier coefficients real parts: theoretical values (crosses) and 
DFT values (columns) for step-change rectangular function (points 

– samples, line – Fourier series)

frequency domain, harmonic number = –N/2 + 1, …, 0, … N/2

0.4

0.2

0

0.6

–0.2
0 4 8 12 16 20 24 28 32

Fig. 6. DFT N = 32 – limit case; samples satisfy Shannon theorem 
assumption ∆t = T/N = 1/(Nf ) = 1/(32 f ) ∙ 1/(2 fmax) = 1/(2 ¢ 16 f ) 
and are placed at the beginnings of each interval [0, ∆t] i.e. δ  = 0. 

16th harmonics do not appear at all – aliasing

frequency domain, harmonic number = –N/2 + 1, …, 0, … N/2

2.5

2

1.5

1

0.5

0.5
–16 –14 –12 –10 –8 –6 –4 –2 0 2 4 6 8 10 12 14 16

frequency domain, harmonic number = –N/2 + 1, …, 0, … N/2

2.5

2

1.5

1

0.5

0.5
–16 –14 –12 –10 –8 –6 –4 –2 0 2 4 6 8 10 12 14 16

Fig. 7. DFT N = 32 – limit case; samples satisfy Shannon theorem 
assumption ∆t = T/N = 1/(Nf ) = 1/(32 f ) ∙ 1/(2 fmax) = 1/(2 ¢ 16 f ) 
and are placed in the middle of each interval [0, ∆t] i.e. δ  = ∆t/2. 
The value of 16th harmonic magnitude is as double as it is given by 

(29) – aliasing

	
fk = 1cos(2π f k∆t) + 5sin(2π f 5k∆t) +

fk + 2sin(2π f 16k∆t).
� (29)

The N samples fk are gathered at even-distanced points tk where 
∆t = T/N = 1/(Nf ).

The generalized DFT yields the Fourier harmonics coeffi-
cients. The magnitude of highest harmonic depends on sam-
ples shift δ  2 [0, ∆t]. Exemplary, there are presented two cases 
showing the aliasing phenomenon for shift δ  = 0 (Fig. 6) and 
δ  = ∆t/2 (Fig. 7). The highest harmonics value strongly de-
pends on the shift δ . It may vanish (Fig. 6) or it takes the par-
ticular value (Fig. 7).

shift δ does not change these two relations. The global error EG 
either vanishes to zero (Relation 1) or is limited (Relation 2) 
while N increases infinitely.

Moreover, in Fig. 5 the Fourier coefficients theoretical 
values for N = 64 are presented by crosses and DFT coeffi-
cients values by columns, respectively. One can see the small 
difference between real parts of DFT coefficients and theoret-
ical values, respectively.

4.	 Aliasing examples for discrete Fourier 
transform at Shannon frequency

The samples shift δ in (6) change DFT coefficients values. 
In order to show this influence on generalized DFT coeffi-
cients values is considered for an trigonometric polynomial 
as follows
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5.	 Conclusions

Two new relations for generalized discrete Fourier transform 
DFT are presented, allowing for the samples shift δ  2 [0, T/N ] 
as defined by (6).

Two relations are proved for the sum of errors between gen-
eralized DFT coefficients and theirs theoretical values (evalu-
ated analytically) – (28).

The first relation is the equality (21) for samples of contin-
uous and piecewise–smooth functions.

The second is the inequality (27) for samples generated by 
discontinuous functions.

Moreover, the influence of sample shift on generalized DFT 
coefficients values is presented. The samples shift δ  leads to 
aliasing phenomenon for highest harmonic (Figs. 6–7).
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Appendix

Theorem I. For periodic function f ( ) that satisfies the Dirichlet 
condition, i.e. the quotient 

	 g(t, u) 
df
= 

f (t + u) ¡ f (t±)
u

,� (31)

is absolutely integrable for u > 0 (and u < 0) where t 2 ∆ = 
= [a, b] = [a, a + T ], the series SN( ).

	 SN(t)
a0

2
 + 

N

h=1
∑ {ahcos(hω t) + bhsin(hω t)},� (32)

is convergent to arithmetic mean of left- and right-sided limits 
at point t

	 SN(t)  → 
f (t–) + f (t+)

2
,� (33)

having the coefficients 0.

Theorem II. If the periodic function f ( ) is continuous and 
piecewise–smooth (i.e. piecewise of the class C1 has a bounded 
derivative which is continuous everywhere except at a finite 
number of points at which left- and right-sided derivatives 
exist), then Fourier series SN( ) is uniformly and absolutely 
convergent on interval ∆.


