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Abstract. In the paper, a problem of scheduling operations in the cyclic flexible job shop system is considered. A new, very fast method of deter-
mining the cycle time for any order of tasks on machines is also presented. It is based on the analysis of the paths in the graph representing the 
examined problem. The theorems concerning specific properties of the graph are proven and used in the construction of the heuristic algorithm 
searching the solutions space by using the so-called golf neighborhood, which is generated in a way similar to the game of golf, which helps to 
intensify and diversify calculations. The conducted computational experiments fully confirmed the effectiveness of the proposed method. The 
proposed methods and properties can be adapted and used in the construction of local search algorithms for solving many other optimization 
problems.
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1.	 Introduction

Flexible manufacturing systems are currently the object of 
very intensive research in many scientific centers. This pro-
cess is caused by the fact that many companies adopted the 
strategy of manufacturing on demand, where production is 
conditioned by current orders thereby reducing the costs of 
storage of raw materials and finished products. Moreover, 
technological development and in particular the machines 
configured and controlled by computers enable a short-term 
and multi-assortment production. Scheduling of operations in 
the flexible job shop system requires taking a decision simul-
taneously on two levels: (i) the allocation of operations to 
machines, (ii) determination of the order of operations on each 
machine. Compared to conventional scheduling problems, it 
is a meaningful generalization and significantly hinders the 
design of efficient algorithms. The vast majority of works 
devoted to the flexible job shop problem concerns the mini-
mization of completion of all executed operations. Due to the 
NP-hardness of the problem, the attention of scientists was 
focused on the construction of heuristic algorithms, or exact 
approaches of a small size (e.g. mixed integer programming, 
Sawik [20], branch and bound method with using max-plus 
algebra, Houssin [12]). These are mainly algorithms based on 
tabu search method (Hurink, Jurish and Thole [13], Mastro-
lilli and Gambardella [17], Bożejko et al. [3, 5]) or simulated 
annealing (Bożejko et al. [6]). On the other hand, a genetic 
algorithm was used by Yang, Kacem and Borne [15]. The most 
effective are hybrid algorithms. Xia and Wu [21] proposed 
a particle swarm algorithm using an additional simulated an-
nealing, whereas Jie, Linyan and Mitsuo [14] – a genetic al-
gorithm combined with tabu search algorithm with a variable 
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1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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W. BOŻEJKO1∗, J. PEMPERA1, and M. WODECKI2

1 Department of Automatics, Mechatronics and Control Systems
Faculty of Electronics, Wrocław University of Science and Technology
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Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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W. BOŻEJKO1∗, J. PEMPERA1, and M. WODECKI2

1 Department of Automatics, Mechatronics and Control Systems
Faculty of Electronics, Wrocław University of Science and Technology
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1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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neighborhood. In turn, Bożejko et al. [4] presented parallel 
population-based metaheuristics.

In the cyclic production system, the basic set of tasks is 
executed repeatedly at fixed intervals (cycle time). This allows 
a considerable simplification of the logistical operations related 
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The 
main problem with which we are dealing in constructing al-
gorithms for such problems is the lack of effective methods 
of determining cycle time and good lower or upper bounds. 
General computational models for cyclic scheduling problems 
are presented in the work of Kampmayer [16]. In conclusion, 
the author stated that the use of universal packages of discrete 
optimization allows the solution in a reasonable time only in 
case of instances of small size. Local search algorithms for 
cyclic problems were used for the first time by Brucker and 
Kampmayer [8]. A cyclic job shop problem with additional 
no storage constraint is considered in this paper. An algorithm 
based on tabu search method implementation is used to solve 
that problem. Current research concerning solutions to the prob-
lems of production scheduling focus on new searching methods 
of the solution space, mainly inspired by the processes occur-
ring in nature (evolutionary, ant colony, gregarious, swarm 
search methods, etc.). In this paper we propose a new method 
of constructing of local search algorithms which has a similarity 
to shots in the golf game, from which we have taken the name 
of the neighborhood.

2.	 Flexible job shop problem

In this section there is a brief presentation of the flexible job 
shop problem, whereas in the next, the cyclic version of this 
problem is described, which is the essential theme of the work. 
There is a set of tasks 
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Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for

1

 = {1, 2, …, n} given, to be executed 
on machines from the set 
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Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
2 Telecommunications and Teleinformatics Department, Faculty of Electronics

Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for

1

 = {1, 2, …, m}. A task is a se-
quence of certain operations occurring in the technological 
order. For each operation there is a subset of machines defined 
called a nest. One operation must be performed on one machine 
of this subset. Due to the different machine performance, exe-
cution time of the operation depends on the assigned machine. 
Problem (briefly denoted by FJS) relies on assignment of the 
operation to the machines and setting the order of operations 
on the machines to optimize a certain criterion. Hereby the fol-
lowing constraints must be met:

a)	 each operation is performed by only one, selected from 
a subset, machine,

b)	 operation execution cannot be interrupted before its com-
pletion,

c)	 the machine cannot perform more than one operation at 
the same time,

d)	 technological order of executing of operations must be 
preserved.

Let 
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1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
2 Telecommunications and Teleinformatics Department, Faculty of Electronics

Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
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tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
2 Telecommunications and Teleinformatics Department, Faculty of Electronics

Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
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rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
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method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
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Kacem and Borne [15]. The most effective are hybrid algo-
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using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
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tion of the order of operations on each machine. Compared
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alization and significantly hinders the design of efficient algo-
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Abstract. In the work there was a problem of scheduling operations in the cyclic flexible job shop system considered. There was also
presented the new, very fast method of determining the cycle time for any order of tasks on machines. It is based on the analysis of the paths
in the graph representing the examined problem. The theorems concerning specific properties of the graph were proven. They have been
used in the construction of the heuristic algorithm searching the solutions space by using the so-called golf neighborhood, whose generation
is similar to the game of golf, which helps to intensify and diversify calculations. The conducted computational experiments fully confirmed
the effectiveness of the proposed method. The proposed methods and properties can be adapted and used in the construction of local search
algorithms for solving many other optimization problems.

Key words: cyclic scheduling, metaheuristic, discrete optimization

List of main symbols
al – l-th copy of operation a in l-th MTS

Ca – operation a completion time in 1-th MTS
G⊕(π) – graph for solution π of cyclic job shop

H(π) – graph for solution π of job shop problem
J – set of tasks
M – set of machines

MTS – Minimal Task Set
O – set of operations
π – solution (m-tuple of permutations)
πi – permutation of operations on i-th machine
Sa – operation a starting time in 1-th MTS
Sl

a – operation a starting time in l-the MTS
T (π) – cycle time of solution π

T ◦(π) – minimal cycle time of solution π
T ∗ – optimal cycle time

1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for

1

. 
The set

	

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2017-00ZZ

Minimal cycle time determination and golf neighborhood generation
for the cyclic flexible job shop problem
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On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
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Abstract. In the work there was a problem of scheduling operations in the cyclic flexible job shop system considered. There was also
presented the new, very fast method of determining the cycle time for any order of tasks on machines. It is based on the analysis of the paths
in the graph representing the examined problem. The theorems concerning specific properties of the graph were proven. They have been
used in the construction of the heuristic algorithm searching the solutions space by using the so-called golf neighborhood, whose generation
is similar to the game of golf, which helps to intensify and diversify calculations. The conducted computational experiments fully confirmed
the effectiveness of the proposed method. The proposed methods and properties can be adapted and used in the construction of local search
algorithms for solving many other optimization problems.
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1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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l. The se-
quence of operations on the machines is determined by the 
concatenation of m permutations π = (π1, π2, …, πm) 2 Π, 
where Π = Π1£Π2£, …, £Πm. Let us note that a m-tuple 
π 2 Π unambiguously defines the assignment of operations to 
machines and the order of operations execution on individual 
machines.

For a fixed order of operations execution on machines 
π 2 Π, the schedule for their execution may be represented 
by starting moments Si and completion times Ci of execution 
of operations i = 1, 2, …, o. If we assume that Ci = Si + pi, 
then we can limit our scope to the starting moments of opera-
tion Si, i = 1, 2, …, o. Hereby the following constraints must 
be fulfilled:

	
Si + pi ∙ Si + 1,

i = lj – 1 + 1, …, lj – 1 + oj ¡ 1, j = 1, …, n,
� (2)

	
Sπl( j) + pπl( j) ∙ Sπl( j + 1), 

l = 1, …, m, j = 1, …, nl ¡ 1,
� (3)

	 Sπ(i) ¸ 0 i = 1, …, o .� (4)

Inequality (2) corresponds to the constraints (a) and (d), whereas 
(2) to the constraints (c) and (b). Without loss of generality, we 
can assume that the starting moment of execution of the first 
operation on the first machine is S1, π(1) = 0.

The sequence of operations execution π 2 Π is feasible for 
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i = 1, 2, …, o, satisfying the constraints 
(2‒4). The set of these feasible solutions will be denoted by Φ 
(Φ µ Π).

2.1. Graph model of the flexible job shop problem. Any fea-
sible solution π = (π1, π2, …, πm), π 2 Φ, can be represented 
by a directed graph H(π) = (
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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a – operation a starting time in l-the MTS
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1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:

∗e-mail: wojciech.bozejko@pwr.edu.pl

(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for

1

, vertices correspond to op-
erations. The weight of a vertex v = 

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2017-00ZZ

Minimal cycle time determination and golf neighborhood generation
for the cyclic flexible job shop problem
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
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hand, a set of arcs 

W. Bożejko, J. Pempera, and M. Wodecki

cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
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tion there was used an algorithm based on tabu search method
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problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.
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Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:
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Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
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The weight of any arc of the graph equals zero. Since there is a
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shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
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a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
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chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
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i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set
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includes operations executed on machine l ∈ M , whereas
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Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:
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)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
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|Ok|−1⋃
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{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
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1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for

1

kj – 1

i=1
[ {(πk(i), πk(i + 1))}.

Arcs from this set join the operations performed on the 
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(k = 1, 2, …, m).

The weight of any arc of the graph equals zero. Since there is 
a mutual equivalence between operations and the vertices of the 
graph, to simplify the notation, the operation will be identified 
with its corresponding vertex.

Property 1. A solution π 2 Φ is feasible for the FJS problem if 
and only if the graph H(π) does not contain cycles.

3.	 Cyclic flexible job shop problem

In the cyclic production system, a fixed set of tasks called MTS 
(minimal task set, see minimal part set in Brucker and Kamp-
meyer [9]) is performed repeatedly in the production cycles. 
MTSs are carried out directly one after another in a cyclic 
manner. We assume that in each of the MTSs on each machine 
operations are performed in the same order. Therefore, in each 
cyclic schedule, the order of operations may be represented 
by constructing a m-tuple of permutations of operations on in-
dividual machines in the first MTS. The cyclic nature of the 
process is subject to the following constraints:

e)	 each operation is performed sequentially (in consecutive 
MTSs) after the cycle time completion.

It was assumed that in each MTS the operations executed on 
machines are performed in the same order. For a given solution 
(m-tuple) π 2 Φ (Φ – set of FJS problem feasible solutions), 
let 
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In the cyclic production system, a fixed set of tasks called MTS
(minimal task set, see minimal part set in Brucker and Kamp-
meyer [9]) is performed repeatedly in the production cycles.
MTSs are carried out directly one after another in a cyclic
manner. We assume that in each of the MTSs on each ma-
chine operations are performed in the same order. Therefore,
in each cyclic schedule, the order of operations may be repre-
sented by constructing a m-tuple of permutations of operations
on individual machines in the first MTS. The cyclic nature of
the process is subject to the following constraints:

(e) each operation is performed sequentially (in consecutive
MTSs) after the cycle time completion.

It was assumed that in each MTS the operations executed on
machines are performed in the same order. For a given solution
(m-tuple) π ∈ Φ (Φ – set of FJS problem feasible solutions),
let S k = (Sk

1,S
k
2, . . . ,S

k
o) be a sequence of starting moments for

execution of operations in the k-th MTS, where Sk
i denotes the

moment of execution of an operation i on machine µi in k-th
cycle (MTS). We assumed that the time schedule (i.e. opera-
tions execution in subsequent MTS) is cyclic. This means that
there is a fixed T (π) (period) such that

Sk+1
π(i) = Sk

π(i) +T (π), i = 1, ...,o, k = 1,2, ... (5)

The above presented equality is the realization of the con-
straint (e).

The size of T (π) depends obviously on the solution π and is
called cycle time. The minimum value of T (π), for a fixed or-
der of operations on machines π will be called minimum cycle
time and denoted by T ◦(π). Because the order of operations
execution for each MTS is the same, therefore it is enough
to designate the starting moments of execution of operations
S1,S2, . . . ,So for the first MTS and make the shift by the size
of T (π). Therefore,

Sk
π(i) = Sπ(i) + (k−1) ·T (π) (6)

is the starting time of an operation i ∈ O in k-th cycle (i.e. in
k-th MTS), k = 1,2, . . . .

Minimum cycle time T ◦(π), for a fixed order of execution
of tasks π, can be determined by solving the following linear
programming task: determine

T ◦(π) = min{T}, (7)

s.t.:
Sk

π(i) + pπ(i) ≤ Sk
π(i+1), (8)

i = l j−1 +1, . . . , l j−1 +o j −1, j = 1, ...,n, k = 1,2, . . . ,

Sk
πl( j) + pπl( j) ≤ Sk

πl( j+1), (9)

l = 1, ...,m, j = 1, ...,nl −1, k = 1,2, . . . ,

Sk
πl(nl)

+ pπl(nl) ≤ Sk
πl(1)

+T, l = 1, ...,m, k = 1,2, . . . , (10)

Sk
π(i) ≥ 0, i = 1, ...,o, k = 1,2, . . . . (11)

In this paper we consider the problem of designation of the
optimal cycle time T ∗, which comes to determine such a solu-
tion π∗, for which

T ∗ = T ◦(π∗) = min{T ◦(π) : π ∈ Φ}.

In short this problem will be denoted by CFJS (Cyclic Flexible
Job Shop).

4. Determination of minimum cycle time
In this chapter, for a given order of operations execution on the
machines (an element of the set Φ), we present the new method
of determination the minimum cycle time in the flexible job
shop problem. This method is based on a graph representing
the first (m+1) MTSs. In the following part, for simplification
of the notation it was assumed that η = m+1.

4.1. Cyclic graph Let π ∈ Φ be a feasible solution, and
H1 = (V 1,E 1) the first component, i.e., a graph representing
the order of operations execution on machines for the first MTS
(description of the graph is given in Section 2.1).

By Hl(π)= (V l ,E l) (l = 2,3, . . . ,η) we denote a graph rep-
resenting the order of operations execution for l-th MTS. The
set of vertices of this graph

V l = {v+(l −1) ·o : v ∈ V 1}. (12)

A pair of vertices from the set V l is an arc

(u,v) ∈ E 1 ⇐⇒ (u+(l −1) ·o,v+(l −1) ·o) ∈ E l . (13)

Graph Hl(π) will be called l-th component. Undeniably,
H1(π) is isomorphic with each graph Hl(π), i = 2,3, . . .η .

The set of vertices of graph Hl(π)

A l = {v ∈ V l : v = π j(1)+(l−1) ·o, j = 1,2, . . . ,m}, (14)

comprises the first operations and the set

Bl = {u∈V l : u= π j(n j)+(l−1) ·o, j = 1,2, . . . ,m}, (15)

the last operations of tasks performed by the individual ma-
chines in the l-th MTS. Undoubtedly, |A l | = |Bl | = m, l =
1, ...,η .

For a fixed permutation π ∈Φ we consider the η first MTSs.
We assign them a graph G⊕(π) = (V ⊕,E ⊕(π)), called cyclic
graph, which is the sum of η first consecutive components,
namely

G⊕(π) = H1(π)⊕H2(π)⊕, . . . ,⊕Hη(π), (16)

whereby the set of vertices

V ⊕ = V 1 ∪V 2∪, . . . ,∪V η ,

and set of arcs

E ⊕ = E 1 ∪E 2∪, . . . ,∪E η ∪W ,

where W is a set of arcs between successive components. They
combine the last operation performed on the machine in a cer-
tain component with the first operation carried out on the same
machine in the next component, namely

W = {(u,v) : u ∈ Bi,v ∈ A i+1, µu = µv, i = 1,2, . . . ,m}.
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List of main symbols
al – l-th copy of operation a in l-th MTS

Ca – operation a completion time in 1-th MTS
G⊕(π) – graph for solution π of cyclic job shop

H(π) – graph for solution π of job shop problem
J – set of tasks
M – set of machines

MTS – Minimal Task Set
O – set of operations
π – solution (m-tuple of permutations)
πi – permutation of operations on i-th machine
Sa – operation a starting time in 1-th MTS
Sl

a – operation a starting time in l-the MTS
T (π) – cycle time of solution π

T ◦(π) – minimal cycle time of solution π
T ∗ – optimal cycle time

1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:

∗e-mail: wojciech.bozejko@pwr.edu.pl

(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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In this chapter, for a given order of operations execution on the 
machines (an element of the set Φ), we present the new method 
of determination the minimum cycle time in the flexible job 
shop problem. This method is based on a graph representing the 
first (m + 1) MTSs. In the following part, for simplification of 
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4.1. Cyclic graph. Let π 2 Φ be a feasible solution, and 
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
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tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
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i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1
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{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
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the order of operations execution on machines for the first MTS 
(description of the graph is given in Section 2.1).

By H l(π) = (
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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Graph H l(π) will be called l-th component. Undeniably, H1(π) 
is isomorphic with each graph H l(π), i = 2, 3, … η.

The set of vertices of graph H l(π)
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3. Cyclic flexible job shop problem
In the cyclic production system, a fixed set of tasks called MTS
(minimal task set, see minimal part set in Brucker and Kamp-
meyer [9]) is performed repeatedly in the production cycles.
MTSs are carried out directly one after another in a cyclic
manner. We assume that in each of the MTSs on each ma-
chine operations are performed in the same order. Therefore,
in each cyclic schedule, the order of operations may be repre-
sented by constructing a m-tuple of permutations of operations
on individual machines in the first MTS. The cyclic nature of
the process is subject to the following constraints:

(e) each operation is performed sequentially (in consecutive
MTSs) after the cycle time completion.

It was assumed that in each MTS the operations executed on
machines are performed in the same order. For a given solution
(m-tuple) π ∈ Φ (Φ – set of FJS problem feasible solutions),
let S k = (Sk

1,S
k
2, . . . ,S

k
o) be a sequence of starting moments for

execution of operations in the k-th MTS, where Sk
i denotes the

moment of execution of an operation i on machine µi in k-th
cycle (MTS). We assumed that the time schedule (i.e. opera-
tions execution in subsequent MTS) is cyclic. This means that
there is a fixed T (π) (period) such that

Sk+1
π(i) = Sk

π(i) +T (π), i = 1, ...,o, k = 1,2, ... (5)

The above presented equality is the realization of the con-
straint (e).

The size of T (π) depends obviously on the solution π and is
called cycle time. The minimum value of T (π), for a fixed or-
der of operations on machines π will be called minimum cycle
time and denoted by T ◦(π). Because the order of operations
execution for each MTS is the same, therefore it is enough
to designate the starting moments of execution of operations
S1,S2, . . . ,So for the first MTS and make the shift by the size
of T (π). Therefore,

Sk
π(i) = Sπ(i) + (k−1) ·T (π) (6)

is the starting time of an operation i ∈ O in k-th cycle (i.e. in
k-th MTS), k = 1,2, . . . .

Minimum cycle time T ◦(π), for a fixed order of execution
of tasks π, can be determined by solving the following linear
programming task: determine

T ◦(π) = min{T}, (7)

s.t.:
Sk

π(i) + pπ(i) ≤ Sk
π(i+1), (8)

i = l j−1 +1, . . . , l j−1 +o j −1, j = 1, ...,n, k = 1,2, . . . ,

Sk
πl( j) + pπl( j) ≤ Sk

πl( j+1), (9)

l = 1, ...,m, j = 1, ...,nl −1, k = 1,2, . . . ,

Sk
πl(nl)

+ pπl(nl) ≤ Sk
πl(1)

+T, l = 1, ...,m, k = 1,2, . . . , (10)

Sk
π(i) ≥ 0, i = 1, ...,o, k = 1,2, . . . . (11)

In this paper we consider the problem of designation of the
optimal cycle time T ∗, which comes to determine such a solu-
tion π∗, for which

T ∗ = T ◦(π∗) = min{T ◦(π) : π ∈ Φ}.

In short this problem will be denoted by CFJS (Cyclic Flexible
Job Shop).

4. Determination of minimum cycle time
In this chapter, for a given order of operations execution on the
machines (an element of the set Φ), we present the new method
of determination the minimum cycle time in the flexible job
shop problem. This method is based on a graph representing
the first (m+1) MTSs. In the following part, for simplification
of the notation it was assumed that η = m+1.

4.1. Cyclic graph Let π ∈ Φ be a feasible solution, and
H1 = (V 1,E 1) the first component, i.e., a graph representing
the order of operations execution on machines for the first MTS
(description of the graph is given in Section 2.1).

By Hl(π)= (V l ,E l) (l = 2,3, . . . ,η) we denote a graph rep-
resenting the order of operations execution for l-th MTS. The
set of vertices of this graph

V l = {v+(l −1) ·o : v ∈ V 1}. (12)

A pair of vertices from the set V l is an arc

(u,v) ∈ E 1 ⇐⇒ (u+(l −1) ·o,v+(l −1) ·o) ∈ E l . (13)

Graph Hl(π) will be called l-th component. Undeniably,
H1(π) is isomorphic with each graph Hl(π), i = 2,3, . . .η .

The set of vertices of graph Hl(π)

A l = {v ∈ V l : v = π j(1)+(l−1) ·o, j = 1,2, . . . ,m}, (14)

comprises the first operations and the set

Bl = {u∈V l : u= π j(n j)+(l−1) ·o, j = 1,2, . . . ,m}, (15)

the last operations of tasks performed by the individual ma-
chines in the l-th MTS. Undoubtedly, |A l | = |Bl | = m, l =
1, ...,η .

For a fixed permutation π ∈Φ we consider the η first MTSs.
We assign them a graph G⊕(π) = (V ⊕,E ⊕(π)), called cyclic
graph, which is the sum of η first consecutive components,
namely

G⊕(π) = H1(π)⊕H2(π)⊕, . . . ,⊕Hη(π), (16)

whereby the set of vertices

V ⊕ = V 1 ∪V 2∪, . . . ,∪V η ,

and set of arcs

E ⊕ = E 1 ∪E 2∪, . . . ,∪E η ∪W ,

where W is a set of arcs between successive components. They
combine the last operation performed on the machine in a cer-
tain component with the first operation carried out on the same
machine in the next component, namely

W = {(u,v) : u ∈ Bi,v ∈ A i+1, µu = µv, i = 1,2, . . . ,m}.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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3. Cyclic flexible job shop problem
In the cyclic production system, a fixed set of tasks called MTS
(minimal task set, see minimal part set in Brucker and Kamp-
meyer [9]) is performed repeatedly in the production cycles.
MTSs are carried out directly one after another in a cyclic
manner. We assume that in each of the MTSs on each ma-
chine operations are performed in the same order. Therefore,
in each cyclic schedule, the order of operations may be repre-
sented by constructing a m-tuple of permutations of operations
on individual machines in the first MTS. The cyclic nature of
the process is subject to the following constraints:

(e) each operation is performed sequentially (in consecutive
MTSs) after the cycle time completion.

It was assumed that in each MTS the operations executed on
machines are performed in the same order. For a given solution
(m-tuple) π ∈ Φ (Φ – set of FJS problem feasible solutions),
let S k = (Sk

1,S
k
2, . . . ,S

k
o) be a sequence of starting moments for

execution of operations in the k-th MTS, where Sk
i denotes the

moment of execution of an operation i on machine µi in k-th
cycle (MTS). We assumed that the time schedule (i.e. opera-
tions execution in subsequent MTS) is cyclic. This means that
there is a fixed T (π) (period) such that

Sk+1
π(i) = Sk

π(i) +T (π), i = 1, ...,o, k = 1,2, ... (5)

The above presented equality is the realization of the con-
straint (e).

The size of T (π) depends obviously on the solution π and is
called cycle time. The minimum value of T (π), for a fixed or-
der of operations on machines π will be called minimum cycle
time and denoted by T ◦(π). Because the order of operations
execution for each MTS is the same, therefore it is enough
to designate the starting moments of execution of operations
S1,S2, . . . ,So for the first MTS and make the shift by the size
of T (π). Therefore,

Sk
π(i) = Sπ(i) + (k−1) ·T (π) (6)

is the starting time of an operation i ∈ O in k-th cycle (i.e. in
k-th MTS), k = 1,2, . . . .

Minimum cycle time T ◦(π), for a fixed order of execution
of tasks π, can be determined by solving the following linear
programming task: determine

T ◦(π) = min{T}, (7)

s.t.:
Sk

π(i) + pπ(i) ≤ Sk
π(i+1), (8)

i = l j−1 +1, . . . , l j−1 +o j −1, j = 1, ...,n, k = 1,2, . . . ,

Sk
πl( j) + pπl( j) ≤ Sk

πl( j+1), (9)

l = 1, ...,m, j = 1, ...,nl −1, k = 1,2, . . . ,

Sk
πl(nl)

+ pπl(nl) ≤ Sk
πl(1)

+T, l = 1, ...,m, k = 1,2, . . . , (10)

Sk
π(i) ≥ 0, i = 1, ...,o, k = 1,2, . . . . (11)

In this paper we consider the problem of designation of the
optimal cycle time T ∗, which comes to determine such a solu-
tion π∗, for which

T ∗ = T ◦(π∗) = min{T ◦(π) : π ∈ Φ}.

In short this problem will be denoted by CFJS (Cyclic Flexible
Job Shop).

4. Determination of minimum cycle time
In this chapter, for a given order of operations execution on the
machines (an element of the set Φ), we present the new method
of determination the minimum cycle time in the flexible job
shop problem. This method is based on a graph representing
the first (m+1) MTSs. In the following part, for simplification
of the notation it was assumed that η = m+1.

4.1. Cyclic graph Let π ∈ Φ be a feasible solution, and
H1 = (V 1,E 1) the first component, i.e., a graph representing
the order of operations execution on machines for the first MTS
(description of the graph is given in Section 2.1).

By Hl(π)= (V l ,E l) (l = 2,3, . . . ,η) we denote a graph rep-
resenting the order of operations execution for l-th MTS. The
set of vertices of this graph

V l = {v+(l −1) ·o : v ∈ V 1}. (12)

A pair of vertices from the set V l is an arc

(u,v) ∈ E 1 ⇐⇒ (u+(l −1) ·o,v+(l −1) ·o) ∈ E l . (13)

Graph Hl(π) will be called l-th component. Undeniably,
H1(π) is isomorphic with each graph Hl(π), i = 2,3, . . .η .

The set of vertices of graph Hl(π)

A l = {v ∈ V l : v = π j(1)+(l−1) ·o, j = 1,2, . . . ,m}, (14)

comprises the first operations and the set

Bl = {u∈V l : u= π j(n j)+(l−1) ·o, j = 1,2, . . . ,m}, (15)

the last operations of tasks performed by the individual ma-
chines in the l-th MTS. Undoubtedly, |A l | = |Bl | = m, l =
1, ...,η .

For a fixed permutation π ∈Φ we consider the η first MTSs.
We assign them a graph G⊕(π) = (V ⊕,E ⊕(π)), called cyclic
graph, which is the sum of η first consecutive components,
namely

G⊕(π) = H1(π)⊕H2(π)⊕, . . . ,⊕Hη(π), (16)

whereby the set of vertices

V ⊕ = V 1 ∪V 2∪, . . . ,∪V η ,

and set of arcs

E ⊕ = E 1 ∪E 2∪, . . . ,∪E η ∪W ,

where W is a set of arcs between successive components. They
combine the last operation performed on the machine in a cer-
tain component with the first operation carried out on the same
machine in the next component, namely

W = {(u,v) : u ∈ Bi,v ∈ A i+1, µu = µv, i = 1,2, . . . ,m}.
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W. Bożejko, J. Pempera, and M. Wodecki

cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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3. Cyclic flexible job shop problem
In the cyclic production system, a fixed set of tasks called MTS
(minimal task set, see minimal part set in Brucker and Kamp-
meyer [9]) is performed repeatedly in the production cycles.
MTSs are carried out directly one after another in a cyclic
manner. We assume that in each of the MTSs on each ma-
chine operations are performed in the same order. Therefore,
in each cyclic schedule, the order of operations may be repre-
sented by constructing a m-tuple of permutations of operations
on individual machines in the first MTS. The cyclic nature of
the process is subject to the following constraints:

(e) each operation is performed sequentially (in consecutive
MTSs) after the cycle time completion.

It was assumed that in each MTS the operations executed on
machines are performed in the same order. For a given solution
(m-tuple) π ∈ Φ (Φ – set of FJS problem feasible solutions),
let S k = (Sk

1,S
k
2, . . . ,S

k
o) be a sequence of starting moments for

execution of operations in the k-th MTS, where Sk
i denotes the

moment of execution of an operation i on machine µi in k-th
cycle (MTS). We assumed that the time schedule (i.e. opera-
tions execution in subsequent MTS) is cyclic. This means that
there is a fixed T (π) (period) such that

Sk+1
π(i) = Sk

π(i) +T (π), i = 1, ...,o, k = 1,2, ... (5)

The above presented equality is the realization of the con-
straint (e).

The size of T (π) depends obviously on the solution π and is
called cycle time. The minimum value of T (π), for a fixed or-
der of operations on machines π will be called minimum cycle
time and denoted by T ◦(π). Because the order of operations
execution for each MTS is the same, therefore it is enough
to designate the starting moments of execution of operations
S1,S2, . . . ,So for the first MTS and make the shift by the size
of T (π). Therefore,

Sk
π(i) = Sπ(i) + (k−1) ·T (π) (6)

is the starting time of an operation i ∈ O in k-th cycle (i.e. in
k-th MTS), k = 1,2, . . . .

Minimum cycle time T ◦(π), for a fixed order of execution
of tasks π, can be determined by solving the following linear
programming task: determine

T ◦(π) = min{T}, (7)

s.t.:
Sk

π(i) + pπ(i) ≤ Sk
π(i+1), (8)

i = l j−1 +1, . . . , l j−1 +o j −1, j = 1, ...,n, k = 1,2, . . . ,

Sk
πl( j) + pπl( j) ≤ Sk

πl( j+1), (9)

l = 1, ...,m, j = 1, ...,nl −1, k = 1,2, . . . ,

Sk
πl(nl)

+ pπl(nl) ≤ Sk
πl(1)

+T, l = 1, ...,m, k = 1,2, . . . , (10)

Sk
π(i) ≥ 0, i = 1, ...,o, k = 1,2, . . . . (11)

In this paper we consider the problem of designation of the
optimal cycle time T ∗, which comes to determine such a solu-
tion π∗, for which

T ∗ = T ◦(π∗) = min{T ◦(π) : π ∈ Φ}.

In short this problem will be denoted by CFJS (Cyclic Flexible
Job Shop).

4. Determination of minimum cycle time
In this chapter, for a given order of operations execution on the
machines (an element of the set Φ), we present the new method
of determination the minimum cycle time in the flexible job
shop problem. This method is based on a graph representing
the first (m+1) MTSs. In the following part, for simplification
of the notation it was assumed that η = m+1.

4.1. Cyclic graph Let π ∈ Φ be a feasible solution, and
H1 = (V 1,E 1) the first component, i.e., a graph representing
the order of operations execution on machines for the first MTS
(description of the graph is given in Section 2.1).

By Hl(π)= (V l ,E l) (l = 2,3, . . . ,η) we denote a graph rep-
resenting the order of operations execution for l-th MTS. The
set of vertices of this graph

V l = {v+(l −1) ·o : v ∈ V 1}. (12)

A pair of vertices from the set V l is an arc

(u,v) ∈ E 1 ⇐⇒ (u+(l −1) ·o,v+(l −1) ·o) ∈ E l . (13)

Graph Hl(π) will be called l-th component. Undeniably,
H1(π) is isomorphic with each graph Hl(π), i = 2,3, . . .η .

The set of vertices of graph Hl(π)

A l = {v ∈ V l : v = π j(1)+(l−1) ·o, j = 1,2, . . . ,m}, (14)

comprises the first operations and the set

Bl = {u∈V l : u= π j(n j)+(l−1) ·o, j = 1,2, . . . ,m}, (15)

the last operations of tasks performed by the individual ma-
chines in the l-th MTS. Undoubtedly, |A l | = |Bl | = m, l =
1, ...,η .

For a fixed permutation π ∈Φ we consider the η first MTSs.
We assign them a graph G⊕(π) = (V ⊕,E ⊕(π)), called cyclic
graph, which is the sum of η first consecutive components,
namely

G⊕(π) = H1(π)⊕H2(π)⊕, . . . ,⊕Hη(π), (16)

whereby the set of vertices

V ⊕ = V 1 ∪V 2∪, . . . ,∪V η ,

and set of arcs

E ⊕ = E 1 ∪E 2∪, . . . ,∪E η ∪W ,

where W is a set of arcs between successive components. They
combine the last operation performed on the machine in a cer-
tain component with the first operation carried out on the same
machine in the next component, namely

W = {(u,v) : u ∈ Bi,v ∈ A i+1, µu = µv, i = 1,2, . . . ,m}.
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3. Cyclic flexible job shop problem
In the cyclic production system, a fixed set of tasks called MTS
(minimal task set, see minimal part set in Brucker and Kamp-
meyer [9]) is performed repeatedly in the production cycles.
MTSs are carried out directly one after another in a cyclic
manner. We assume that in each of the MTSs on each ma-
chine operations are performed in the same order. Therefore,
in each cyclic schedule, the order of operations may be repre-
sented by constructing a m-tuple of permutations of operations
on individual machines in the first MTS. The cyclic nature of
the process is subject to the following constraints:

(e) each operation is performed sequentially (in consecutive
MTSs) after the cycle time completion.

It was assumed that in each MTS the operations executed on
machines are performed in the same order. For a given solution
(m-tuple) π ∈ Φ (Φ – set of FJS problem feasible solutions),
let S k = (Sk

1,S
k
2, . . . ,S

k
o) be a sequence of starting moments for

execution of operations in the k-th MTS, where Sk
i denotes the

moment of execution of an operation i on machine µi in k-th
cycle (MTS). We assumed that the time schedule (i.e. opera-
tions execution in subsequent MTS) is cyclic. This means that
there is a fixed T (π) (period) such that

Sk+1
π(i) = Sk

π(i) +T (π), i = 1, ...,o, k = 1,2, ... (5)

The above presented equality is the realization of the con-
straint (e).

The size of T (π) depends obviously on the solution π and is
called cycle time. The minimum value of T (π), for a fixed or-
der of operations on machines π will be called minimum cycle
time and denoted by T ◦(π). Because the order of operations
execution for each MTS is the same, therefore it is enough
to designate the starting moments of execution of operations
S1,S2, . . . ,So for the first MTS and make the shift by the size
of T (π). Therefore,

Sk
π(i) = Sπ(i) + (k−1) ·T (π) (6)

is the starting time of an operation i ∈ O in k-th cycle (i.e. in
k-th MTS), k = 1,2, . . . .

Minimum cycle time T ◦(π), for a fixed order of execution
of tasks π, can be determined by solving the following linear
programming task: determine

T ◦(π) = min{T}, (7)

s.t.:
Sk

π(i) + pπ(i) ≤ Sk
π(i+1), (8)

i = l j−1 +1, . . . , l j−1 +o j −1, j = 1, ...,n, k = 1,2, . . . ,

Sk
πl( j) + pπl( j) ≤ Sk

πl( j+1), (9)

l = 1, ...,m, j = 1, ...,nl −1, k = 1,2, . . . ,

Sk
πl(nl)

+ pπl(nl) ≤ Sk
πl(1)

+T, l = 1, ...,m, k = 1,2, . . . , (10)

Sk
π(i) ≥ 0, i = 1, ...,o, k = 1,2, . . . . (11)

In this paper we consider the problem of designation of the
optimal cycle time T ∗, which comes to determine such a solu-
tion π∗, for which

T ∗ = T ◦(π∗) = min{T ◦(π) : π ∈ Φ}.

In short this problem will be denoted by CFJS (Cyclic Flexible
Job Shop).

4. Determination of minimum cycle time
In this chapter, for a given order of operations execution on the
machines (an element of the set Φ), we present the new method
of determination the minimum cycle time in the flexible job
shop problem. This method is based on a graph representing
the first (m+1) MTSs. In the following part, for simplification
of the notation it was assumed that η = m+1.

4.1. Cyclic graph Let π ∈ Φ be a feasible solution, and
H1 = (V 1,E 1) the first component, i.e., a graph representing
the order of operations execution on machines for the first MTS
(description of the graph is given in Section 2.1).

By Hl(π)= (V l ,E l) (l = 2,3, . . . ,η) we denote a graph rep-
resenting the order of operations execution for l-th MTS. The
set of vertices of this graph

V l = {v+(l −1) ·o : v ∈ V 1}. (12)

A pair of vertices from the set V l is an arc

(u,v) ∈ E 1 ⇐⇒ (u+(l −1) ·o,v+(l −1) ·o) ∈ E l . (13)

Graph Hl(π) will be called l-th component. Undeniably,
H1(π) is isomorphic with each graph Hl(π), i = 2,3, . . .η .

The set of vertices of graph Hl(π)

A l = {v ∈ V l : v = π j(1)+(l−1) ·o, j = 1,2, . . . ,m}, (14)

comprises the first operations and the set

Bl = {u∈V l : u= π j(n j)+(l−1) ·o, j = 1,2, . . . ,m}, (15)

the last operations of tasks performed by the individual ma-
chines in the l-th MTS. Undoubtedly, |A l | = |Bl | = m, l =
1, ...,η .

For a fixed permutation π ∈Φ we consider the η first MTSs.
We assign them a graph G⊕(π) = (V ⊕,E ⊕(π)), called cyclic
graph, which is the sum of η first consecutive components,
namely

G⊕(π) = H1(π)⊕H2(π)⊕, . . . ,⊕Hη(π), (16)

whereby the set of vertices

V ⊕ = V 1 ∪V 2∪, . . . ,∪V η ,

and set of arcs

E ⊕ = E 1 ∪E 2∪, . . . ,∪E η ∪W ,

where W is a set of arcs between successive components. They
combine the last operation performed on the machine in a cer-
tain component with the first operation carried out on the same
machine in the next component, namely

W = {(u,v) : u ∈ Bi,v ∈ A i+1, µu = µv, i = 1,2, . . . ,m}.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.
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called a nest. One operation must be performed on one ma-
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ations on the machines to optimize a certain criterion. Hereby
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(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
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(c) the machine cannot perform more than one operation at the
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can be partitioned into sequences corresponding to the tasks,
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By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
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includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
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be the set of all permuations of elements from O l . The se-
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Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
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{(
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)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
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|Ok|−1⋃
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{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

© = 
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
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i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
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Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
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of the first operation on the first machine is S1,π(1) = 0.
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cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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3. Cyclic flexible job shop problem
In the cyclic production system, a fixed set of tasks called MTS
(minimal task set, see minimal part set in Brucker and Kamp-
meyer [9]) is performed repeatedly in the production cycles.
MTSs are carried out directly one after another in a cyclic
manner. We assume that in each of the MTSs on each ma-
chine operations are performed in the same order. Therefore,
in each cyclic schedule, the order of operations may be repre-
sented by constructing a m-tuple of permutations of operations
on individual machines in the first MTS. The cyclic nature of
the process is subject to the following constraints:

(e) each operation is performed sequentially (in consecutive
MTSs) after the cycle time completion.

It was assumed that in each MTS the operations executed on
machines are performed in the same order. For a given solution
(m-tuple) π ∈ Φ (Φ – set of FJS problem feasible solutions),
let S k = (Sk

1,S
k
2, . . . ,S

k
o) be a sequence of starting moments for

execution of operations in the k-th MTS, where Sk
i denotes the

moment of execution of an operation i on machine µi in k-th
cycle (MTS). We assumed that the time schedule (i.e. opera-
tions execution in subsequent MTS) is cyclic. This means that
there is a fixed T (π) (period) such that

Sk+1
π(i) = Sk

π(i) +T (π), i = 1, ...,o, k = 1,2, ... (5)

The above presented equality is the realization of the con-
straint (e).

The size of T (π) depends obviously on the solution π and is
called cycle time. The minimum value of T (π), for a fixed or-
der of operations on machines π will be called minimum cycle
time and denoted by T ◦(π). Because the order of operations
execution for each MTS is the same, therefore it is enough
to designate the starting moments of execution of operations
S1,S2, . . . ,So for the first MTS and make the shift by the size
of T (π). Therefore,

Sk
π(i) = Sπ(i) + (k−1) ·T (π) (6)

is the starting time of an operation i ∈ O in k-th cycle (i.e. in
k-th MTS), k = 1,2, . . . .

Minimum cycle time T ◦(π), for a fixed order of execution
of tasks π, can be determined by solving the following linear
programming task: determine

T ◦(π) = min{T}, (7)

s.t.:
Sk

π(i) + pπ(i) ≤ Sk
π(i+1), (8)

i = l j−1 +1, . . . , l j−1 +o j −1, j = 1, ...,n, k = 1,2, . . . ,

Sk
πl( j) + pπl( j) ≤ Sk

πl( j+1), (9)

l = 1, ...,m, j = 1, ...,nl −1, k = 1,2, . . . ,

Sk
πl(nl)

+ pπl(nl) ≤ Sk
πl(1)

+T, l = 1, ...,m, k = 1,2, . . . , (10)

Sk
π(i) ≥ 0, i = 1, ...,o, k = 1,2, . . . . (11)

In this paper we consider the problem of designation of the
optimal cycle time T ∗, which comes to determine such a solu-
tion π∗, for which

T ∗ = T ◦(π∗) = min{T ◦(π) : π ∈ Φ}.

In short this problem will be denoted by CFJS (Cyclic Flexible
Job Shop).

4. Determination of minimum cycle time
In this chapter, for a given order of operations execution on the
machines (an element of the set Φ), we present the new method
of determination the minimum cycle time in the flexible job
shop problem. This method is based on a graph representing
the first (m+1) MTSs. In the following part, for simplification
of the notation it was assumed that η = m+1.

4.1. Cyclic graph Let π ∈ Φ be a feasible solution, and
H1 = (V 1,E 1) the first component, i.e., a graph representing
the order of operations execution on machines for the first MTS
(description of the graph is given in Section 2.1).

By Hl(π)= (V l ,E l) (l = 2,3, . . . ,η) we denote a graph rep-
resenting the order of operations execution for l-th MTS. The
set of vertices of this graph

V l = {v+(l −1) ·o : v ∈ V 1}. (12)

A pair of vertices from the set V l is an arc

(u,v) ∈ E 1 ⇐⇒ (u+(l −1) ·o,v+(l −1) ·o) ∈ E l . (13)

Graph Hl(π) will be called l-th component. Undeniably,
H1(π) is isomorphic with each graph Hl(π), i = 2,3, . . .η .

The set of vertices of graph Hl(π)

A l = {v ∈ V l : v = π j(1)+(l−1) ·o, j = 1,2, . . . ,m}, (14)

comprises the first operations and the set

Bl = {u∈V l : u= π j(n j)+(l−1) ·o, j = 1,2, . . . ,m}, (15)

the last operations of tasks performed by the individual ma-
chines in the l-th MTS. Undoubtedly, |A l | = |Bl | = m, l =
1, ...,η .

For a fixed permutation π ∈Φ we consider the η first MTSs.
We assign them a graph G⊕(π) = (V ⊕,E ⊕(π)), called cyclic
graph, which is the sum of η first consecutive components,
namely

G⊕(π) = H1(π)⊕H2(π)⊕, . . . ,⊕Hη(π), (16)

whereby the set of vertices

V ⊕ = V 1 ∪V 2∪, . . . ,∪V η ,

and set of arcs

E ⊕ = E 1 ∪E 2∪, . . . ,∪E η ∪W ,

where W is a set of arcs between successive components. They
combine the last operation performed on the machine in a cer-
tain component with the first operation carried out on the same
machine in the next component, namely

W = {(u,v) : u ∈ Bi,v ∈ A i+1, µu = µv, i = 1,2, . . . ,m}.
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The size of T (π) depends obviously on the solution π and is
called cycle time. The minimum value of T (π), for a fixed or-
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of tasks π, can be determined by solving the following linear
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In this chapter, for a given order of operations execution on the
machines (an element of the set Φ), we present the new method
of determination the minimum cycle time in the flexible job
shop problem. This method is based on a graph representing
the first (m+1) MTSs. In the following part, for simplification
of the notation it was assumed that η = m+1.

4.1. Cyclic graph Let π ∈ Φ be a feasible solution, and
H1 = (V 1,E 1) the first component, i.e., a graph representing
the order of operations execution on machines for the first MTS
(description of the graph is given in Section 2.1).

By Hl(π)= (V l ,E l) (l = 2,3, . . . ,η) we denote a graph rep-
resenting the order of operations execution for l-th MTS. The
set of vertices of this graph

V l = {v+(l −1) ·o : v ∈ V 1}. (12)

A pair of vertices from the set V l is an arc

(u,v) ∈ E 1 ⇐⇒ (u+(l −1) ·o,v+(l −1) ·o) ∈ E l . (13)

Graph Hl(π) will be called l-th component. Undeniably,
H1(π) is isomorphic with each graph Hl(π), i = 2,3, . . .η .

The set of vertices of graph Hl(π)

A l = {v ∈ V l : v = π j(1)+(l−1) ·o, j = 1,2, . . . ,m}, (14)

comprises the first operations and the set

Bl = {u∈V l : u= π j(n j)+(l−1) ·o, j = 1,2, . . . ,m}, (15)

the last operations of tasks performed by the individual ma-
chines in the l-th MTS. Undoubtedly, |A l | = |Bl | = m, l =
1, ...,η .

For a fixed permutation π ∈Φ we consider the η first MTSs.
We assign them a graph G⊕(π) = (V ⊕,E ⊕(π)), called cyclic
graph, which is the sum of η first consecutive components,
namely
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called cycle time. The minimum value of T (π), for a fixed or-
der of operations on machines π will be called minimum cycle
time and denoted by T ◦(π). Because the order of operations
execution for each MTS is the same, therefore it is enough
to designate the starting moments of execution of operations
S1,S2, . . . ,So for the first MTS and make the shift by the size
of T (π). Therefore,
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π(i) = Sπ(i) + (k−1) ·T (π) (6)

is the starting time of an operation i ∈ O in k-th cycle (i.e. in
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Minimum cycle time T ◦(π), for a fixed order of execution
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3. Cyclic flexible job shop problem
In the cyclic production system, a fixed set of tasks called MTS
(minimal task set, see minimal part set in Brucker and Kamp-
meyer [9]) is performed repeatedly in the production cycles.
MTSs are carried out directly one after another in a cyclic
manner. We assume that in each of the MTSs on each ma-
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execution of operations in the k-th MTS, where Sk
i denotes the

moment of execution of an operation i on machine µi in k-th
cycle (MTS). We assumed that the time schedule (i.e. opera-
tions execution in subsequent MTS) is cyclic. This means that
there is a fixed T (π) (period) such that

Sk+1
π(i) = Sk

π(i) +T (π), i = 1, ...,o, k = 1,2, ... (5)

The above presented equality is the realization of the con-
straint (e).

The size of T (π) depends obviously on the solution π and is
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Sk
π(i) = Sπ(i) + (k−1) ·T (π) (6)
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T ◦(π) = min{T}, (7)

s.t.:
Sk

π(i) + pπ(i) ≤ Sk
π(i+1), (8)

i = l j−1 +1, . . . , l j−1 +o j −1, j = 1, ...,n, k = 1,2, . . . ,

Sk
πl( j) + pπl( j) ≤ Sk

πl( j+1), (9)

l = 1, ...,m, j = 1, ...,nl −1, k = 1,2, . . . ,

Sk
πl(nl)

+ pπl(nl) ≤ Sk
πl(1)

+T, l = 1, ...,m, k = 1,2, . . . , (10)

Sk
π(i) ≥ 0, i = 1, ...,o, k = 1,2, . . . . (11)
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Job Shop).

4. Determination of minimum cycle time
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resenting the order of operations execution for l-th MTS. The
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For a fixed permutation π ∈Φ we consider the η first MTSs.
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W = {(u,v) : u ∈ Bi,v ∈ A i+1, µu = µv, i = 1,2, . . . ,m}.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:

∗e-mail: wojciech.bozejko@pwr.edu.pl

(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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W. BOŻEJKO1∗, J. PEMPERA1, and M. WODECKI2

1 Department of Automatics, Mechatronics and Control Systems
Faculty of Electronics, Wrocław University of Science and Technology
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3. Cyclic flexible job shop problem
In the cyclic production system, a fixed set of tasks called MTS
(minimal task set, see minimal part set in Brucker and Kamp-
meyer [9]) is performed repeatedly in the production cycles.
MTSs are carried out directly one after another in a cyclic
manner. We assume that in each of the MTSs on each ma-
chine operations are performed in the same order. Therefore,
in each cyclic schedule, the order of operations may be repre-
sented by constructing a m-tuple of permutations of operations
on individual machines in the first MTS. The cyclic nature of
the process is subject to the following constraints:

(e) each operation is performed sequentially (in consecutive
MTSs) after the cycle time completion.

It was assumed that in each MTS the operations executed on
machines are performed in the same order. For a given solution
(m-tuple) π ∈ Φ (Φ – set of FJS problem feasible solutions),
let S k = (Sk

1,S
k
2, . . . ,S

k
o) be a sequence of starting moments for

execution of operations in the k-th MTS, where Sk
i denotes the

moment of execution of an operation i on machine µi in k-th
cycle (MTS). We assumed that the time schedule (i.e. opera-
tions execution in subsequent MTS) is cyclic. This means that
there is a fixed T (π) (period) such that

Sk+1
π(i) = Sk

π(i) +T (π), i = 1, ...,o, k = 1,2, ... (5)

The above presented equality is the realization of the con-
straint (e).

The size of T (π) depends obviously on the solution π and is
called cycle time. The minimum value of T (π), for a fixed or-
der of operations on machines π will be called minimum cycle
time and denoted by T ◦(π). Because the order of operations
execution for each MTS is the same, therefore it is enough
to designate the starting moments of execution of operations
S1,S2, . . . ,So for the first MTS and make the shift by the size
of T (π). Therefore,

Sk
π(i) = Sπ(i) + (k−1) ·T (π) (6)

is the starting time of an operation i ∈ O in k-th cycle (i.e. in
k-th MTS), k = 1,2, . . . .

Minimum cycle time T ◦(π), for a fixed order of execution
of tasks π, can be determined by solving the following linear
programming task: determine

T ◦(π) = min{T}, (7)

s.t.:
Sk

π(i) + pπ(i) ≤ Sk
π(i+1), (8)

i = l j−1 +1, . . . , l j−1 +o j −1, j = 1, ...,n, k = 1,2, . . . ,

Sk
πl( j) + pπl( j) ≤ Sk

πl( j+1), (9)

l = 1, ...,m, j = 1, ...,nl −1, k = 1,2, . . . ,

Sk
πl(nl)

+ pπl(nl) ≤ Sk
πl(1)

+T, l = 1, ...,m, k = 1,2, . . . , (10)

Sk
π(i) ≥ 0, i = 1, ...,o, k = 1,2, . . . . (11)

In this paper we consider the problem of designation of the
optimal cycle time T ∗, which comes to determine such a solu-
tion π∗, for which

T ∗ = T ◦(π∗) = min{T ◦(π) : π ∈ Φ}.

In short this problem will be denoted by CFJS (Cyclic Flexible
Job Shop).

4. Determination of minimum cycle time
In this chapter, for a given order of operations execution on the
machines (an element of the set Φ), we present the new method
of determination the minimum cycle time in the flexible job
shop problem. This method is based on a graph representing
the first (m+1) MTSs. In the following part, for simplification
of the notation it was assumed that η = m+1.

4.1. Cyclic graph Let π ∈ Φ be a feasible solution, and
H1 = (V 1,E 1) the first component, i.e., a graph representing
the order of operations execution on machines for the first MTS
(description of the graph is given in Section 2.1).

By Hl(π)= (V l ,E l) (l = 2,3, . . . ,η) we denote a graph rep-
resenting the order of operations execution for l-th MTS. The
set of vertices of this graph

V l = {v+(l −1) ·o : v ∈ V 1}. (12)

A pair of vertices from the set V l is an arc

(u,v) ∈ E 1 ⇐⇒ (u+(l −1) ·o,v+(l −1) ·o) ∈ E l . (13)

Graph Hl(π) will be called l-th component. Undeniably,
H1(π) is isomorphic with each graph Hl(π), i = 2,3, . . .η .

The set of vertices of graph Hl(π)

A l = {v ∈ V l : v = π j(1)+(l−1) ·o, j = 1,2, . . . ,m}, (14)

comprises the first operations and the set

Bl = {u∈V l : u= π j(n j)+(l−1) ·o, j = 1,2, . . . ,m}, (15)

the last operations of tasks performed by the individual ma-
chines in the l-th MTS. Undoubtedly, |A l | = |Bl | = m, l =
1, ...,η .

For a fixed permutation π ∈Φ we consider the η first MTSs.
We assign them a graph G⊕(π) = (V ⊕,E ⊕(π)), called cyclic
graph, which is the sum of η first consecutive components,
namely

G⊕(π) = H1(π)⊕H2(π)⊕, . . . ,⊕Hη(π), (16)

whereby the set of vertices

V ⊕ = V 1 ∪V 2∪, . . . ,∪V η ,

and set of arcs

E ⊕ = E 1 ∪E 2∪, . . . ,∪E η ∪W ,

where W is a set of arcs between successive components. They
combine the last operation performed on the machine in a cer-
tain component with the first operation carried out on the same
machine in the next component, namely

W = {(u,v) : u ∈ Bi,v ∈ A i+1, µu = µv, i = 1,2, . . . ,m}.
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cyclic problems were used for the first time by Brucker and
Kampmayer [8]. In this work there was considered a cyclic job
shop problem with additional no storage constraint. To its solu-
tion there was used an algorithm based on tabu search method
implementation. Current research concerning solutions to the
problems of production scheduling focus on new searching
methods of the solution space, mainly inspired by the pro-
cesses occurring in nature (evolutionary, ant colony, gregari-
ous, swarm search methods, etc.). In this paper we propose a
new method of constructing of local search algorithms which
has a similarity to shots in the golf game, from which we have
taken the name of the neighborhood.

2. Flexible job shop problem
In this section there is a brief presentation of the flexible job
shop problem, whereas in the next description of the cyclic
version of this problem, which is the essential theme of the
work. There is a set of tasks J = {1,2, . . . ,n} given, to be ex-
ecuted on machines from the set M = {1,2, . . . ,m}. A task is
a sequence of certain operations occurring in the technological
order. For each operation there is a subset of machines defined
called a nest. One operation must be performed on one ma-
chine of this subset. Due to the different machine performance,
execution time of the operation depends on the assigned ma-
chine. Problem (briefly denoted by FJS) relies on assignment
of the operation to the machines and setting the order of oper-
ations on the machines to optimize a certain criterion. Hereby
the following constraints must be met:

(a) each operation is performed by only one, selected from a
subset, machine,

(b) operation execution cannot be interrupted before its comple-
tion,

(c) the machine cannot perform more than one operation at the
same time,

(d) technological order of executing of operations must be pre-
served.

Let O = {1,2, . . . ,o} be the set of all operations. The set
can be partitioned into sequences corresponding to the tasks,
where the task j ∈ J is a sequence o j of operations to be
successively executed on the respective machines (i.e. in the
technological order). These operations are indexed by num-
bers (l j−1 +1, . . . , l j−1 +o j), where l j = ∑ j

i=1 oi is the number
of the operations of the first j tasks, j = 1,2, . . . ,n, wherein
l0 = 0, o = ∑n

i=1 oi. Next, let M i ⊂ M (i ∈ O) be the set
of machines, on which operation i is to be executed and pi,k
(k ∈ M i) is the execution time of i operation on machine k.
By µ = (µ1, . . . ,µo) we can denote the assignment of opera-
tions to machines, where µa ∈ M a is the machine assigned to
execute an operation a ∈ O . The set

O l = {a ∈ O : µa = l} (1)

includes operations executed on machine l ∈ M , whereas
∪m

i=1O
i = O .

Let permutation πl be a certain sequence of executing op-
erations from the set O l on machine l (|Ol | = nl) and Πl

be the set of all permuations of elements from O l . The se-
quence of operations on the machines is determined by the con-
catenation of m permutations π = (π1,π2, . . . ,πm) ∈ Π, where
Π = Π1×Π2×, . . . ,×Πm. Let us note that a m-tuple π ∈ Π un-
ambiguously defines the assignment of operations to machines
and the order of operations execution on individual machines.

For a fixed order of operations execution on machines π ∈
Π, the schedule for their execution may be represented by
starting moments Sπ(i) and completion times Cπ(i) of execu-
tion of operations i = 1,2, . . . ,o. If we assume that Cπ(i) =
Sπ(i) + pπ(i), then we can limit our scope to the starting mo-
ments of operation Sπ(i), i = 1,2, . . . ,o. Hereby the following
constraints must be fulfilled:

Sπ(i) + pi ≤ Sπ(i+1), i = l j−1+1, . . . , l j−1+o j −1, j = 1, ...,n,
(2)

Sπl( j) + pπl( j) ≤ Sπl( j+1), l = 1, ...,m, j = 1, ...,nl −1, (3)

Sπ(i) ≥ 0 i = 1, ...,o. (4)

Inequality (2) corresponds to the constraints (a) and (d),
whereas (2) to the constraints (c) and (b). Without loss of gen-
erality, we can assume that the starting moment of execution
of the first operation on the first machine is S1,π(1) = 0.

The sequence of operations execution π ∈ Π is feasible for
FJS problem, if there are starting moments of operations exe-
cution (schedule) Sπ(i), i= 1,2, . . . ,o, satisfying the constraints
(2)-(4). The set of these feasible solutions will be denoted by
Φ (Φ ⊆ Π).

2.1. Graph model of the flexible job shop problem Any fea-
sible solution π = (π1,π2, . . . ,πm), π ∈ Φ, can be represented
by a directed graph H(π) = (V ,E (π)) with weighted vertices
and arcs. A set of vertices V = O , vertices correspond to op-
erations. The weight of a vertex v ∈ O is equal to pv – time of
execution of the operation v on the machine µ(v). On the other
hand, a set of arcs E = R ∪K (π), where:

1) R =
n⋃

j=1

o j−1⋃
i=1

{(
l j−1 + i, l j−1 + i+1

)}
.

The arcs combine subsequent operations of the same task.
They are called technological arcs (as in fact they represent
the technological order).

2) K (π) =
m⋃

k=1

|Ok|−1⋃
i=1

{(πk(i),πk(i+1))} .

Arcs from this set join the operations performed on the
same machine (ordered arcs). They represent the order πk
of operations execution from the set Ok on k-th machine
(k = 1,2, . . . ,m).

The weight of any arc of the graph equals zero. Since there is a
mutual equivalence between operations and the vertices of the
graph, to simplify the notation, the operation will be identified
with its corresponding vertex.

PROPERTY 1. A solution π ∈ Φ is feasible for the FJS prob-
lem if and only if the graph H(π) does not contain cycles.
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© for i = 1, 2, …, k ¡ 1, is called 
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its length, where pvi
 is the weight vi in the graph G©. It is worth 

noting, that the path length includes the first vertex weight v1 
but it does not include the weight of the last vertex vk.
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3. Cyclic flexible job shop problem
In the cyclic production system, a fixed set of tasks called MTS
(minimal task set, see minimal part set in Brucker and Kamp-
meyer [9]) is performed repeatedly in the production cycles.
MTSs are carried out directly one after another in a cyclic
manner. We assume that in each of the MTSs on each ma-
chine operations are performed in the same order. Therefore,
in each cyclic schedule, the order of operations may be repre-
sented by constructing a m-tuple of permutations of operations
on individual machines in the first MTS. The cyclic nature of
the process is subject to the following constraints:

(e) each operation is performed sequentially (in consecutive
MTSs) after the cycle time completion.

It was assumed that in each MTS the operations executed on
machines are performed in the same order. For a given solution
(m-tuple) π ∈ Φ (Φ – set of FJS problem feasible solutions),
let S k = (Sk

1,S
k
2, . . . ,S

k
o) be a sequence of starting moments for

execution of operations in the k-th MTS, where Sk
i denotes the

moment of execution of an operation i on machine µi in k-th
cycle (MTS). We assumed that the time schedule (i.e. opera-
tions execution in subsequent MTS) is cyclic. This means that
there is a fixed T (π) (period) such that

Sk+1
π(i) = Sk

π(i) +T (π), i = 1, ...,o, k = 1,2, ... (5)

The above presented equality is the realization of the con-
straint (e).

The size of T (π) depends obviously on the solution π and is
called cycle time. The minimum value of T (π), for a fixed or-
der of operations on machines π will be called minimum cycle
time and denoted by T ◦(π). Because the order of operations
execution for each MTS is the same, therefore it is enough
to designate the starting moments of execution of operations
S1,S2, . . . ,So for the first MTS and make the shift by the size
of T (π). Therefore,

Sk
π(i) = Sπ(i) + (k−1) ·T (π) (6)

is the starting time of an operation i ∈ O in k-th cycle (i.e. in
k-th MTS), k = 1,2, . . . .

Minimum cycle time T ◦(π), for a fixed order of execution
of tasks π, can be determined by solving the following linear
programming task: determine

T ◦(π) = min{T}, (7)

s.t.:
Sk

π(i) + pπ(i) ≤ Sk
π(i+1), (8)

i = l j−1 +1, . . . , l j−1 +o j −1, j = 1, ...,n, k = 1,2, . . . ,

Sk
πl( j) + pπl( j) ≤ Sk

πl( j+1), (9)

l = 1, ...,m, j = 1, ...,nl −1, k = 1,2, . . . ,

Sk
πl(nl)

+ pπl(nl) ≤ Sk
πl(1)

+T, l = 1, ...,m, k = 1,2, . . . , (10)

Sk
π(i) ≥ 0, i = 1, ...,o, k = 1,2, . . . . (11)

In this paper we consider the problem of designation of the
optimal cycle time T ∗, which comes to determine such a solu-
tion π∗, for which

T ∗ = T ◦(π∗) = min{T ◦(π) : π ∈ Φ}.

In short this problem will be denoted by CFJS (Cyclic Flexible
Job Shop).

4. Determination of minimum cycle time
In this chapter, for a given order of operations execution on the
machines (an element of the set Φ), we present the new method
of determination the minimum cycle time in the flexible job
shop problem. This method is based on a graph representing
the first (m+1) MTSs. In the following part, for simplification
of the notation it was assumed that η = m+1.

4.1. Cyclic graph Let π ∈ Φ be a feasible solution, and
H1 = (V 1,E 1) the first component, i.e., a graph representing
the order of operations execution on machines for the first MTS
(description of the graph is given in Section 2.1).

By Hl(π)= (V l ,E l) (l = 2,3, . . . ,η) we denote a graph rep-
resenting the order of operations execution for l-th MTS. The
set of vertices of this graph

V l = {v+(l −1) ·o : v ∈ V 1}. (12)

A pair of vertices from the set V l is an arc

(u,v) ∈ E 1 ⇐⇒ (u+(l −1) ·o,v+(l −1) ·o) ∈ E l . (13)

Graph Hl(π) will be called l-th component. Undeniably,
H1(π) is isomorphic with each graph Hl(π), i = 2,3, . . .η .

The set of vertices of graph Hl(π)

A l = {v ∈ V l : v = π j(1)+(l−1) ·o, j = 1,2, . . . ,m}, (14)

comprises the first operations and the set

Bl = {u∈V l : u= π j(n j)+(l−1) ·o, j = 1,2, . . . ,m}, (15)

the last operations of tasks performed by the individual ma-
chines in the l-th MTS. Undoubtedly, |A l | = |Bl | = m, l =
1, ...,η .

For a fixed permutation π ∈Φ we consider the η first MTSs.
We assign them a graph G⊕(π) = (V ⊕,E ⊕(π)), called cyclic
graph, which is the sum of η first consecutive components,
namely

G⊕(π) = H1(π)⊕H2(π)⊕, . . . ,⊕Hη(π), (16)

whereby the set of vertices

V ⊕ = V 1 ∪V 2∪, . . . ,∪V η ,

and set of arcs

E ⊕ = E 1 ∪E 2∪, . . . ,∪E η ∪W ,

where W is a set of arcs between successive components. They
combine the last operation performed on the machine in a cer-
tain component with the first operation carried out on the same
machine in the next component, namely

W = {(u,v) : u ∈ Bi,v ∈ A i+1, µu = µv, i = 1,2, . . . ,m}.
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1. It corresponds to the first 
operation of a certain task in the first MTS. From the definition 
of graph G©(π), the vertex al = a + (l ¡ 1) ¢ o corresponds to 
the same operation, but in the l-th component. By Ll(a, al) we 
denote the length of the longest path in the graph G©(π) from 
vertex a to the vertex al, l = 2, 3, …, η.

The matrix L is defined with n columns and m rows (for 
simplicity indexed by numbers 2, 3, …, η), whose element

	 λa, l = Ll(a, al)/(l ¡ 1), a 2 
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3. Cyclic flexible job shop problem
In the cyclic production system, a fixed set of tasks called MTS
(minimal task set, see minimal part set in Brucker and Kamp-
meyer [9]) is performed repeatedly in the production cycles.
MTSs are carried out directly one after another in a cyclic
manner. We assume that in each of the MTSs on each ma-
chine operations are performed in the same order. Therefore,
in each cyclic schedule, the order of operations may be repre-
sented by constructing a m-tuple of permutations of operations
on individual machines in the first MTS. The cyclic nature of
the process is subject to the following constraints:

(e) each operation is performed sequentially (in consecutive
MTSs) after the cycle time completion.

It was assumed that in each MTS the operations executed on
machines are performed in the same order. For a given solution
(m-tuple) π ∈ Φ (Φ – set of FJS problem feasible solutions),
let S k = (Sk

1,S
k
2, . . . ,S

k
o) be a sequence of starting moments for

execution of operations in the k-th MTS, where Sk
i denotes the

moment of execution of an operation i on machine µi in k-th
cycle (MTS). We assumed that the time schedule (i.e. opera-
tions execution in subsequent MTS) is cyclic. This means that
there is a fixed T (π) (period) such that

Sk+1
π(i) = Sk

π(i) +T (π), i = 1, ...,o, k = 1,2, ... (5)

The above presented equality is the realization of the con-
straint (e).

The size of T (π) depends obviously on the solution π and is
called cycle time. The minimum value of T (π), for a fixed or-
der of operations on machines π will be called minimum cycle
time and denoted by T ◦(π). Because the order of operations
execution for each MTS is the same, therefore it is enough
to designate the starting moments of execution of operations
S1,S2, . . . ,So for the first MTS and make the shift by the size
of T (π). Therefore,

Sk
π(i) = Sπ(i) + (k−1) ·T (π) (6)

is the starting time of an operation i ∈ O in k-th cycle (i.e. in
k-th MTS), k = 1,2, . . . .

Minimum cycle time T ◦(π), for a fixed order of execution
of tasks π, can be determined by solving the following linear
programming task: determine

T ◦(π) = min{T}, (7)

s.t.:
Sk

π(i) + pπ(i) ≤ Sk
π(i+1), (8)

i = l j−1 +1, . . . , l j−1 +o j −1, j = 1, ...,n, k = 1,2, . . . ,

Sk
πl( j) + pπl( j) ≤ Sk

πl( j+1), (9)

l = 1, ...,m, j = 1, ...,nl −1, k = 1,2, . . . ,

Sk
πl(nl)

+ pπl(nl) ≤ Sk
πl(1)

+T, l = 1, ...,m, k = 1,2, . . . , (10)

Sk
π(i) ≥ 0, i = 1, ...,o, k = 1,2, . . . . (11)

In this paper we consider the problem of designation of the
optimal cycle time T ∗, which comes to determine such a solu-
tion π∗, for which

T ∗ = T ◦(π∗) = min{T ◦(π) : π ∈ Φ}.

In short this problem will be denoted by CFJS (Cyclic Flexible
Job Shop).

4. Determination of minimum cycle time
In this chapter, for a given order of operations execution on the
machines (an element of the set Φ), we present the new method
of determination the minimum cycle time in the flexible job
shop problem. This method is based on a graph representing
the first (m+1) MTSs. In the following part, for simplification
of the notation it was assumed that η = m+1.

4.1. Cyclic graph Let π ∈ Φ be a feasible solution, and
H1 = (V 1,E 1) the first component, i.e., a graph representing
the order of operations execution on machines for the first MTS
(description of the graph is given in Section 2.1).

By Hl(π)= (V l ,E l) (l = 2,3, . . . ,η) we denote a graph rep-
resenting the order of operations execution for l-th MTS. The
set of vertices of this graph

V l = {v+(l −1) ·o : v ∈ V 1}. (12)

A pair of vertices from the set V l is an arc

(u,v) ∈ E 1 ⇐⇒ (u+(l −1) ·o,v+(l −1) ·o) ∈ E l . (13)

Graph Hl(π) will be called l-th component. Undeniably,
H1(π) is isomorphic with each graph Hl(π), i = 2,3, . . .η .

The set of vertices of graph Hl(π)

A l = {v ∈ V l : v = π j(1)+(l−1) ·o, j = 1,2, . . . ,m}, (14)

comprises the first operations and the set

Bl = {u∈V l : u= π j(n j)+(l−1) ·o, j = 1,2, . . . ,m}, (15)

the last operations of tasks performed by the individual ma-
chines in the l-th MTS. Undoubtedly, |A l | = |Bl | = m, l =
1, ...,η .

For a fixed permutation π ∈Φ we consider the η first MTSs.
We assign them a graph G⊕(π) = (V ⊕,E ⊕(π)), called cyclic
graph, which is the sum of η first consecutive components,
namely

G⊕(π) = H1(π)⊕H2(π)⊕, . . . ,⊕Hη(π), (16)

whereby the set of vertices

V ⊕ = V 1 ∪V 2∪, . . . ,∪V η ,

and set of arcs

E ⊕ = E 1 ∪E 2∪, . . . ,∪E η ∪W ,

where W is a set of arcs between successive components. They
combine the last operation performed on the machine in a cer-
tain component with the first operation carried out on the same
machine in the next component, namely

W = {(u,v) : u ∈ Bi,v ∈ A i+1, µu = µv, i = 1,2, . . . ,m}.

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

1, l = 2, 3, …, η.� (17)

Then, let

	 Λ¤ =  max
v 2 

Minimal cycle time determination and golf neighborhood . . .

3. Cyclic flexible job shop problem
In the cyclic production system, a fixed set of tasks called MTS
(minimal task set, see minimal part set in Brucker and Kamp-
meyer [9]) is performed repeatedly in the production cycles.
MTSs are carried out directly one after another in a cyclic
manner. We assume that in each of the MTSs on each ma-
chine operations are performed in the same order. Therefore,
in each cyclic schedule, the order of operations may be repre-
sented by constructing a m-tuple of permutations of operations
on individual machines in the first MTS. The cyclic nature of
the process is subject to the following constraints:

(e) each operation is performed sequentially (in consecutive
MTSs) after the cycle time completion.

It was assumed that in each MTS the operations executed on
machines are performed in the same order. For a given solution
(m-tuple) π ∈ Φ (Φ – set of FJS problem feasible solutions),
let S k = (Sk

1,S
k
2, . . . ,S

k
o) be a sequence of starting moments for

execution of operations in the k-th MTS, where Sk
i denotes the

moment of execution of an operation i on machine µi in k-th
cycle (MTS). We assumed that the time schedule (i.e. opera-
tions execution in subsequent MTS) is cyclic. This means that
there is a fixed T (π) (period) such that

Sk+1
π(i) = Sk

π(i) +T (π), i = 1, ...,o, k = 1,2, ... (5)

The above presented equality is the realization of the con-
straint (e).

The size of T (π) depends obviously on the solution π and is
called cycle time. The minimum value of T (π), for a fixed or-
der of operations on machines π will be called minimum cycle
time and denoted by T ◦(π). Because the order of operations
execution for each MTS is the same, therefore it is enough
to designate the starting moments of execution of operations
S1,S2, . . . ,So for the first MTS and make the shift by the size
of T (π). Therefore,

Sk
π(i) = Sπ(i) + (k−1) ·T (π) (6)

is the starting time of an operation i ∈ O in k-th cycle (i.e. in
k-th MTS), k = 1,2, . . . .

Minimum cycle time T ◦(π), for a fixed order of execution
of tasks π, can be determined by solving the following linear
programming task: determine

T ◦(π) = min{T}, (7)

s.t.:
Sk

π(i) + pπ(i) ≤ Sk
π(i+1), (8)

i = l j−1 +1, . . . , l j−1 +o j −1, j = 1, ...,n, k = 1,2, . . . ,

Sk
πl( j) + pπl( j) ≤ Sk

πl( j+1), (9)

l = 1, ...,m, j = 1, ...,nl −1, k = 1,2, . . . ,

Sk
πl(nl)

+ pπl(nl) ≤ Sk
πl(1)

+T, l = 1, ...,m, k = 1,2, . . . , (10)

Sk
π(i) ≥ 0, i = 1, ...,o, k = 1,2, . . . . (11)

In this paper we consider the problem of designation of the
optimal cycle time T ∗, which comes to determine such a solu-
tion π∗, for which

T ∗ = T ◦(π∗) = min{T ◦(π) : π ∈ Φ}.

In short this problem will be denoted by CFJS (Cyclic Flexible
Job Shop).

4. Determination of minimum cycle time
In this chapter, for a given order of operations execution on the
machines (an element of the set Φ), we present the new method
of determination the minimum cycle time in the flexible job
shop problem. This method is based on a graph representing
the first (m+1) MTSs. In the following part, for simplification
of the notation it was assumed that η = m+1.

4.1. Cyclic graph Let π ∈ Φ be a feasible solution, and
H1 = (V 1,E 1) the first component, i.e., a graph representing
the order of operations execution on machines for the first MTS
(description of the graph is given in Section 2.1).

By Hl(π)= (V l ,E l) (l = 2,3, . . . ,η) we denote a graph rep-
resenting the order of operations execution for l-th MTS. The
set of vertices of this graph

V l = {v+(l −1) ·o : v ∈ V 1}. (12)

A pair of vertices from the set V l is an arc

(u,v) ∈ E 1 ⇐⇒ (u+(l −1) ·o,v+(l −1) ·o) ∈ E l . (13)

Graph Hl(π) will be called l-th component. Undeniably,
H1(π) is isomorphic with each graph Hl(π), i = 2,3, . . .η .

The set of vertices of graph Hl(π)

A l = {v ∈ V l : v = π j(1)+(l−1) ·o, j = 1,2, . . . ,m}, (14)

comprises the first operations and the set

Bl = {u∈V l : u= π j(n j)+(l−1) ·o, j = 1,2, . . . ,m}, (15)

the last operations of tasks performed by the individual ma-
chines in the l-th MTS. Undoubtedly, |A l | = |Bl | = m, l =
1, ...,η .

For a fixed permutation π ∈Φ we consider the η first MTSs.
We assign them a graph G⊕(π) = (V ⊕,E ⊕(π)), called cyclic
graph, which is the sum of η first consecutive components,
namely

G⊕(π) = H1(π)⊕H2(π)⊕, . . . ,⊕Hη(π), (16)

whereby the set of vertices

V ⊕ = V 1 ∪V 2∪, . . . ,∪V η ,

and set of arcs

E ⊕ = E 1 ∪E 2∪, . . . ,∪E η ∪W ,

where W is a set of arcs between successive components. They
combine the last operation performed on the machine in a cer-
tain component with the first operation carried out on the same
machine in the next component, namely

W = {(u,v) : u ∈ Bi,v ∈ A i+1, µu = µv, i = 1,2, . . . ,m}.
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1
max

2 ∙ l ∙ η
{λv, l},� (18)

be the maximum element of the matrix L. Λ¤ = Lk(a, ak)/(k ¡ 1),
then the path Pk(a, ak) with length Lk(a, ak) is called a critical 
path in a cyclic graph G©(π). Below two theorems on the rela-
tionship between the value of Λ¤ and the minimum cycle time 
T°(π) will be proven.

Theorem 1. If π 2 Φ is a feasible sequence of operations, then 
the minimum cycle time is T°(π) ¸ Λ¤.

Proof. Let us assume indirectly that for a certain feasible solu-
tion π 2 Φ, T°(π) ¸ Λ¤, where Λ¤ the value determined in (18) 
and T°(π) – minimum cycle time.

For definiteness, it is assumed that the maximum in (18) 
was achieved for some vertex a 2 

Minimal cycle time determination and golf neighborhood . . .

3. Cyclic flexible job shop problem
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let S k = (Sk

1,S
k
2, . . . ,S

k
o) be a sequence of starting moments for

execution of operations in the k-th MTS, where Sk
i denotes the
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Sk+1
π(i) = Sk

π(i) +T (π), i = 1, ...,o, k = 1,2, ... (5)
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Sk
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s.t.:
Sk

π(i) + pπ(i) ≤ Sk
π(i+1), (8)

i = l j−1 +1, . . . , l j−1 +o j −1, j = 1, ...,n, k = 1,2, . . . ,

Sk
πl( j) + pπl( j) ≤ Sk

πl( j+1), (9)

l = 1, ...,m, j = 1, ...,nl −1, k = 1,2, . . . ,

Sk
πl(nl)

+ pπl(nl) ≤ Sk
πl(1)

+T, l = 1, ...,m, k = 1,2, . . . , (10)

Sk
π(i) ≥ 0, i = 1, ...,o, k = 1,2, . . . . (11)

In this paper we consider the problem of designation of the
optimal cycle time T ∗, which comes to determine such a solu-
tion π∗, for which

T ∗ = T ◦(π∗) = min{T ◦(π) : π ∈ Φ}.

In short this problem will be denoted by CFJS (Cyclic Flexible
Job Shop).

4. Determination of minimum cycle time
In this chapter, for a given order of operations execution on the
machines (an element of the set Φ), we present the new method
of determination the minimum cycle time in the flexible job
shop problem. This method is based on a graph representing
the first (m+1) MTSs. In the following part, for simplification
of the notation it was assumed that η = m+1.

4.1. Cyclic graph Let π ∈ Φ be a feasible solution, and
H1 = (V 1,E 1) the first component, i.e., a graph representing
the order of operations execution on machines for the first MTS
(description of the graph is given in Section 2.1).

By Hl(π)= (V l ,E l) (l = 2,3, . . . ,η) we denote a graph rep-
resenting the order of operations execution for l-th MTS. The
set of vertices of this graph

V l = {v+(l −1) ·o : v ∈ V 1}. (12)

A pair of vertices from the set V l is an arc

(u,v) ∈ E 1 ⇐⇒ (u+(l −1) ·o,v+(l −1) ·o) ∈ E l . (13)

Graph Hl(π) will be called l-th component. Undeniably,
H1(π) is isomorphic with each graph Hl(π), i = 2,3, . . .η .

The set of vertices of graph Hl(π)

A l = {v ∈ V l : v = π j(1)+(l−1) ·o, j = 1,2, . . . ,m}, (14)

comprises the first operations and the set

Bl = {u∈V l : u= π j(n j)+(l−1) ·o, j = 1,2, . . . ,m}, (15)

the last operations of tasks performed by the individual ma-
chines in the l-th MTS. Undoubtedly, |A l | = |Bl | = m, l =
1, ...,η .

For a fixed permutation π ∈Φ we consider the η first MTSs.
We assign them a graph G⊕(π) = (V ⊕,E ⊕(π)), called cyclic
graph, which is the sum of η first consecutive components,
namely

G⊕(π) = H1(π)⊕H2(π)⊕, . . . ,⊕Hη(π), (16)

whereby the set of vertices

V ⊕ = V 1 ∪V 2∪, . . . ,∪V η ,

and set of arcs

E ⊕ = E 1 ∪E 2∪, . . . ,∪E η ∪W ,

where W is a set of arcs between successive components. They
combine the last operation performed on the machine in a cer-
tain component with the first operation carried out on the same
machine in the next component, namely

W = {(u,v) : u ∈ Bi,v ∈ A i+1, µu = µv, i = 1,2, . . . ,m}.
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1 and k-th component of 
the graph G©(π), i.e. the maximum element of the matrix L,

	 Λ¤ = λa, k = Lk(a, ak)/(k ¡ 1),� (19)

where Lk(a, ak) is the length of the longest path in the graph 
G©(π) from vertex a to vertex ak.

It follows from the definition of the cycle time that if Sa 
(a 2 
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W. BOŻEJKO1∗, J. PEMPERA1, and M. WODECKI2

1 Department of Automatics, Mechatronics and Control Systems
Faculty of Electronics, Wrocław University of Science and Technology
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1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for

1

) is the starting moment of execution of operations a in 
the first MTS, then its starting moment in i-th MTS (i.e. op-
eration ai) is

	 Sai = Sa + (i ¡ 1) ¢ T °(π), i = 2, 3, …, η .� (20)

In particular (for i = k), from the starting moment of execu-
tion of a operation until the starting of operation ak there must 
elapse exactly

	 Sak ¡ Sa = (k ¡ 1) ¢ T °(π)� (21)

time units (see Fig. 1).
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It follows from definitions (17) and (18) that in the graph 
G©(π) there is a path from vertex a to vertex ak of length 
Lk(a, ak) = Λ¤ ¢ (k ¡ 1) (Fig. 1). Using the indirect assumption 
Λ¤  > T°(π), we obtain the inequality

	 Lk(a, ak) = Λ¤ ¢ (k ¡ 1) > T °(π) ¢ (k ¡ 1).� (22)

Therefore, (from (21) and (22)) in the graph G©(π) there is 
a path from vertex a to vertex ak of length

	 Lk(a, ak) > T °(π) ¢ (k ¡ 1) = Sak ¡ Sa .� (23)

It follows directly from the construction of graph G©(π) and 
constraints (8‒10) that before starting the operation a in k-th 
MTS (vertex ak) all operations lying on the road between the 
vertices a and ak  must be executed. It follows from inequality 
(23) that the time that must elapse between the starting moment 
of operations a in the first and k-th MTS (i.e. operation ak) must 
be greater than Sak ¡ Sa , which leads to a contradiction with 
equality (21), thus with the indirect assumption (Λ¤  > T°(π))
and completes the proof of the theorem.� □

Theorem 2. If π 2 Φ is a feasible solution to CFJS problem, 
then the minimum cycle time T°(π) ∙ Λ¤.

Proof. We will show that the value Λ¤ defined in (18) is a cer-
tain cycle time for permutation π 2 Φ.

Let T °(π) be the minimum cycle time for permutation, 
π 2 Φ. Thus, there is a sequence of starting moments of op-
eration execution in the first MTS. Therefore, the starting 

moments of operation execution in the consecutive MTSs is 
determined by shifting Si, i 2 
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1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:

∗e-mail: wojciech.bozejko@pwr.edu.pl

(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for

1

 by multiplication of the cycle 
time T°(π).

For any operation a 2 
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Abstract. In the work there was a problem of scheduling operations in the cyclic flexible job shop system considered. There was also
presented the new, very fast method of determining the cycle time for any order of tasks on machines. It is based on the analysis of the paths
in the graph representing the examined problem. The theorems concerning specific properties of the graph were proven. They have been
used in the construction of the heuristic algorithm searching the solutions space by using the so-called golf neighborhood, whose generation
is similar to the game of golf, which helps to intensify and diversify calculations. The conducted computational experiments fully confirmed
the effectiveness of the proposed method. The proposed methods and properties can be adapted and used in the construction of local search
algorithms for solving many other optimization problems.

Key words: cyclic scheduling, metaheuristic, discrete optimization

List of main symbols
al – l-th copy of operation a in l-th MTS

Ca – operation a completion time in 1-th MTS
G⊕(π) – graph for solution π of cyclic job shop

H(π) – graph for solution π of job shop problem
J – set of tasks
M – set of machines

MTS – Minimal Task Set
O – set of operations
π – solution (m-tuple of permutations)
πi – permutation of operations on i-th machine
Sa – operation a starting time in 1-th MTS
Sl

a – operation a starting time in l-the MTS
T (π) – cycle time of solution π

T ◦(π) – minimal cycle time of solution π
T ∗ – optimal cycle time

1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
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velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for

1

 executed in the first MTS, the 
starting moments of operation execution in the consecutive 
MTS are defined in the following manner:

	
Sa

j = Sa + ( j ¡ 1) ¢ Λ¤, 
j = 2, 3, …, η, a = 1, 2, …, o .

� (24)

We will prove that the above defined execution starting times 
and the value T = Λ¤ meet the constraints (8‒11). Therefore, 
Λ¤ is a certain (feasible) cycle time, thus ultimately T°(π) ∙ Λ¤.

Let us assume indirectly, that operation al in l-th MTS is 
the first (of the smallest number in a graph G©), whose starting 
moment designated on the basis of (24) does not meet the con-
straint (8) or (9) (it is easy to note with the use of (24), that in 
this case the condition (10) is fulfilled). If the operation a is the 
equivalent of al in the first MTS, i.e. al = a + (l ¡ 1) ¢ o, then 
on the basis of (24) the starting moment of execution of this 
operation (see Fig. 2)

	 S l
al = Sa

1 + (l ¡ 1) ¢ Λ¤.� (25)

We assumed implicitly that the moment does not comply with 
the constraints (8) or (9) which means that in the moment S l

al:
	 (i)	� the machine, on which the operation al is to be performed, 

is not free (i.e. as it is still executing the preceding al 
operation), or

Fig. 1. The starting moments of execution of a operations in consecutive MTSs

Fig. 2. The maximum path and the starting moments of operation execution
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	 (ii)	� operation preceding al, in the technological line, has not 
been completed.

We are considering two cases (including (i) and (ii) at the same 
time).

Case 1. The operation a and al are the first operations exe-
cuted on the machine respectively in the first and l-th MTS. Let  
Ll(a, al) be the length of the longest path in a graph G© from 
vertex a to al. It follows from the definition of the longest path 
that Sa  + (l ¡ 1) ¢ Ll(a, a0)/(l ¡ 1) is the earliest moment, in 
which it is possible to start executing of operation al (all oper-
ation preceding al have been completed). Using the definition 
(18) it can be assumed, that the maximum was reached for op-
eration b 2 
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W. BOŻEJKO1∗, J. PEMPERA1, and M. WODECKI2

1 Department of Automatics, Mechatronics and Control Systems
Faculty of Electronics, Wrocław University of Science and Technology
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List of main symbols
al – l-th copy of operation a in l-th MTS

Ca – operation a completion time in 1-th MTS
G⊕(π) – graph for solution π of cyclic job shop

H(π) – graph for solution π of job shop problem
J – set of tasks
M – set of machines

MTS – Minimal Task Set
O – set of operations
π – solution (m-tuple of permutations)
πi – permutation of operations on i-th machine
Sa – operation a starting time in 1-th MTS
Sl

a – operation a starting time in l-the MTS
T (π) – cycle time of solution π

T ◦(π) – minimal cycle time of solution π
T ∗ – optimal cycle time

1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:

∗e-mail: wojciech.bozejko@pwr.edu.pl

(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for

1

 and k-th MTS, i.e. Λ¤ = Lk(b, bk)/(k ¡ 1). There-
fore, the moment (25) of starting the execution of operation al is

S l
al = Sa  + (l ¡ 1) ¢ Λ¤ = Sa  + (l ¡ 1) ¢ Lk(b, bk)/(k ¡ 1) ¸  

S l
al ¸ Sa  + (l ¡ 1) ¢ Ll(a, al)/(l ¡ 1) = Sa  + Ll(a, al).

The last inequality follows from the fact that Λ¤ = Lk(b, bk)/(k ¡ 1) 
as the maximum element in the matrix L fulfils the inequality
Lk(b, bk)/(k ¡ 1) ¸ Ll(a, al)/(l ¡ 1).

We have proved that S l
al ¸ Sa  + Ll(a, al), therefore execu-

tion of operation al can be started in the moment S l
al designated 

from (25), as all the predecessors of al (including the ones 
on the critical path) have already been executed. The above 
description stays in contradiction with the adopted implicit as-
sumption that the task al, cannot be started in the moment S l

al 
since there are cases (i) or (ii).

Case 2. Operations a and al are not the first operations exe-
cuted on machines in the first and l-th MTS respectively. Let a1 
be the first operation executed on machine on which operation 
a is executed and al

1 its equivalent in l-th MTS (undoubtedly 
al > al

1).
The difference between the starting moments of operations 

a1 and a in the first MTS is the same as the operation al
1 and al 

in l-th MTS (denoted by x in Fig. 3).
In addition, the difference between the starting moments 

of operations a and al is the same as between a1 and al
1 ( y in 

Fig. 3). Thus, if the commencement of operations in the first 
MTS meets all the feasible constraints, then also the commence-
ment moments of these operations in the l-th MTS meet these 
constraints. In this way we have proved the theorem.� □

It follows from Theorems 1 and 2 that for a fixed opera-
tions order π 2 Φ (i.e. the sequence of operations execution 
on machines in the first MTS) the value Λ¤(π) (designated in 
(18)) is the minimum cycle time, i.e. T°(π) = Λ¤(π). Therefore, 
to reduce the cycle time, that is T°(π), there must be a solution 
β 2 Φ, generated from π, for which the value Λ¤(β) will be 
smaller than Λ¤(π). So, if Λ¤(π) = Lk(a, ak)/(k ¡ 1), then the nec-
essary condition (reducing the value of Λ¤(π)) is shortening 
the length of the critical path Lk(a, ak) in the graph G©(π). 
Generating β will consist of changing the order of performing 
certain operations on the machine or transferring the opera-
tions to another machine. In the further part of this section 
we present the theorem from which it results the fact that, 
changing the order of certain operations on the machine does 
not reduce the length of the critical path, and thus the value 
of Λ¤(π).

Let Pk(a, ak) (a 2 
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3. Cyclic flexible job shop problem
In the cyclic production system, a fixed set of tasks called MTS
(minimal task set, see minimal part set in Brucker and Kamp-
meyer [9]) is performed repeatedly in the production cycles.
MTSs are carried out directly one after another in a cyclic
manner. We assume that in each of the MTSs on each ma-
chine operations are performed in the same order. Therefore,
in each cyclic schedule, the order of operations may be repre-
sented by constructing a m-tuple of permutations of operations
on individual machines in the first MTS. The cyclic nature of
the process is subject to the following constraints:

(e) each operation is performed sequentially (in consecutive
MTSs) after the cycle time completion.

It was assumed that in each MTS the operations executed on
machines are performed in the same order. For a given solution
(m-tuple) π ∈ Φ (Φ – set of FJS problem feasible solutions),
let S k = (Sk

1,S
k
2, . . . ,S

k
o) be a sequence of starting moments for

execution of operations in the k-th MTS, where Sk
i denotes the

moment of execution of an operation i on machine µi in k-th
cycle (MTS). We assumed that the time schedule (i.e. opera-
tions execution in subsequent MTS) is cyclic. This means that
there is a fixed T (π) (period) such that

Sk+1
π(i) = Sk

π(i) +T (π), i = 1, ...,o, k = 1,2, ... (5)

The above presented equality is the realization of the con-
straint (e).

The size of T (π) depends obviously on the solution π and is
called cycle time. The minimum value of T (π), for a fixed or-
der of operations on machines π will be called minimum cycle
time and denoted by T ◦(π). Because the order of operations
execution for each MTS is the same, therefore it is enough
to designate the starting moments of execution of operations
S1,S2, . . . ,So for the first MTS and make the shift by the size
of T (π). Therefore,

Sk
π(i) = Sπ(i) + (k−1) ·T (π) (6)

is the starting time of an operation i ∈ O in k-th cycle (i.e. in
k-th MTS), k = 1,2, . . . .

Minimum cycle time T ◦(π), for a fixed order of execution
of tasks π, can be determined by solving the following linear
programming task: determine

T ◦(π) = min{T}, (7)

s.t.:
Sk

π(i) + pπ(i) ≤ Sk
π(i+1), (8)

i = l j−1 +1, . . . , l j−1 +o j −1, j = 1, ...,n, k = 1,2, . . . ,

Sk
πl( j) + pπl( j) ≤ Sk

πl( j+1), (9)

l = 1, ...,m, j = 1, ...,nl −1, k = 1,2, . . . ,

Sk
πl(nl)

+ pπl(nl) ≤ Sk
πl(1)

+T, l = 1, ...,m, k = 1,2, . . . , (10)

Sk
π(i) ≥ 0, i = 1, ...,o, k = 1,2, . . . . (11)

In this paper we consider the problem of designation of the
optimal cycle time T ∗, which comes to determine such a solu-
tion π∗, for which

T ∗ = T ◦(π∗) = min{T ◦(π) : π ∈ Φ}.

In short this problem will be denoted by CFJS (Cyclic Flexible
Job Shop).

4. Determination of minimum cycle time
In this chapter, for a given order of operations execution on the
machines (an element of the set Φ), we present the new method
of determination the minimum cycle time in the flexible job
shop problem. This method is based on a graph representing
the first (m+1) MTSs. In the following part, for simplification
of the notation it was assumed that η = m+1.

4.1. Cyclic graph Let π ∈ Φ be a feasible solution, and
H1 = (V 1,E 1) the first component, i.e., a graph representing
the order of operations execution on machines for the first MTS
(description of the graph is given in Section 2.1).

By Hl(π)= (V l ,E l) (l = 2,3, . . . ,η) we denote a graph rep-
resenting the order of operations execution for l-th MTS. The
set of vertices of this graph

V l = {v+(l −1) ·o : v ∈ V 1}. (12)

A pair of vertices from the set V l is an arc

(u,v) ∈ E 1 ⇐⇒ (u+(l −1) ·o,v+(l −1) ·o) ∈ E l . (13)

Graph Hl(π) will be called l-th component. Undeniably,
H1(π) is isomorphic with each graph Hl(π), i = 2,3, . . .η .

The set of vertices of graph Hl(π)

A l = {v ∈ V l : v = π j(1)+(l−1) ·o, j = 1,2, . . . ,m}, (14)

comprises the first operations and the set

Bl = {u∈V l : u= π j(n j)+(l−1) ·o, j = 1,2, . . . ,m}, (15)

the last operations of tasks performed by the individual ma-
chines in the l-th MTS. Undoubtedly, |A l | = |Bl | = m, l =
1, ...,η .

For a fixed permutation π ∈Φ we consider the η first MTSs.
We assign them a graph G⊕(π) = (V ⊕,E ⊕(π)), called cyclic
graph, which is the sum of η first consecutive components,
namely

G⊕(π) = H1(π)⊕H2(π)⊕, . . . ,⊕Hη(π), (16)

whereby the set of vertices

V ⊕ = V 1 ∪V 2∪, . . . ,∪V η ,

and set of arcs

E ⊕ = E 1 ∪E 2∪, . . . ,∪E η ∪W ,

where W is a set of arcs between successive components. They
combine the last operation performed on the machine in a cer-
tain component with the first operation carried out on the same
machine in the next component, namely

W = {(u,v) : u ∈ Bi,v ∈ A i+1, µu = µv, i = 1,2, . . . ,m}.
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1, ak = a + (k ¡ 1) ¢ o, 2 ∙ k ∙ η) be 
the critical path in the graph G©(π). The maximum subse-
quence of occurring directly one after another operations on 
a critical path executed on the same machine will be called 
a block. In the block one can distinguish the first and the last 
operation, whereas all the other operations will be called in-
ternal ones. Below there is a theorem which is an extension to 
the cyclic problem the so called ‘block elimination properties’. 
They are successfully used in many algorithms for solving 
scheduling problems (e.g. Nowicki and Smutnicki [18], Wo-
decki [19]).

Theorem 3. If permutation β was generated from π 2 Φ by 
changing the order of certain internal operations of the block, 
then the length of the cycle time T°(β) ¸ T°(π).

Proof. The theorem is proved just in the same way as in case 
of the block theorems for a wide class of scheduling problems 
with the criterion Cmax, in particular for f lexible job shop 
problem [4].� □

Fig. 3. The beginning moments of operations in the first and l-th MTS (arcs represent a technological line)
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5.	 Golf algorithm

In this part we shortly present a new heuristic method of 
searching the space of feasible solutions. Its basic element is 
the neighborhood, i.e. the set of solutions generated by a simple 
modification (moves) in the current solution. The idea of de-
termining the neigborhood is based on the game of golf. This 
game, in large simplification, relies in carring out two types of 
strokes (see Fig. 4):
1.	strong, transferring the ball to the further area of the golf 

course, and
2.	weak, whose aim is a direct transfer of the ball into the hole.

The game takes place in several rounds. The player uses some 
knowledge (e.g. gets to know the topography of the playing 
area) what enables him to improve the efficiency of the game). 
Based on this idea we introduce two types of moves trans-
forming the elements of the solution space

	 Γ, γ : Φ ! Φ.� (26)

The first of the moves Γ, corresponding to the strong stroke in 
a game of golf, generates from π 2 Φ the solution Γ(π) 2 Φ 
significantly different from it, causing diversification of ex-
ploration. In case of move of γ , type the solution γ (π) 2 Φ 
is only little different from π (thus it corresponds to the weak 
stroke) and causes intensification of exploration. By applying 
these moves it is possible to determine, depending on the needs, 
neighborhoods which vary greatly.

We are considering the problem of minimizing the F func-
tion on the set Φ. Let S and S be respectively the set of strong 
and weak moves. If the transformation τ(π) = γ(Γ(π)), where 
Γ 2 S, γ  2 S, π 2 Φ, we can say that τ is a complex move 
and we can put it down as τ = γ  ± Γ. Then the set
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THEOREM 3. If permutation β was generated from π ∈ Φ
by changing the order of certain internal operations of the
block, then the length of the cycle time T ◦(β )≥ T ◦(π).

Proof. The theorem is proved just in the same way as in case
of the block theorems for a wide class of scheduling problems
with the criterion Cmax, in particular for flexible job shop prob-
lem [4].

5. Golf algorithm
In this part we shortly present a new heuristic method of
searching the space of feasible solutions. Its basic element
is the neighborhood, i.e. the set of solutions generated by a
simple modification (moves) in the current solution. The idea
of determining the neigborhood is based on the game of golf.
This game, in large simplification, relies in carring out two
types of strokes (see fig. 4):

1. strong, transferring the ball to the further area of the golf
course, and

2. weak, whose aim is a direct transfer of the ball into the hole.

The game takes place in several rounds. The player uses some
knowledge (e.g. gets to know the topography of the playing
area) what enables him to improve the efficiency of the game).
Based on this idea we introduce two types of moves transform-

Fig. 4: Strokes in the game of golf.

ing the elements of the solution space

Γ,γ : Φ → Φ. (26)

The first of the moves Γ, corresponding to the strong stroke in
a game of golf, generates from π ∈ Φ the solution Γ(π) ∈ Φ
significantly different from it, causing diversification of explo-
ration. In case of move of γ , type the solution γ(π) ∈ Φ is
only little different from π (thus it corresponds to the weak
stroke) and causes intensification of exploration. By apply-
ing these moves it is possible to determine, depending on the
needs, neighborhoods which vary greatly.

We are considering the problem of minimizing the F func-
tion on the set Φ. Let S�� i S� be respectively the set of strong
and weak moves. If the transformation τ(π) = γ(Γ(π)), where
Γ ∈ S��, γ ∈ S�, π ∈ Φ, we can say that τ is a complex move
and we can put it down as τ = γ ◦Γ. Then the set

N (π) = {τ(π) : τ = γ ◦Γ, Γ ∈ S��,γ ∈ S�, π ∈ Φ} (27)

is golf neighborhood of the element π ∈Φ (see also [2]). While
generating it we will use the 3, theorem, i.e. we can omit the

moves changing the order of tasks within the block. The neigh-
borhood will be used in the algorithm based on the local search
method.

In the description of the algorithm, the search history
memory MEM is limited in length and supported in the
principle of the queue of FIFO. The AT R(π) function returns
attributes of the solutions π . The algorithm terminates after
execution of Maxiter iterations.

Golf algorithm (AGF)
Let π ∈ Φ be any starting solution;
πbest ← π; MEM ← 0; iter ← 0;
repeat

Step 1: Generate golf neighborhood N (π)
of the solution π omitting the elements,
whose attributes are on the MEM list;

Step 2: Determine the element β ∗ ∈ N (π) Such that
F(β ∗) = min{F(δ ) : δ ∈ N (π)};

if F(β ∗)< F(πbest), then πbest ← β ∗;
Step 3: Substitute MEM ← MEM∪AT R(β );
iter ← iter+1;

until iter < Maxiter;

Implementation of the golf algorithm requires defining of:

1. ’weak’ and ’strong’ moves, as well as sets of these moves
used to generate the neighborhood

2. determination of attribute moves and the principles of creat-
ing and using the MEM memory (it should protect against
returning to previously viewed areas of the solution space).

6. Golf algorithm for CFJS problem
One of the most important elements of algorithms based on
the local search methods is the neighborhood. In case of task
scheduling problems for which solutions are represented by
permutations, the elements of the neighborhood are usually
generated by swapping or moving the elements in the permuta-
tion. In the considered problem of minimizing the cycle time,
solutions are arrangements of a permutation of operations on
individual machines.

Changing of the order of operations on any machine un-
doubtedly does not change the assignment of operations to ma-
chines. Therefore, it is necessary to introduce a mechanism of
reallocating the operations to machines. In the case of the golf
algorithm course, this change will be implemented by a strong
stroke. In contrast, weak stroke will cause the change in the
order of operations on a machine. Below there is an detailed
description of both moves.

Let π = (π1,π2, . . . ,πm) be a certain solution of the CJFS
problem. Therefore, on a machine Mi ∈ M there are executed
operations from the set O i in the order πi. We consider two
machines Mk,Ml from the same nest. While generating the
neighborhood of π we will use two types of moves:

1. Insert (in short i-move) ika,b the equivalent of the weak
stroke. This moves depicts the element πk(a), from position a
to position b in πk, generating permutation ika,b(π) = β (Mk ∈
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(π) = {τ(π) : τ = γ  ± Γ, Γ 2 S,
(π) =  γ  2 S, π 2 Φ}.

� (27)

is golf neighborhood of the element π 2 Φ (see also [2]). While 
generating it we will use the 3, theorem, i.e. we can omit the 
moves changing the order of tasks within the block. The neigh-
borhood will be used in the algorithm based on the local search 
method.

In the description of the algorithm, the search history 
memory MEM is limited in length and supported in the principle 
of the queue of FIFO. The ATR(π) function returns attributes 
of the solutions π. The algorithm terminates after execution of 
Maxiter iterations.

Golf algorithm (AGF)
Let π 2 Φ be any starting solution;
πbest   π; MEM   0; iter   0;
repeat

Step 1: Generate golf neighborhood 
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THEOREM 3. If permutation β was generated from π ∈ Φ
by changing the order of certain internal operations of the
block, then the length of the cycle time T ◦(β )≥ T ◦(π).

Proof. The theorem is proved just in the same way as in case
of the block theorems for a wide class of scheduling problems
with the criterion Cmax, in particular for flexible job shop prob-
lem [4].

5. Golf algorithm
In this part we shortly present a new heuristic method of
searching the space of feasible solutions. Its basic element
is the neighborhood, i.e. the set of solutions generated by a
simple modification (moves) in the current solution. The idea
of determining the neigborhood is based on the game of golf.
This game, in large simplification, relies in carring out two
types of strokes (see fig. 4):

1. strong, transferring the ball to the further area of the golf
course, and

2. weak, whose aim is a direct transfer of the ball into the hole.

The game takes place in several rounds. The player uses some
knowledge (e.g. gets to know the topography of the playing
area) what enables him to improve the efficiency of the game).
Based on this idea we introduce two types of moves transform-

Fig. 4: Strokes in the game of golf.

ing the elements of the solution space

Γ,γ : Φ → Φ. (26)

The first of the moves Γ, corresponding to the strong stroke in
a game of golf, generates from π ∈ Φ the solution Γ(π) ∈ Φ
significantly different from it, causing diversification of explo-
ration. In case of move of γ , type the solution γ(π) ∈ Φ is
only little different from π (thus it corresponds to the weak
stroke) and causes intensification of exploration. By apply-
ing these moves it is possible to determine, depending on the
needs, neighborhoods which vary greatly.

We are considering the problem of minimizing the F func-
tion on the set Φ. Let S�� i S� be respectively the set of strong
and weak moves. If the transformation τ(π) = γ(Γ(π)), where
Γ ∈ S��, γ ∈ S�, π ∈ Φ, we can say that τ is a complex move
and we can put it down as τ = γ ◦Γ. Then the set

N (π) = {τ(π) : τ = γ ◦Γ, Γ ∈ S��,γ ∈ S�, π ∈ Φ} (27)

is golf neighborhood of the element π ∈Φ (see also [2]). While
generating it we will use the 3, theorem, i.e. we can omit the

moves changing the order of tasks within the block. The neigh-
borhood will be used in the algorithm based on the local search
method.

In the description of the algorithm, the search history
memory MEM is limited in length and supported in the
principle of the queue of FIFO. The AT R(π) function returns
attributes of the solutions π . The algorithm terminates after
execution of Maxiter iterations.

Golf algorithm (AGF)
Let π ∈ Φ be any starting solution;
πbest ← π; MEM ← 0; iter ← 0;
repeat

Step 1: Generate golf neighborhood N (π)
of the solution π omitting the elements,
whose attributes are on the MEM list;

Step 2: Determine the element β ∗ ∈ N (π) Such that
F(β ∗) = min{F(δ ) : δ ∈ N (π)};

if F(β ∗)< F(πbest), then πbest ← β ∗;
Step 3: Substitute MEM ← MEM∪AT R(β );
iter ← iter+1;

until iter < Maxiter;

Implementation of the golf algorithm requires defining of:

1. ’weak’ and ’strong’ moves, as well as sets of these moves
used to generate the neighborhood

2. determination of attribute moves and the principles of creat-
ing and using the MEM memory (it should protect against
returning to previously viewed areas of the solution space).

6. Golf algorithm for CFJS problem
One of the most important elements of algorithms based on
the local search methods is the neighborhood. In case of task
scheduling problems for which solutions are represented by
permutations, the elements of the neighborhood are usually
generated by swapping or moving the elements in the permuta-
tion. In the considered problem of minimizing the cycle time,
solutions are arrangements of a permutation of operations on
individual machines.

Changing of the order of operations on any machine un-
doubtedly does not change the assignment of operations to ma-
chines. Therefore, it is necessary to introduce a mechanism of
reallocating the operations to machines. In the case of the golf
algorithm course, this change will be implemented by a strong
stroke. In contrast, weak stroke will cause the change in the
order of operations on a machine. Below there is an detailed
description of both moves.

Let π = (π1,π2, . . . ,πm) be a certain solution of the CJFS
problem. Therefore, on a machine Mi ∈ M there are executed
operations from the set O i in the order πi. We consider two
machines Mk,Ml from the same nest. While generating the
neighborhood of π we will use two types of moves:

1. Insert (in short i-move) ika,b the equivalent of the weak
stroke. This moves depicts the element πk(a), from position a
to position b in πk, generating permutation ika,b(π) = β (Mk ∈
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(π)

of the solution π omitting the elements,
whose attributes are on the MEM list;

Step 2: Determine the element β ¤ 2 
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THEOREM 3. If permutation β was generated from π ∈ Φ
by changing the order of certain internal operations of the
block, then the length of the cycle time T ◦(β )≥ T ◦(π).

Proof. The theorem is proved just in the same way as in case
of the block theorems for a wide class of scheduling problems
with the criterion Cmax, in particular for flexible job shop prob-
lem [4].

5. Golf algorithm
In this part we shortly present a new heuristic method of
searching the space of feasible solutions. Its basic element
is the neighborhood, i.e. the set of solutions generated by a
simple modification (moves) in the current solution. The idea
of determining the neigborhood is based on the game of golf.
This game, in large simplification, relies in carring out two
types of strokes (see fig. 4):

1. strong, transferring the ball to the further area of the golf
course, and

2. weak, whose aim is a direct transfer of the ball into the hole.

The game takes place in several rounds. The player uses some
knowledge (e.g. gets to know the topography of the playing
area) what enables him to improve the efficiency of the game).
Based on this idea we introduce two types of moves transform-

Fig. 4: Strokes in the game of golf.

ing the elements of the solution space

Γ,γ : Φ → Φ. (26)

The first of the moves Γ, corresponding to the strong stroke in
a game of golf, generates from π ∈ Φ the solution Γ(π) ∈ Φ
significantly different from it, causing diversification of explo-
ration. In case of move of γ , type the solution γ(π) ∈ Φ is
only little different from π (thus it corresponds to the weak
stroke) and causes intensification of exploration. By apply-
ing these moves it is possible to determine, depending on the
needs, neighborhoods which vary greatly.

We are considering the problem of minimizing the F func-
tion on the set Φ. Let S�� i S� be respectively the set of strong
and weak moves. If the transformation τ(π) = γ(Γ(π)), where
Γ ∈ S��, γ ∈ S�, π ∈ Φ, we can say that τ is a complex move
and we can put it down as τ = γ ◦Γ. Then the set

N (π) = {τ(π) : τ = γ ◦Γ, Γ ∈ S��,γ ∈ S�, π ∈ Φ} (27)

is golf neighborhood of the element π ∈Φ (see also [2]). While
generating it we will use the 3, theorem, i.e. we can omit the

moves changing the order of tasks within the block. The neigh-
borhood will be used in the algorithm based on the local search
method.

In the description of the algorithm, the search history
memory MEM is limited in length and supported in the
principle of the queue of FIFO. The AT R(π) function returns
attributes of the solutions π . The algorithm terminates after
execution of Maxiter iterations.

Golf algorithm (AGF)
Let π ∈ Φ be any starting solution;
πbest ← π; MEM ← 0; iter ← 0;
repeat

Step 1: Generate golf neighborhood N (π)
of the solution π omitting the elements,
whose attributes are on the MEM list;

Step 2: Determine the element β ∗ ∈ N (π) Such that
F(β ∗) = min{F(δ ) : δ ∈ N (π)};

if F(β ∗)< F(πbest), then πbest ← β ∗;
Step 3: Substitute MEM ← MEM∪AT R(β );
iter ← iter+1;

until iter < Maxiter;

Implementation of the golf algorithm requires defining of:

1. ’weak’ and ’strong’ moves, as well as sets of these moves
used to generate the neighborhood

2. determination of attribute moves and the principles of creat-
ing and using the MEM memory (it should protect against
returning to previously viewed areas of the solution space).

6. Golf algorithm for CFJS problem
One of the most important elements of algorithms based on
the local search methods is the neighborhood. In case of task
scheduling problems for which solutions are represented by
permutations, the elements of the neighborhood are usually
generated by swapping or moving the elements in the permuta-
tion. In the considered problem of minimizing the cycle time,
solutions are arrangements of a permutation of operations on
individual machines.

Changing of the order of operations on any machine un-
doubtedly does not change the assignment of operations to ma-
chines. Therefore, it is necessary to introduce a mechanism of
reallocating the operations to machines. In the case of the golf
algorithm course, this change will be implemented by a strong
stroke. In contrast, weak stroke will cause the change in the
order of operations on a machine. Below there is an detailed
description of both moves.

Let π = (π1,π2, . . . ,πm) be a certain solution of the CJFS
problem. Therefore, on a machine Mi ∈ M there are executed
operations from the set O i in the order πi. We consider two
machines Mk,Ml from the same nest. While generating the
neighborhood of π we will use two types of moves:

1. Insert (in short i-move) ika,b the equivalent of the weak
stroke. This moves depicts the element πk(a), from position a
to position b in πk, generating permutation ika,b(π) = β (Mk ∈
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reallocating the operations to machines. In the case of the golf 
algorithm course, this change will be implemented by a strong 
stroke. In contrast, weak stroke will cause the change in the 
order of operations on a machine. Below there is an detailed 
description of both moves.

Let π = (π1, π2, …, πm) be a certain solution of the CJFS 
problem. Therefore, on a machine Mi 2 
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T (π) – cycle time of solution π
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1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:

∗e-mail: wojciech.bozejko@pwr.edu.pl

(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
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M , 1 ≤ a,b ≤ nk) such that βl = πl , l = 1,2, . . . ,k − 1,k +
1, . . . ,n) and if b ≥ a, then

βk(l) =




πk(l), if 1 ≤ l < a∨b < l ≤ nk,

πk(l +1), if a ≤ l < b,
πk(a), if l = b.

It is similar when b < a.
The set of i-moves of operation s is denoted by Is, whereas by
I (π) = ∑s∈O Is The set of all such moves.
2. Transfer (in short t-move) tk,l

a the equivalent of strong stroke.
It transfers the operation πk(a) from k-th machine on the last
position on l-th machine (machines k, l are from the same nest).
In this case tk,l

a (π) = β , where

βs = πs, s �= k, l, s = 1,2, . . . ,m.

Moreover, operation πk(a) is removed from k-th machine, i.e.

βk( j) = πk( j), j = 1,2, . . .a−1,

βk( j) = πk( j+1), j = a,a+1 . . . ,nk −1,

and then we put the operation on the last position on the l-th
machine, i.e.

βl( j) = πl( j), j = 1,2, . . . ,nl , and πl(nl +1) = πk(a).

There are also swaps nk ← nk − 1 and nl ← nl + 1 per-
formed. The set Ts includes t-moves of operation s, and
T (π) = ∑s∈O Ts is the set of all such moves.

According to the definition (27) the neighborhood N (π) is
generated by the compilation of all i-moves and t-moves, i.e.

N (π) = {τ(π) : i◦ t, i ∈ I (π), t ∈ T (π)}.

In the golf algorithm AGF the move (stroke) generating the
best element from the neighborhood is to be determined. It fol-
lows from property 1 and theorem 3 that while determination
of neighborhood there are only the following types of moves
to be considered:

(i) generating feasible solutions,
(ii) changing the order of operations on the critical path.

In addition, in the case of i-moves, the operations will be repo-
sitioned immediately before the first and after the last opera-
tion in the block. This method of generating the neighborhood
is successfully used in the best algorithms for solving the the
flexible job shop problem with criterion Cmax ( [2, 4, 11]).

Attributes of generated solutions are stored in the MEM
memory in the form of triplets (s,v,k). The elements s and v
identify operations whereas k - the machine. In step 1 of AGF
algorithm for each triplet (s,v,k) in the MEM, memory from
the set N (π) there are solutions removed in which operations
s and v are performed on the machine k in the order s before
v. In Step 3 there is an addition of the attributes of the selected
element from the neighborhood into MEM memory. If the exe-
cution of the complex move τ causes transfer of the operations
πl(a) from machine Ml on position b on machine Mk, then to
MEM memory the following three are added:

- (πk(b−1),πk(a),k) for k = l, a > b,
- (πk(a),πk(a+1),k) for k = l, a < b,
- (πk(b−1),πk(a),k) and (πk(a),πk(b+1),k) for k �= l.

7. Strategy of neighborhood search
In the algorithms based on the search of the solution space the
procedure for determination of the value of the objective func-
tion has a major impact on the running time of the algorithm.
In case of the considered in the work problem determination of
the minimum cycle time (for a single solution) has a compu-
tational complexity O(om2). Thus, instead of calculating the
exact value of the cycle time, we will use lower bound which
is determined much faster.

7.1. Lower bound of the minimum cycle time Any move
τ ∈ I (π) ∪T (π) can be unambiguously represented by a
triple v = (i,k,s) (i ∈ O,k ∈ M ,s = 1,2, . . . ,n). Its execution
can be divided into two stages:

(i) removal of operation i,
(ii) inserting of operation i on position s on the machine k.

Let α = (α1,α2, . . . ,αm) be a solution generated from π in
the first stage, whereas β = (β1,β2, . . . ,βm) during the second
stage. In the first component of the cyclic graph G⊕(α) we
define certain paths (more precisely - the length of these paths,
i.e. the sum of the weights of all vertices):

1. Rl( j) (l ∈ M , j ∈ O) - length of the longest path from the
vertex αl(1) to vertex j,

2. Ql( j) we designate the length of the longest path from vertex
j to vertex representing operation αl(nl).

The value of the formula

LBl(π,v) = max{Rl(αk(s−1)),Rl(v)− pv}+

+max{Ql(αk(s)),Ql(v)− pv}+ pv} (28)

is the length of the longest path in the graph G⊕(β ), from ver-
tex αl(1) do αl(nl) passing through vertex i.

LEMMA 1. If β was generated from the π ∈ Φ by making
a move v = (i,k,s) ∈ I (π)∪T (π), then the minimum cycle
time

T o(β )≥ LB(α) = max
l∈M

LBl(α). (29)

Proof. For the proof it is enough to note that the LBl(π,v) is
equal to the length of the longest path from the vertex βl(1)
do βl(nl) passing through the vertex representing operation i.
Since LBl(π,v) is equal to the length of one of the paths from
the vertex βl(1) to βl(nl) (not necessarily the longest one).
Therefore, LBl(π,v)≤ λβl(1),2 ≤ Λ∗ for l ∈ M , where λβl(1),2
and Λ∗ were determined for the solution β .

The set Z j(π) = {i◦ t : i ∈I j, t ∈T j} includes moves rep-
resenting the operation j ∈ O to another position or another
machine.

LEMMA 2. Computation of all the lower bounds of the cycle
time LB(π,v), v ∈ Z j(π), j ∈ O can be executed in time O(o ·
m).
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M , 1 ≤ a,b ≤ nk) such that βl = πl , l = 1,2, . . . ,k − 1,k +
1, . . . ,n) and if b ≥ a, then

βk(l) =




πk(l), if 1 ≤ l < a∨b < l ≤ nk,

πk(l +1), if a ≤ l < b,
πk(a), if l = b.

It is similar when b < a.
The set of i-moves of operation s is denoted by Is, whereas by
I (π) = ∑s∈O Is The set of all such moves.
2. Transfer (in short t-move) tk,l

a the equivalent of strong stroke.
It transfers the operation πk(a) from k-th machine on the last
position on l-th machine (machines k, l are from the same nest).
In this case tk,l

a (π) = β , where

βs = πs, s �= k, l, s = 1,2, . . . ,m.

Moreover, operation πk(a) is removed from k-th machine, i.e.

βk( j) = πk( j), j = 1,2, . . .a−1,

βk( j) = πk( j+1), j = a,a+1 . . . ,nk −1,

and then we put the operation on the last position on the l-th
machine, i.e.

βl( j) = πl( j), j = 1,2, . . . ,nl , and πl(nl +1) = πk(a).

There are also swaps nk ← nk − 1 and nl ← nl + 1 per-
formed. The set Ts includes t-moves of operation s, and
T (π) = ∑s∈O Ts is the set of all such moves.

According to the definition (27) the neighborhood N (π) is
generated by the compilation of all i-moves and t-moves, i.e.

N (π) = {τ(π) : i◦ t, i ∈ I (π), t ∈ T (π)}.

In the golf algorithm AGF the move (stroke) generating the
best element from the neighborhood is to be determined. It fol-
lows from property 1 and theorem 3 that while determination
of neighborhood there are only the following types of moves
to be considered:

(i) generating feasible solutions,
(ii) changing the order of operations on the critical path.

In addition, in the case of i-moves, the operations will be repo-
sitioned immediately before the first and after the last opera-
tion in the block. This method of generating the neighborhood
is successfully used in the best algorithms for solving the the
flexible job shop problem with criterion Cmax ( [2, 4, 11]).

Attributes of generated solutions are stored in the MEM
memory in the form of triplets (s,v,k). The elements s and v
identify operations whereas k - the machine. In step 1 of AGF
algorithm for each triplet (s,v,k) in the MEM, memory from
the set N (π) there are solutions removed in which operations
s and v are performed on the machine k in the order s before
v. In Step 3 there is an addition of the attributes of the selected
element from the neighborhood into MEM memory. If the exe-
cution of the complex move τ causes transfer of the operations
πl(a) from machine Ml on position b on machine Mk, then to
MEM memory the following three are added:

- (πk(b−1),πk(a),k) for k = l, a > b,
- (πk(a),πk(a+1),k) for k = l, a < b,
- (πk(b−1),πk(a),k) and (πk(a),πk(b+1),k) for k �= l.

7. Strategy of neighborhood search
In the algorithms based on the search of the solution space the
procedure for determination of the value of the objective func-
tion has a major impact on the running time of the algorithm.
In case of the considered in the work problem determination of
the minimum cycle time (for a single solution) has a compu-
tational complexity O(om2). Thus, instead of calculating the
exact value of the cycle time, we will use lower bound which
is determined much faster.

7.1. Lower bound of the minimum cycle time Any move
τ ∈ I (π) ∪T (π) can be unambiguously represented by a
triple v = (i,k,s) (i ∈ O,k ∈ M ,s = 1,2, . . . ,n). Its execution
can be divided into two stages:

(i) removal of operation i,
(ii) inserting of operation i on position s on the machine k.

Let α = (α1,α2, . . . ,αm) be a solution generated from π in
the first stage, whereas β = (β1,β2, . . . ,βm) during the second
stage. In the first component of the cyclic graph G⊕(α) we
define certain paths (more precisely - the length of these paths,
i.e. the sum of the weights of all vertices):

1. Rl( j) (l ∈ M , j ∈ O) - length of the longest path from the
vertex αl(1) to vertex j,

2. Ql( j) we designate the length of the longest path from vertex
j to vertex representing operation αl(nl).

The value of the formula

LBl(π,v) = max{Rl(αk(s−1)),Rl(v)− pv}+

+max{Ql(αk(s)),Ql(v)− pv}+ pv} (28)

is the length of the longest path in the graph G⊕(β ), from ver-
tex αl(1) do αl(nl) passing through vertex i.

LEMMA 1. If β was generated from the π ∈ Φ by making
a move v = (i,k,s) ∈ I (π)∪T (π), then the minimum cycle
time

T o(β )≥ LB(α) = max
l∈M

LBl(α). (29)

Proof. For the proof it is enough to note that the LBl(π,v) is
equal to the length of the longest path from the vertex βl(1)
do βl(nl) passing through the vertex representing operation i.
Since LBl(π,v) is equal to the length of one of the paths from
the vertex βl(1) to βl(nl) (not necessarily the longest one).
Therefore, LBl(π,v)≤ λβl(1),2 ≤ Λ∗ for l ∈ M , where λβl(1),2
and Λ∗ were determined for the solution β .

The set Z j(π) = {i◦ t : i ∈I j, t ∈T j} includes moves rep-
resenting the operation j ∈ O to another position or another
machine.

LEMMA 2. Computation of all the lower bounds of the cycle
time LB(π,v), v ∈ Z j(π), j ∈ O can be executed in time O(o ·
m).
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Abstract. In the work there was a problem of scheduling operations in the cyclic flexible job shop system considered. There was also
presented the new, very fast method of determining the cycle time for any order of tasks on machines. It is based on the analysis of the paths
in the graph representing the examined problem. The theorems concerning specific properties of the graph were proven. They have been
used in the construction of the heuristic algorithm searching the solutions space by using the so-called golf neighborhood, whose generation
is similar to the game of golf, which helps to intensify and diversify calculations. The conducted computational experiments fully confirmed
the effectiveness of the proposed method. The proposed methods and properties can be adapted and used in the construction of local search
algorithms for solving many other optimization problems.
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List of main symbols
al – l-th copy of operation a in l-th MTS

Ca – operation a completion time in 1-th MTS
G⊕(π) – graph for solution π of cyclic job shop

H(π) – graph for solution π of job shop problem
J – set of tasks
M – set of machines

MTS – Minimal Task Set
O – set of operations
π – solution (m-tuple of permutations)
πi – permutation of operations on i-th machine
Sa – operation a starting time in 1-th MTS
Sl

a – operation a starting time in l-the MTS
T (π) – cycle time of solution π

T ◦(π) – minimal cycle time of solution π
T ∗ – optimal cycle time

1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:

∗e-mail: wojciech.bozejko@pwr.edu.pl

(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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M , 1 ≤ a,b ≤ nk) such that βl = πl , l = 1,2, . . . ,k − 1,k +
1, . . . ,n) and if b ≥ a, then

βk(l) =




πk(l), if 1 ≤ l < a∨b < l ≤ nk,

πk(l +1), if a ≤ l < b,
πk(a), if l = b.

It is similar when b < a.
The set of i-moves of operation s is denoted by Is, whereas by
I (π) = ∑s∈O Is The set of all such moves.
2. Transfer (in short t-move) tk,l

a the equivalent of strong stroke.
It transfers the operation πk(a) from k-th machine on the last
position on l-th machine (machines k, l are from the same nest).
In this case tk,l

a (π) = β , where

βs = πs, s �= k, l, s = 1,2, . . . ,m.

Moreover, operation πk(a) is removed from k-th machine, i.e.

βk( j) = πk( j), j = 1,2, . . .a−1,

βk( j) = πk( j+1), j = a,a+1 . . . ,nk −1,

and then we put the operation on the last position on the l-th
machine, i.e.

βl( j) = πl( j), j = 1,2, . . . ,nl , and πl(nl +1) = πk(a).

There are also swaps nk ← nk − 1 and nl ← nl + 1 per-
formed. The set Ts includes t-moves of operation s, and
T (π) = ∑s∈O Ts is the set of all such moves.

According to the definition (27) the neighborhood N (π) is
generated by the compilation of all i-moves and t-moves, i.e.

N (π) = {τ(π) : i◦ t, i ∈ I (π), t ∈ T (π)}.

In the golf algorithm AGF the move (stroke) generating the
best element from the neighborhood is to be determined. It fol-
lows from property 1 and theorem 3 that while determination
of neighborhood there are only the following types of moves
to be considered:

(i) generating feasible solutions,
(ii) changing the order of operations on the critical path.

In addition, in the case of i-moves, the operations will be repo-
sitioned immediately before the first and after the last opera-
tion in the block. This method of generating the neighborhood
is successfully used in the best algorithms for solving the the
flexible job shop problem with criterion Cmax ( [2, 4, 11]).

Attributes of generated solutions are stored in the MEM
memory in the form of triplets (s,v,k). The elements s and v
identify operations whereas k - the machine. In step 1 of AGF
algorithm for each triplet (s,v,k) in the MEM, memory from
the set N (π) there are solutions removed in which operations
s and v are performed on the machine k in the order s before
v. In Step 3 there is an addition of the attributes of the selected
element from the neighborhood into MEM memory. If the exe-
cution of the complex move τ causes transfer of the operations
πl(a) from machine Ml on position b on machine Mk, then to
MEM memory the following three are added:

- (πk(b−1),πk(a),k) for k = l, a > b,
- (πk(a),πk(a+1),k) for k = l, a < b,
- (πk(b−1),πk(a),k) and (πk(a),πk(b+1),k) for k �= l.

7. Strategy of neighborhood search
In the algorithms based on the search of the solution space the
procedure for determination of the value of the objective func-
tion has a major impact on the running time of the algorithm.
In case of the considered in the work problem determination of
the minimum cycle time (for a single solution) has a compu-
tational complexity O(om2). Thus, instead of calculating the
exact value of the cycle time, we will use lower bound which
is determined much faster.

7.1. Lower bound of the minimum cycle time Any move
τ ∈ I (π) ∪T (π) can be unambiguously represented by a
triple v = (i,k,s) (i ∈ O,k ∈ M ,s = 1,2, . . . ,n). Its execution
can be divided into two stages:

(i) removal of operation i,
(ii) inserting of operation i on position s on the machine k.

Let α = (α1,α2, . . . ,αm) be a solution generated from π in
the first stage, whereas β = (β1,β2, . . . ,βm) during the second
stage. In the first component of the cyclic graph G⊕(α) we
define certain paths (more precisely - the length of these paths,
i.e. the sum of the weights of all vertices):

1. Rl( j) (l ∈ M , j ∈ O) - length of the longest path from the
vertex αl(1) to vertex j,

2. Ql( j) we designate the length of the longest path from vertex
j to vertex representing operation αl(nl).

The value of the formula

LBl(π,v) = max{Rl(αk(s−1)),Rl(v)− pv}+

+max{Ql(αk(s)),Ql(v)− pv}+ pv} (28)

is the length of the longest path in the graph G⊕(β ), from ver-
tex αl(1) do αl(nl) passing through vertex i.

LEMMA 1. If β was generated from the π ∈ Φ by making
a move v = (i,k,s) ∈ I (π)∪T (π), then the minimum cycle
time

T o(β )≥ LB(α) = max
l∈M

LBl(α). (29)

Proof. For the proof it is enough to note that the LBl(π,v) is
equal to the length of the longest path from the vertex βl(1)
do βl(nl) passing through the vertex representing operation i.
Since LBl(π,v) is equal to the length of one of the paths from
the vertex βl(1) to βl(nl) (not necessarily the longest one).
Therefore, LBl(π,v)≤ λβl(1),2 ≤ Λ∗ for l ∈ M , where λβl(1),2
and Λ∗ were determined for the solution β .

The set Z j(π) = {i◦ t : i ∈I j, t ∈T j} includes moves rep-
resenting the operation j ∈ O to another position or another
machine.

LEMMA 2. Computation of all the lower bounds of the cycle
time LB(π,v), v ∈ Z j(π), j ∈ O can be executed in time O(o ·
m).
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mation is given, respectively, by

B
0 Dα(t)

t x(t) = lim
h→0

η

∑
j=0

(−1) j

hα(t− jh)

�
α(t − jh)

j

�
x(t − jh)

and
B∆αl xl =

l

∑
j=0

(−1) j

hαl− j

�
αl− j

j

�
xl− j.

The D-type variable-order derivative and its discrete approxi-
mation is given, respectively, by

D
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t x(t) = lim
h→0

�
x(t)
hα(t) −

η

∑
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(−1) j
�
−α(t)

j

�
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�

and

D∆αl xl =
xl
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−

l

∑
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(−1) j
�
−αl

j

�
D∆αl− j xl− j.

The E -type variable-order derivative and its discrete approxi-
mation is given, respectively, by

E
0 Dα(t)

t x(t) = limh→0

�
x(t)
hα(t)

−∑η
j=1(−1) j�−α(t− jh)

j
� hα(t− jh)

hα(t)
E
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�
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−

l

∑
j=1

(−1) j
�
−αl− j

j

�
hαl− j

hαl
∆αl− j xl− j.

The main motivation of considering the above definitions
of fractional variable order derivatives is a fact, that they are
widely presented in literature and can be applied in physi-
cal systems. In [22], the A -type of fractional variable order
derivative was successfully used to design the variable order
PD controller in robot arm control. In [23], the heat trans-
fer process in specific grid-holes media whose geometry is
changed in time was modeled by a new D-type definition.
Moreover, these definitions posses mutual duality properties
described in [24], which can be adapt to solve the fractional
variable order differential equations (see [21]).

2.2. Matrix forms of fractional variable order differences
The matrix form of the fractional constant order difference (1)
is given as follows ([25, 26]):




∆α x0

∆α x1

∆α x2
...

∆α xk




=W (α,k)




x0

x1

x2
...

xk



,

where

W (α,k) =




h−α 0 0 . . . 0
wα ,1 h−α 0 . . . 0
wα ,2 wα ,1 h−α . . . 0
wα ,3 wα ,2 wα ,1 . . . 0

...
...

...
...

...
wα ,k wα ,k−1 wα ,k−2 . . . h−α




,

W (α,k) ∈ R
(k+1)×(k+1), and

wα ,l =
(−1)l�α

l
�

hα , l = 0, . . . ,k. (2)

Let us define the 4-tuple T = (A ,B,D ,E ), where Tℓ is
the ℓ-th element of T and denotes a type of variable order
derivative (difference). The matrix numerical forms of the al-
ready mentioned variable order differences A , B, D , E are
the following




Tℓ∆α0 x0
Tℓ∆α1 x1
Tℓ∆α2 x2

...
Tℓ∆αk xk




= TℓW (ᾱ,k)




x0

x1

x2
...

xk



, ℓ= 1, . . .4,

where the matrices TℓW (ᾱ,k) ∈ R
(k+1)×(k+1), with ᾱ =

(α0, . . . ,αk), and ℓ= 1, . . .4, are already defined in [18, 27].

3. Solution of linear control system in state-space
form

Recall the 4-tuple T = (A ,B,D ,E ) and define other quadru-
ple T̃ = (D ,E ,A ,B), where Tℓ and T̃ℓ denote the ℓ-th ele-
ments of T and T̃ , respectively. We also define two n-tuples
T= (T1, . . . ,Tn), where T

i ∈ T , and T̃= (T̃1, . . . , T̃n), where
T̃

i ∈ T̃ , in both cases i = 1, . . . ,n, and such that if Ti = Tℓ

then T̃
i = T̃ℓ for some ℓ ∈ {1, . . . ,4}.

3.1. Time-variant control system Now, consider a time-
variant non-commensurate fractional variable order system

T
0 Dα(t)

t x = A(t)x+B(t)u, x(0) = 0 (3a)
y =C(t)x+D(t)u, (3b)

where x = x(t) ∈R
n, u = u(t) ∈R
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p×m, for t ∈ R, i, j = 1, . . . ,n, r = 1, . . . ,m, s =

1, . . . , p; and T
i ∈ T is a type of variable order derivative def-

inition. We assume variable orders to be piece-wise constant
functions, i.e., for i = 1, . . . ,n

αi(t) = αν+1
i ∈ R for tν ≤ t < tν+1, ν = 0, . . . ,N −1,

where N ∈ N denotes the number of time-intervals.
System (3) can be approximated, with the discretization step

time h > 0, by the following numerical form
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The main motivation of considering the above definitions
of fractional variable order derivatives is a fact, that they are
widely presented in literature and can be applied in physi-
cal systems. In [22], the A -type of fractional variable order
derivative was successfully used to design the variable order
PD controller in robot arm control. In [23], the heat trans-
fer process in specific grid-holes media whose geometry is
changed in time was modeled by a new D-type definition.
Moreover, these definitions posses mutual duality properties
described in [24], which can be adapt to solve the fractional
variable order differential equations (see [21]).

2.2. Matrix forms of fractional variable order differences
The matrix form of the fractional constant order difference (1)
is given as follows ([25, 26]):
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Let us define the 4-tuple T = (A ,B,D ,E ), where Tℓ is
the ℓ-th element of T and denotes a type of variable order
derivative (difference). The matrix numerical forms of the al-
ready mentioned variable order differences A , B, D , E are
the following
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i ∈ T̃ , in both cases i = 1, . . . ,n, and such that if Ti = Tℓ

then T̃
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3.1. Time-variant control system Now, consider a time-
variant non-commensurate fractional variable order system
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i ∈ T is a type of variable order derivative def-

inition. We assume variable orders to be piece-wise constant
functions, i.e., for i = 1, . . . ,n

αi(t) = αν+1
i ∈ R for tν ≤ t < tν+1, ν = 0, . . . ,N −1,

where N ∈ N denotes the number of time-intervals.
System (3) can be approximated, with the discretization step

time h > 0, by the following numerical form
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Abstract. In the work there was a problem of scheduling operations in the cyclic flexible job shop system considered. There was also
presented the new, very fast method of determining the cycle time for any order of tasks on machines. It is based on the analysis of the paths
in the graph representing the examined problem. The theorems concerning specific properties of the graph were proven. They have been
used in the construction of the heuristic algorithm searching the solutions space by using the so-called golf neighborhood, whose generation
is similar to the game of golf, which helps to intensify and diversify calculations. The conducted computational experiments fully confirmed
the effectiveness of the proposed method. The proposed methods and properties can be adapted and used in the construction of local search
algorithms for solving many other optimization problems.
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List of main symbols
al – l-th copy of operation a in l-th MTS

Ca – operation a completion time in 1-th MTS
G⊕(π) – graph for solution π of cyclic job shop

H(π) – graph for solution π of job shop problem
J – set of tasks
M – set of machines

MTS – Minimal Task Set
O – set of operations
π – solution (m-tuple of permutations)
πi – permutation of operations on i-th machine
Sa – operation a starting time in 1-th MTS
Sl

a – operation a starting time in l-the MTS
T (π) – cycle time of solution π

T ◦(π) – minimal cycle time of solution π
T ∗ – optimal cycle time

1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:

∗e-mail: wojciech.bozejko@pwr.edu.pl

(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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mation is given, respectively, by

B
0 Dα(t)

t x(t) = lim
h→0

η

∑
j=0

(−1) j

hα(t− jh)

�
α(t − jh)

j

�
x(t − jh)

and
B∆αl xl =

l

∑
j=0

(−1) j

hαl− j

�
αl− j

j

�
xl− j.

The D-type variable-order derivative and its discrete approxi-
mation is given, respectively, by

D
0 Dα(t)

t x(t) = lim
h→0

�
x(t)
hα(t) −

η

∑
j=1

(−1) j
�
−α(t)

j

�
D
0 Dα(t)

t− jhx(t)

�

and

D∆αl xl =
xl

hαl
−

l

∑
j=1

(−1) j
�
−αl

j

�
D∆αl− j xl− j.

The E -type variable-order derivative and its discrete approxi-
mation is given, respectively, by

E
0 Dα(t)

t x(t) = limh→0

�
x(t)
hα(t)

−∑η
j=1(−1) j�−α(t− jh)

j
� hα(t− jh)

hα(t)
E
0 Dα(t)

t− jhx(t)
�

and

E∆αl xl =
xl

hαl
−

l

∑
j=1

(−1) j
�
−αl− j

j

�
hαl− j

hαl
∆αl− j xl− j.

The main motivation of considering the above definitions
of fractional variable order derivatives is a fact, that they are
widely presented in literature and can be applied in physi-
cal systems. In [22], the A -type of fractional variable order
derivative was successfully used to design the variable order
PD controller in robot arm control. In [23], the heat trans-
fer process in specific grid-holes media whose geometry is
changed in time was modeled by a new D-type definition.
Moreover, these definitions posses mutual duality properties
described in [24], which can be adapt to solve the fractional
variable order differential equations (see [21]).

2.2. Matrix forms of fractional variable order differences
The matrix form of the fractional constant order difference (1)
is given as follows ([25, 26]):




∆α x0

∆α x1

∆α x2
...

∆α xk


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,

where

W (α,k) =


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h−α 0 0 . . . 0
wα ,1 h−α 0 . . . 0
wα ,2 wα ,1 h−α . . . 0
wα ,3 wα ,2 wα ,1 . . . 0
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,
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hα , l = 0, . . . ,k. (2)

Let us define the 4-tuple T = (A ,B,D ,E ), where Tℓ is
the ℓ-th element of T and denotes a type of variable order
derivative (difference). The matrix numerical forms of the al-
ready mentioned variable order differences A , B, D , E are
the following
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, ℓ= 1, . . .4,

where the matrices TℓW (ᾱ,k) ∈ R
(k+1)×(k+1), with ᾱ =

(α0, . . . ,αk), and ℓ= 1, . . .4, are already defined in [18, 27].

3. Solution of linear control system in state-space
form

Recall the 4-tuple T = (A ,B,D ,E ) and define other quadru-
ple T̃ = (D ,E ,A ,B), where Tℓ and T̃ℓ denote the ℓ-th ele-
ments of T and T̃ , respectively. We also define two n-tuples
T= (T1, . . . ,Tn), where T

i ∈ T , and T̃= (T̃1, . . . , T̃n), where
T̃

i ∈ T̃ , in both cases i = 1, . . . ,n, and such that if Ti = Tℓ

then T̃
i = T̃ℓ for some ℓ ∈ {1, . . . ,4}.

3.1. Time-variant control system Now, consider a time-
variant non-commensurate fractional variable order system
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t x = A(t)x+B(t)u, x(0) = 0 (3a)
y =C(t)x+D(t)u, (3b)
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1, . . . , p; and T
i ∈ T is a type of variable order derivative def-

inition. We assume variable orders to be piece-wise constant
functions, i.e., for i = 1, . . . ,n

αi(t) = αν+1
i ∈ R for tν ≤ t < tν+1, ν = 0, . . . ,N −1,

where N ∈ N denotes the number of time-intervals.
System (3) can be approximated, with the discretization step

time h > 0, by the following numerical form
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s  is the set of all such moves.

According to the definition (27) the neighborhood 
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THEOREM 3. If permutation β was generated from π ∈ Φ
by changing the order of certain internal operations of the
block, then the length of the cycle time T ◦(β )≥ T ◦(π).

Proof. The theorem is proved just in the same way as in case
of the block theorems for a wide class of scheduling problems
with the criterion Cmax, in particular for flexible job shop prob-
lem [4].

5. Golf algorithm
In this part we shortly present a new heuristic method of
searching the space of feasible solutions. Its basic element
is the neighborhood, i.e. the set of solutions generated by a
simple modification (moves) in the current solution. The idea
of determining the neigborhood is based on the game of golf.
This game, in large simplification, relies in carring out two
types of strokes (see fig. 4):

1. strong, transferring the ball to the further area of the golf
course, and

2. weak, whose aim is a direct transfer of the ball into the hole.

The game takes place in several rounds. The player uses some
knowledge (e.g. gets to know the topography of the playing
area) what enables him to improve the efficiency of the game).
Based on this idea we introduce two types of moves transform-

Fig. 4: Strokes in the game of golf.

ing the elements of the solution space

Γ,γ : Φ → Φ. (26)

The first of the moves Γ, corresponding to the strong stroke in
a game of golf, generates from π ∈ Φ the solution Γ(π) ∈ Φ
significantly different from it, causing diversification of explo-
ration. In case of move of γ , type the solution γ(π) ∈ Φ is
only little different from π (thus it corresponds to the weak
stroke) and causes intensification of exploration. By apply-
ing these moves it is possible to determine, depending on the
needs, neighborhoods which vary greatly.

We are considering the problem of minimizing the F func-
tion on the set Φ. Let S�� i S� be respectively the set of strong
and weak moves. If the transformation τ(π) = γ(Γ(π)), where
Γ ∈ S��, γ ∈ S�, π ∈ Φ, we can say that τ is a complex move
and we can put it down as τ = γ ◦Γ. Then the set

N (π) = {τ(π) : τ = γ ◦Γ, Γ ∈ S��,γ ∈ S�, π ∈ Φ} (27)

is golf neighborhood of the element π ∈Φ (see also [2]). While
generating it we will use the 3, theorem, i.e. we can omit the

moves changing the order of tasks within the block. The neigh-
borhood will be used in the algorithm based on the local search
method.

In the description of the algorithm, the search history
memory MEM is limited in length and supported in the
principle of the queue of FIFO. The AT R(π) function returns
attributes of the solutions π . The algorithm terminates after
execution of Maxiter iterations.

Golf algorithm (AGF)
Let π ∈ Φ be any starting solution;
πbest ← π; MEM ← 0; iter ← 0;
repeat

Step 1: Generate golf neighborhood N (π)
of the solution π omitting the elements,
whose attributes are on the MEM list;

Step 2: Determine the element β ∗ ∈ N (π) Such that
F(β ∗) = min{F(δ ) : δ ∈ N (π)};

if F(β ∗)< F(πbest), then πbest ← β ∗;
Step 3: Substitute MEM ← MEM∪AT R(β );
iter ← iter+1;

until iter < Maxiter;

Implementation of the golf algorithm requires defining of:

1. ’weak’ and ’strong’ moves, as well as sets of these moves
used to generate the neighborhood

2. determination of attribute moves and the principles of creat-
ing and using the MEM memory (it should protect against
returning to previously viewed areas of the solution space).

6. Golf algorithm for CFJS problem
One of the most important elements of algorithms based on
the local search methods is the neighborhood. In case of task
scheduling problems for which solutions are represented by
permutations, the elements of the neighborhood are usually
generated by swapping or moving the elements in the permuta-
tion. In the considered problem of minimizing the cycle time,
solutions are arrangements of a permutation of operations on
individual machines.

Changing of the order of operations on any machine un-
doubtedly does not change the assignment of operations to ma-
chines. Therefore, it is necessary to introduce a mechanism of
reallocating the operations to machines. In the case of the golf
algorithm course, this change will be implemented by a strong
stroke. In contrast, weak stroke will cause the change in the
order of operations on a machine. Below there is an detailed
description of both moves.

Let π = (π1,π2, . . . ,πm) be a certain solution of the CJFS
problem. Therefore, on a machine Mi ∈ M there are executed
operations from the set O i in the order πi. We consider two
machines Mk,Ml from the same nest. While generating the
neighborhood of π we will use two types of moves:

1. Insert (in short i-move) ika,b the equivalent of the weak
stroke. This moves depicts the element πk(a), from position a
to position b in πk, generating permutation ika,b(π) = β (Mk ∈
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THEOREM 3. If permutation β was generated from π ∈ Φ
by changing the order of certain internal operations of the
block, then the length of the cycle time T ◦(β )≥ T ◦(π).

Proof. The theorem is proved just in the same way as in case
of the block theorems for a wide class of scheduling problems
with the criterion Cmax, in particular for flexible job shop prob-
lem [4].

5. Golf algorithm
In this part we shortly present a new heuristic method of
searching the space of feasible solutions. Its basic element
is the neighborhood, i.e. the set of solutions generated by a
simple modification (moves) in the current solution. The idea
of determining the neigborhood is based on the game of golf.
This game, in large simplification, relies in carring out two
types of strokes (see fig. 4):

1. strong, transferring the ball to the further area of the golf
course, and

2. weak, whose aim is a direct transfer of the ball into the hole.

The game takes place in several rounds. The player uses some
knowledge (e.g. gets to know the topography of the playing
area) what enables him to improve the efficiency of the game).
Based on this idea we introduce two types of moves transform-

Fig. 4: Strokes in the game of golf.

ing the elements of the solution space

Γ,γ : Φ → Φ. (26)

The first of the moves Γ, corresponding to the strong stroke in
a game of golf, generates from π ∈ Φ the solution Γ(π) ∈ Φ
significantly different from it, causing diversification of explo-
ration. In case of move of γ , type the solution γ(π) ∈ Φ is
only little different from π (thus it corresponds to the weak
stroke) and causes intensification of exploration. By apply-
ing these moves it is possible to determine, depending on the
needs, neighborhoods which vary greatly.

We are considering the problem of minimizing the F func-
tion on the set Φ. Let S�� i S� be respectively the set of strong
and weak moves. If the transformation τ(π) = γ(Γ(π)), where
Γ ∈ S��, γ ∈ S�, π ∈ Φ, we can say that τ is a complex move
and we can put it down as τ = γ ◦Γ. Then the set

N (π) = {τ(π) : τ = γ ◦Γ, Γ ∈ S��,γ ∈ S�, π ∈ Φ} (27)

is golf neighborhood of the element π ∈Φ (see also [2]). While
generating it we will use the 3, theorem, i.e. we can omit the

moves changing the order of tasks within the block. The neigh-
borhood will be used in the algorithm based on the local search
method.

In the description of the algorithm, the search history
memory MEM is limited in length and supported in the
principle of the queue of FIFO. The AT R(π) function returns
attributes of the solutions π . The algorithm terminates after
execution of Maxiter iterations.

Golf algorithm (AGF)
Let π ∈ Φ be any starting solution;
πbest ← π; MEM ← 0; iter ← 0;
repeat

Step 1: Generate golf neighborhood N (π)
of the solution π omitting the elements,
whose attributes are on the MEM list;

Step 2: Determine the element β ∗ ∈ N (π) Such that
F(β ∗) = min{F(δ ) : δ ∈ N (π)};

if F(β ∗)< F(πbest), then πbest ← β ∗;
Step 3: Substitute MEM ← MEM∪AT R(β );
iter ← iter+1;

until iter < Maxiter;

Implementation of the golf algorithm requires defining of:

1. ’weak’ and ’strong’ moves, as well as sets of these moves
used to generate the neighborhood

2. determination of attribute moves and the principles of creat-
ing and using the MEM memory (it should protect against
returning to previously viewed areas of the solution space).

6. Golf algorithm for CFJS problem
One of the most important elements of algorithms based on
the local search methods is the neighborhood. In case of task
scheduling problems for which solutions are represented by
permutations, the elements of the neighborhood are usually
generated by swapping or moving the elements in the permuta-
tion. In the considered problem of minimizing the cycle time,
solutions are arrangements of a permutation of operations on
individual machines.

Changing of the order of operations on any machine un-
doubtedly does not change the assignment of operations to ma-
chines. Therefore, it is necessary to introduce a mechanism of
reallocating the operations to machines. In the case of the golf
algorithm course, this change will be implemented by a strong
stroke. In contrast, weak stroke will cause the change in the
order of operations on a machine. Below there is an detailed
description of both moves.

Let π = (π1,π2, . . . ,πm) be a certain solution of the CJFS
problem. Therefore, on a machine Mi ∈ M there are executed
operations from the set O i in the order πi. We consider two
machines Mk,Ml from the same nest. While generating the
neighborhood of π we will use two types of moves:

1. Insert (in short i-move) ika,b the equivalent of the weak
stroke. This moves depicts the element πk(a), from position a
to position b in πk, generating permutation ika,b(π) = β (Mk ∈
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M , 1 ≤ a,b ≤ nk) such that βl = πl , l = 1,2, . . . ,k − 1,k +
1, . . . ,n) and if b ≥ a, then

βk(l) =





πk(l), if 1 ≤ l < a∨b < l ≤ nk,

πk(l +1), if a ≤ l < b,
πk(a), if l = b.

It is similar when b < a.
The set of i-moves of operation s is denoted by Is, whereas by
I (π) = ∑s∈O Is The set of all such moves.
2. Transfer (in short t-move) tk,l

a the equivalent of strong stroke.
It transfers the operation πk(a) from k-th machine on the last
position on l-th machine (machines k, l are from the same nest).
In this case tk,l

a (π) = β , where

βs = πs, s �= k, l, s = 1,2, . . . ,m.

Moreover, operation πk(a) is removed from k-th machine, i.e.

βk( j) = πk( j), j = 1,2, . . .a−1,

βk( j) = πk( j+1), j = a,a+1 . . . ,nk −1,

and then we put the operation on the last position on the l-th
machine, i.e.

βl( j) = πl( j), j = 1,2, . . . ,nl , and πl(nl +1) = πk(a).

There are also swaps nk ← nk − 1 and nl ← nl + 1 per-
formed. The set Ts includes t-moves of operation s, and
T (π) = ∑s∈O Ts is the set of all such moves.

According to the definition (27) the neighborhood N (π) is
generated by the compilation of all i-moves and t-moves, i.e.

N (π) = {τ(π) : i◦ t, i ∈ I (π), t ∈ T (π)}.

In the golf algorithm AGF the move (stroke) generating the
best element from the neighborhood is to be determined. It fol-
lows from property 1 and theorem 3 that while determination
of neighborhood there are only the following types of moves
to be considered:

(i) generating feasible solutions,
(ii) changing the order of operations on the critical path.

In addition, in the case of i-moves, the operations will be repo-
sitioned immediately before the first and after the last opera-
tion in the block. This method of generating the neighborhood
is successfully used in the best algorithms for solving the the
flexible job shop problem with criterion Cmax ( [2, 4, 11]).

Attributes of generated solutions are stored in the MEM
memory in the form of triplets (s,v,k). The elements s and v
identify operations whereas k - the machine. In step 1 of AGF
algorithm for each triplet (s,v,k) in the MEM, memory from
the set N (π) there are solutions removed in which operations
s and v are performed on the machine k in the order s before
v. In Step 3 there is an addition of the attributes of the selected
element from the neighborhood into MEM memory. If the exe-
cution of the complex move τ causes transfer of the operations
πl(a) from machine Ml on position b on machine Mk, then to
MEM memory the following three are added:

- (πk(b−1),πk(a),k) for k = l, a > b,
- (πk(a),πk(a+1),k) for k = l, a < b,
- (πk(b−1),πk(a),k) and (πk(a),πk(b+1),k) for k �= l.

7. Strategy of neighborhood search
In the algorithms based on the search of the solution space the
procedure for determination of the value of the objective func-
tion has a major impact on the running time of the algorithm.
In case of the considered in the work problem determination of
the minimum cycle time (for a single solution) has a compu-
tational complexity O(om2). Thus, instead of calculating the
exact value of the cycle time, we will use lower bound which
is determined much faster.

7.1. Lower bound of the minimum cycle time Any move
τ ∈ I (π) ∪T (π) can be unambiguously represented by a
triple v = (i,k,s) (i ∈ O,k ∈ M ,s = 1,2, . . . ,n). Its execution
can be divided into two stages:

(i) removal of operation i,
(ii) inserting of operation i on position s on the machine k.

Let α = (α1,α2, . . . ,αm) be a solution generated from π in
the first stage, whereas β = (β1,β2, . . . ,βm) during the second
stage. In the first component of the cyclic graph G⊕(α) we
define certain paths (more precisely - the length of these paths,
i.e. the sum of the weights of all vertices):

1. Rl( j) (l ∈ M , j ∈ O) - length of the longest path from the
vertex αl(1) to vertex j,

2. Ql( j) we designate the length of the longest path from vertex
j to vertex representing operation αl(nl).

The value of the formula

LBl(π,v) = max{Rl(αk(s−1)),Rl(v)− pv}+

+max{Ql(αk(s)),Ql(v)− pv}+ pv} (28)

is the length of the longest path in the graph G⊕(β ), from ver-
tex αl(1) do αl(nl) passing through vertex i.

LEMMA 1. If β was generated from the π ∈ Φ by making
a move v = (i,k,s) ∈ I (π)∪T (π), then the minimum cycle
time

T o(β )≥ LB(α) = max
l∈M

LBl(α). (29)

Proof. For the proof it is enough to note that the LBl(π,v) is
equal to the length of the longest path from the vertex βl(1)
do βl(nl) passing through the vertex representing operation i.
Since LBl(π,v) is equal to the length of one of the paths from
the vertex βl(1) to βl(nl) (not necessarily the longest one).
Therefore, LBl(π,v)≤ λβl(1),2 ≤ Λ∗ for l ∈ M , where λβl(1),2
and Λ∗ were determined for the solution β .

The set Z j(π) = {i◦ t : i ∈I j, t ∈T j} includes moves rep-
resenting the operation j ∈ O to another position or another
machine.

LEMMA 2. Computation of all the lower bounds of the cycle
time LB(π,v), v ∈ Z j(π), j ∈ O can be executed in time O(o ·
m).
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mation is given, respectively, by

B
0 Dα(t)

t x(t) = lim
h→0

η

∑
j=0

(−1) j

hα(t− jh)

�
α(t − jh)

j

�
x(t − jh)

and
B∆αl xl =

l

∑
j=0

(−1) j

hαl− j

�
αl− j

j

�
xl− j.

The D-type variable-order derivative and its discrete approxi-
mation is given, respectively, by

D
0 Dα(t)

t x(t) = lim
h→0

�
x(t)
hα(t) −

η

∑
j=1

(−1) j
�
−α(t)

j

�
D
0 Dα(t)

t− jhx(t)

�

and

D∆αl xl =
xl

hαl
−

l

∑
j=1

(−1) j
�
−αl

j

�
D∆αl− j xl− j.

The E -type variable-order derivative and its discrete approxi-
mation is given, respectively, by

E
0 Dα(t)

t x(t) = limh→0

�
x(t)
hα(t)

−∑η
j=1(−1) j�−α(t− jh)

j
� hα(t− jh)

hα(t)
E
0 Dα(t)

t− jhx(t)
�

and

E∆αl xl =
xl

hαl
−

l

∑
j=1

(−1) j
�
−αl− j

j

�
hαl− j

hαl
∆αl− j xl− j.

The main motivation of considering the above definitions
of fractional variable order derivatives is a fact, that they are
widely presented in literature and can be applied in physi-
cal systems. In [22], the A -type of fractional variable order
derivative was successfully used to design the variable order
PD controller in robot arm control. In [23], the heat trans-
fer process in specific grid-holes media whose geometry is
changed in time was modeled by a new D-type definition.
Moreover, these definitions posses mutual duality properties
described in [24], which can be adapt to solve the fractional
variable order differential equations (see [21]).

2.2. Matrix forms of fractional variable order differences
The matrix form of the fractional constant order difference (1)
is given as follows ([25, 26]):




∆α x0

∆α x1

∆α x2
...

∆α xk




=W (α,k)




x0

x1

x2
...

xk



,

where

W (α,k) =




h−α 0 0 . . . 0
wα ,1 h−α 0 . . . 0
wα ,2 wα ,1 h−α . . . 0
wα ,3 wα ,2 wα ,1 . . . 0

...
...

...
...

...
wα ,k wα ,k−1 wα ,k−2 . . . h−α




,

W (α,k) ∈ R
(k+1)×(k+1), and

wα ,l =
(−1)l�α

l
�

hα , l = 0, . . . ,k. (2)

Let us define the 4-tuple T = (A ,B,D ,E ), where Tℓ is
the ℓ-th element of T and denotes a type of variable order
derivative (difference). The matrix numerical forms of the al-
ready mentioned variable order differences A , B, D , E are
the following




Tℓ∆α0 x0
Tℓ∆α1 x1
Tℓ∆α2 x2

...
Tℓ∆αk xk




= TℓW (ᾱ,k)




x0

x1

x2
...

xk



, ℓ= 1, . . .4,

where the matrices TℓW (ᾱ,k) ∈ R
(k+1)×(k+1), with ᾱ =

(α0, . . . ,αk), and ℓ= 1, . . .4, are already defined in [18, 27].

3. Solution of linear control system in state-space
form

Recall the 4-tuple T = (A ,B,D ,E ) and define other quadru-
ple T̃ = (D ,E ,A ,B), where Tℓ and T̃ℓ denote the ℓ-th ele-
ments of T and T̃ , respectively. We also define two n-tuples
T= (T1, . . . ,Tn), where T

i ∈ T , and T̃= (T̃1, . . . , T̃n), where
T̃

i ∈ T̃ , in both cases i = 1, . . . ,n, and such that if Ti = Tℓ

then T̃
i = T̃ℓ for some ℓ ∈ {1, . . . ,4}.

3.1. Time-variant control system Now, consider a time-
variant non-commensurate fractional variable order system

T
0 Dα(t)

t x = A(t)x+B(t)u, x(0) = 0 (3a)
y =C(t)x+D(t)u, (3b)

where x = x(t) ∈R
n, u = u(t) ∈R

m, y = y(t) ∈R
p, T0 Dα(t)

t x =�
T1
0 Dα1(t)

t x1(t), . . . ,Tn
0 Dαn(t)

t xn(t)
�T

∈ R
n, A(t) = [ai j(t)] ∈

R
n×n, B(t) = [bir(t)] ∈ R

n×m, C(t) = [csi(t)] ∈ R
p×n, D(t) =

[dsr(t)] ∈ R
p×m, for t ∈ R, i, j = 1, . . . ,n, r = 1, . . . ,m, s =

1, . . . , p; and T
i ∈ T is a type of variable order derivative def-

inition. We assume variable orders to be piece-wise constant
functions, i.e., for i = 1, . . . ,n

αi(t) = αν+1
i ∈ R for tν ≤ t < tν+1, ν = 0, . . . ,N −1,

where N ∈ N denotes the number of time-intervals.
System (3) can be approximated, with the discretization step

time h > 0, by the following numerical form
T
0 ∆α(l)

t x = A(l)x+B(l)u (4a)
y(l) =C(l)x+D(l)u, (4b)

where T
0 ∆α(l)

t x =
�
T

1
0 ∆α1(l)

t x1(l), . . . ,T
n

0 ∆αn(l)
t xn(l)

�T
∈R

n, and
T

i
0 ∆αi(l)

t xi(l) is a T
i-type difference, and l = 0, . . . ,k. The i j-th

entry of A(l) is al
i j = ai j(lh) ∈ R, the ir-th entry of B(l) is

bl
ir = bir(lh) ∈ R, the si-th entry of C(l) is cl

si = csi(lh) ∈ R,
and the sr-th entry of D(l) is dl

sr = dsr(lh) ∈ R.
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In the golf algorithm AGF the move (stroke) generating the best 
element from the neighborhood is to be determined. It follows 
from property 1 and Theorem 3 that while determination of 
neighborhood there are only the following types of moves to 
be considered:
	 (i)	� generating feasible solutions,
	 (ii)	� changing the order of operations on the critical path.
In addition, in the case of i-moves, the operations will be repo-
sitioned immediately before the first and after the last opera-
tion in the block. This method of generating the neighborhood 
is successfully used in the best algorithms for solving the the 
flexible job shop problem with criterion Cmax ([2, 4, 11]).

Attributes of generated solutions are stored in the MEM 
memory in the form of triplets (s, v, k). The elements s and v 
identify operations whereas k – the machine. In Step 1 of AGF 
algorithm for each triplet (s, v, k) in the MEM, memory from 
the set 
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THEOREM 3. If permutation β was generated from π ∈ Φ
by changing the order of certain internal operations of the
block, then the length of the cycle time T ◦(β )≥ T ◦(π).

Proof. The theorem is proved just in the same way as in case
of the block theorems for a wide class of scheduling problems
with the criterion Cmax, in particular for flexible job shop prob-
lem [4].

5. Golf algorithm
In this part we shortly present a new heuristic method of
searching the space of feasible solutions. Its basic element
is the neighborhood, i.e. the set of solutions generated by a
simple modification (moves) in the current solution. The idea
of determining the neigborhood is based on the game of golf.
This game, in large simplification, relies in carring out two
types of strokes (see fig. 4):

1. strong, transferring the ball to the further area of the golf
course, and

2. weak, whose aim is a direct transfer of the ball into the hole.

The game takes place in several rounds. The player uses some
knowledge (e.g. gets to know the topography of the playing
area) what enables him to improve the efficiency of the game).
Based on this idea we introduce two types of moves transform-

Fig. 4: Strokes in the game of golf.

ing the elements of the solution space

Γ,γ : Φ → Φ. (26)

The first of the moves Γ, corresponding to the strong stroke in
a game of golf, generates from π ∈ Φ the solution Γ(π) ∈ Φ
significantly different from it, causing diversification of explo-
ration. In case of move of γ , type the solution γ(π) ∈ Φ is
only little different from π (thus it corresponds to the weak
stroke) and causes intensification of exploration. By apply-
ing these moves it is possible to determine, depending on the
needs, neighborhoods which vary greatly.

We are considering the problem of minimizing the F func-
tion on the set Φ. Let S�� i S� be respectively the set of strong
and weak moves. If the transformation τ(π) = γ(Γ(π)), where
Γ ∈ S��, γ ∈ S�, π ∈ Φ, we can say that τ is a complex move
and we can put it down as τ = γ ◦Γ. Then the set

N (π) = {τ(π) : τ = γ ◦Γ, Γ ∈ S��,γ ∈ S�, π ∈ Φ} (27)

is golf neighborhood of the element π ∈Φ (see also [2]). While
generating it we will use the 3, theorem, i.e. we can omit the

moves changing the order of tasks within the block. The neigh-
borhood will be used in the algorithm based on the local search
method.

In the description of the algorithm, the search history
memory MEM is limited in length and supported in the
principle of the queue of FIFO. The AT R(π) function returns
attributes of the solutions π . The algorithm terminates after
execution of Maxiter iterations.

Golf algorithm (AGF)
Let π ∈ Φ be any starting solution;
πbest ← π; MEM ← 0; iter ← 0;
repeat

Step 1: Generate golf neighborhood N (π)
of the solution π omitting the elements,
whose attributes are on the MEM list;

Step 2: Determine the element β ∗ ∈ N (π) Such that
F(β ∗) = min{F(δ ) : δ ∈ N (π)};

if F(β ∗)< F(πbest), then πbest ← β ∗;
Step 3: Substitute MEM ← MEM∪AT R(β );
iter ← iter+1;

until iter < Maxiter;

Implementation of the golf algorithm requires defining of:

1. ’weak’ and ’strong’ moves, as well as sets of these moves
used to generate the neighborhood

2. determination of attribute moves and the principles of creat-
ing and using the MEM memory (it should protect against
returning to previously viewed areas of the solution space).

6. Golf algorithm for CFJS problem
One of the most important elements of algorithms based on
the local search methods is the neighborhood. In case of task
scheduling problems for which solutions are represented by
permutations, the elements of the neighborhood are usually
generated by swapping or moving the elements in the permuta-
tion. In the considered problem of minimizing the cycle time,
solutions are arrangements of a permutation of operations on
individual machines.

Changing of the order of operations on any machine un-
doubtedly does not change the assignment of operations to ma-
chines. Therefore, it is necessary to introduce a mechanism of
reallocating the operations to machines. In the case of the golf
algorithm course, this change will be implemented by a strong
stroke. In contrast, weak stroke will cause the change in the
order of operations on a machine. Below there is an detailed
description of both moves.

Let π = (π1,π2, . . . ,πm) be a certain solution of the CJFS
problem. Therefore, on a machine Mi ∈ M there are executed
operations from the set O i in the order πi. We consider two
machines Mk,Ml from the same nest. While generating the
neighborhood of π we will use two types of moves:

1. Insert (in short i-move) ika,b the equivalent of the weak
stroke. This moves depicts the element πk(a), from position a
to position b in πk, generating permutation ika,b(π) = β (Mk ∈
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(π) there are solutions removed in which operations 
s and v are performed on the machine k in the order s before v.

In Step 3 there is an addition of the attributes of the selected 
element from the neighborhood into MEM memory. If the exe-
cution of the complex move τ causes transfer of the operations 
π l(a) from machine Ml on position b on machine Mk, then to 
MEM memory the following three are added:

–– (πk(b ¡ 1), πk(a), k) for k = l, a > b,
–– (πk(a), πk(a + 1), k) for k = l, a < b,
–– (πk(b ¡ 1), πk(a), k) and (πk(a), πk(b + 1), k) for k  6= l.

7.	 Strategy of neighborhood search

In the algorithms based on the search of the solution space the 
procedure for determination of the value of the objective func-
tion has a major impact on the running time of the algorithm. 
In case of the considered in the work problem determination 
of the minimum cycle time (for a single solution) has a com-
putational complexity O(om2). Thus, instead of calculating the 
exact value of the cycle time, we will use lower bound which 
is determined much faster.

7.1. Lower bound of the minimum cycle time. Any move 
τ  2 

Minimal cycle time determination and golf neighborhood . . .

M , 1 ≤ a,b ≤ nk) such that βl = πl , l = 1,2, . . . ,k − 1,k +
1, . . . ,n) and if b ≥ a, then

βk(l) =




πk(l), if 1 ≤ l < a∨b < l ≤ nk,

πk(l +1), if a ≤ l < b,
πk(a), if l = b.

It is similar when b < a.
The set of i-moves of operation s is denoted by Is, whereas by
I (π) = ∑s∈O Is The set of all such moves.
2. Transfer (in short t-move) tk,l

a the equivalent of strong stroke.
It transfers the operation πk(a) from k-th machine on the last
position on l-th machine (machines k, l are from the same nest).
In this case tk,l

a (π) = β , where

βs = πs, s �= k, l, s = 1,2, . . . ,m.

Moreover, operation πk(a) is removed from k-th machine, i.e.

βk( j) = πk( j), j = 1,2, . . .a−1,

βk( j) = πk( j+1), j = a,a+1 . . . ,nk −1,

and then we put the operation on the last position on the l-th
machine, i.e.

βl( j) = πl( j), j = 1,2, . . . ,nl , and πl(nl +1) = πk(a).

There are also swaps nk ← nk − 1 and nl ← nl + 1 per-
formed. The set Ts includes t-moves of operation s, and
T (π) = ∑s∈O Ts is the set of all such moves.

According to the definition (27) the neighborhood N (π) is
generated by the compilation of all i-moves and t-moves, i.e.

N (π) = {τ(π) : i◦ t, i ∈ I (π), t ∈ T (π)}.

In the golf algorithm AGF the move (stroke) generating the
best element from the neighborhood is to be determined. It fol-
lows from property 1 and theorem 3 that while determination
of neighborhood there are only the following types of moves
to be considered:

(i) generating feasible solutions,
(ii) changing the order of operations on the critical path.

In addition, in the case of i-moves, the operations will be repo-
sitioned immediately before the first and after the last opera-
tion in the block. This method of generating the neighborhood
is successfully used in the best algorithms for solving the the
flexible job shop problem with criterion Cmax ( [2, 4, 11]).

Attributes of generated solutions are stored in the MEM
memory in the form of triplets (s,v,k). The elements s and v
identify operations whereas k - the machine. In step 1 of AGF
algorithm for each triplet (s,v,k) in the MEM, memory from
the set N (π) there are solutions removed in which operations
s and v are performed on the machine k in the order s before
v. In Step 3 there is an addition of the attributes of the selected
element from the neighborhood into MEM memory. If the exe-
cution of the complex move τ causes transfer of the operations
πl(a) from machine Ml on position b on machine Mk, then to
MEM memory the following three are added:

- (πk(b−1),πk(a),k) for k = l, a > b,
- (πk(a),πk(a+1),k) for k = l, a < b,
- (πk(b−1),πk(a),k) and (πk(a),πk(b+1),k) for k �= l.

7. Strategy of neighborhood search
In the algorithms based on the search of the solution space the
procedure for determination of the value of the objective func-
tion has a major impact on the running time of the algorithm.
In case of the considered in the work problem determination of
the minimum cycle time (for a single solution) has a compu-
tational complexity O(om2). Thus, instead of calculating the
exact value of the cycle time, we will use lower bound which
is determined much faster.

7.1. Lower bound of the minimum cycle time Any move
τ ∈ I (π) ∪T (π) can be unambiguously represented by a
triple v = (i,k,s) (i ∈ O,k ∈ M ,s = 1,2, . . . ,n). Its execution
can be divided into two stages:

(i) removal of operation i,
(ii) inserting of operation i on position s on the machine k.

Let α = (α1,α2, . . . ,αm) be a solution generated from π in
the first stage, whereas β = (β1,β2, . . . ,βm) during the second
stage. In the first component of the cyclic graph G⊕(α) we
define certain paths (more precisely - the length of these paths,
i.e. the sum of the weights of all vertices):

1. Rl( j) (l ∈ M , j ∈ O) - length of the longest path from the
vertex αl(1) to vertex j,

2. Ql( j) we designate the length of the longest path from vertex
j to vertex representing operation αl(nl).

The value of the formula

LBl(π,v) = max{Rl(αk(s−1)),Rl(v)− pv}+

+max{Ql(αk(s)),Ql(v)− pv}+ pv} (28)

is the length of the longest path in the graph G⊕(β ), from ver-
tex αl(1) do αl(nl) passing through vertex i.

LEMMA 1. If β was generated from the π ∈ Φ by making
a move v = (i,k,s) ∈ I (π)∪T (π), then the minimum cycle
time

T o(β )≥ LB(α) = max
l∈M

LBl(α). (29)

Proof. For the proof it is enough to note that the LBl(π,v) is
equal to the length of the longest path from the vertex βl(1)
do βl(nl) passing through the vertex representing operation i.
Since LBl(π,v) is equal to the length of one of the paths from
the vertex βl(1) to βl(nl) (not necessarily the longest one).
Therefore, LBl(π,v)≤ λβl(1),2 ≤ Λ∗ for l ∈ M , where λβl(1),2
and Λ∗ were determined for the solution β .

The set Z j(π) = {i◦ t : i ∈I j, t ∈T j} includes moves rep-
resenting the operation j ∈ O to another position or another
machine.

LEMMA 2. Computation of all the lower bounds of the cycle
time LB(π,v), v ∈ Z j(π), j ∈ O can be executed in time O(o ·
m).
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mation is given, respectively, by

B
0 Dα(t)

t x(t) = lim
h→0

η

∑
j=0

(−1) j

hα(t− jh)

�
α(t − jh)

j

�
x(t − jh)

and
B∆αl xl =

l

∑
j=0

(−1) j

hαl− j

�
αl− j

j

�
xl− j.

The D-type variable-order derivative and its discrete approxi-
mation is given, respectively, by

D
0 Dα(t)

t x(t) = lim
h→0

�
x(t)
hα(t) −

η

∑
j=1

(−1) j
�
−α(t)

j

�
D
0 Dα(t)

t− jhx(t)

�

and

D∆αl xl =
xl

hαl
−

l

∑
j=1

(−1) j
�
−αl

j

�
D∆αl− j xl− j.

The E -type variable-order derivative and its discrete approxi-
mation is given, respectively, by

E
0 Dα(t)

t x(t) = limh→0

�
x(t)
hα(t)

−∑η
j=1(−1) j�−α(t− jh)

j
� hα(t− jh)

hα(t)
E
0 Dα(t)

t− jhx(t)
�

and

E∆αl xl =
xl

hαl
−

l

∑
j=1

(−1) j
�
−αl− j

j

�
hαl− j

hαl
∆αl− j xl− j.

The main motivation of considering the above definitions
of fractional variable order derivatives is a fact, that they are
widely presented in literature and can be applied in physi-
cal systems. In [22], the A -type of fractional variable order
derivative was successfully used to design the variable order
PD controller in robot arm control. In [23], the heat trans-
fer process in specific grid-holes media whose geometry is
changed in time was modeled by a new D-type definition.
Moreover, these definitions posses mutual duality properties
described in [24], which can be adapt to solve the fractional
variable order differential equations (see [21]).

2.2. Matrix forms of fractional variable order differences
The matrix form of the fractional constant order difference (1)
is given as follows ([25, 26]):




∆α x0

∆α x1

∆α x2
...

∆α xk




=W (α,k)




x0

x1

x2
...

xk



,

where

W (α,k) =




h−α 0 0 . . . 0
wα ,1 h−α 0 . . . 0
wα ,2 wα ,1 h−α . . . 0
wα ,3 wα ,2 wα ,1 . . . 0

...
...

...
...

...
wα ,k wα ,k−1 wα ,k−2 . . . h−α




,

W (α,k) ∈ R
(k+1)×(k+1), and

wα ,l =
(−1)l�α

l
�

hα , l = 0, . . . ,k. (2)

Let us define the 4-tuple T = (A ,B,D ,E ), where Tℓ is
the ℓ-th element of T and denotes a type of variable order
derivative (difference). The matrix numerical forms of the al-
ready mentioned variable order differences A , B, D , E are
the following




Tℓ∆α0 x0
Tℓ∆α1 x1
Tℓ∆α2 x2

...
Tℓ∆αk xk




= TℓW (ᾱ,k)




x0

x1

x2
...

xk



, ℓ= 1, . . .4,

where the matrices TℓW (ᾱ,k) ∈ R
(k+1)×(k+1), with ᾱ =

(α0, . . . ,αk), and ℓ= 1, . . .4, are already defined in [18, 27].

3. Solution of linear control system in state-space
form

Recall the 4-tuple T = (A ,B,D ,E ) and define other quadru-
ple T̃ = (D ,E ,A ,B), where Tℓ and T̃ℓ denote the ℓ-th ele-
ments of T and T̃ , respectively. We also define two n-tuples
T= (T1, . . . ,Tn), where T

i ∈ T , and T̃= (T̃1, . . . , T̃n), where
T̃

i ∈ T̃ , in both cases i = 1, . . . ,n, and such that if Ti = Tℓ

then T̃
i = T̃ℓ for some ℓ ∈ {1, . . . ,4}.

3.1. Time-variant control system Now, consider a time-
variant non-commensurate fractional variable order system

T
0 Dα(t)

t x = A(t)x+B(t)u, x(0) = 0 (3a)
y =C(t)x+D(t)u, (3b)

where x = x(t) ∈R
n, u = u(t) ∈R

m, y = y(t) ∈R
p, T0 Dα(t)

t x =�
T1
0 Dα1(t)

t x1(t), . . . ,Tn
0 Dαn(t)

t xn(t)
�T

∈ R
n, A(t) = [ai j(t)] ∈

R
n×n, B(t) = [bir(t)] ∈ R

n×m, C(t) = [csi(t)] ∈ R
p×n, D(t) =

[dsr(t)] ∈ R
p×m, for t ∈ R, i, j = 1, . . . ,n, r = 1, . . . ,m, s =

1, . . . , p; and T
i ∈ T is a type of variable order derivative def-

inition. We assume variable orders to be piece-wise constant
functions, i.e., for i = 1, . . . ,n

αi(t) = αν+1
i ∈ R for tν ≤ t < tν+1, ν = 0, . . . ,N −1,

where N ∈ N denotes the number of time-intervals.
System (3) can be approximated, with the discretization step

time h > 0, by the following numerical form
T
0 ∆α(l)

t x = A(l)x+B(l)u (4a)
y(l) =C(l)x+D(l)u, (4b)

where T
0 ∆α(l)

t x =
�
T

1
0 ∆α1(l)

t x1(l), . . . ,T
n

0 ∆αn(l)
t xn(l)

�T
∈R

n, and
T

i
0 ∆αi(l)

t xi(l) is a T
i-type difference, and l = 0, . . . ,k. The i j-th

entry of A(l) is al
i j = ai j(lh) ∈ R, the ir-th entry of B(l) is

bl
ir = bir(lh) ∈ R, the si-th entry of C(l) is cl

si = csi(lh) ∈ R,
and the sr-th entry of D(l) is dl

sr = dsr(lh) ∈ R.

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

(π) can be unambiguously represented by a triple 
v = (i, k, s) (i 2 

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2017-00ZZ

Minimal cycle time determination and golf neighborhood generation
for the cyclic flexible job shop problem
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M – set of machines
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Sa – operation a starting time in 1-th MTS
Sl

a – operation a starting time in l-the MTS
T (π) – cycle time of solution π

T ◦(π) – minimal cycle time of solution π
T ∗ – optimal cycle time

1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:

∗e-mail: wojciech.bozejko@pwr.edu.pl

(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for

1

, k 2 
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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, s = 1, 2, …, n). Its execution can be 
divided into two stages:
	 (i)	� removal of operation i,
	 (ii)	� inserting of operation i on position s on the machine k.
Let α = (α1, α2, …, αm) be a solution generated from π in the 
first stage, whereas β = (β1, β 2, …, βm) during the second 
stage. In the first component of the cyclic graph G©(α) we 
define certain paths (more precisely – the length of these paths, 
i.e. the sum of the weights of all vertices):
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Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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Abstract. In the work there was a problem of scheduling operations in the cyclic flexible job shop system considered. There was also
presented the new, very fast method of determining the cycle time for any order of tasks on machines. It is based on the analysis of the paths
in the graph representing the examined problem. The theorems concerning specific properties of the graph were proven. They have been
used in the construction of the heuristic algorithm searching the solutions space by using the so-called golf neighborhood, whose generation
is similar to the game of golf, which helps to intensify and diversify calculations. The conducted computational experiments fully confirmed
the effectiveness of the proposed method. The proposed methods and properties can be adapted and used in the construction of local search
algorithms for solving many other optimization problems.
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al – l-th copy of operation a in l-th MTS

Ca – operation a completion time in 1-th MTS
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Sa – operation a starting time in 1-th MTS
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a – operation a starting time in l-the MTS
T (π) – cycle time of solution π

T ◦(π) – minimal cycle time of solution π
T ∗ – optimal cycle time

1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for

1

) – length of the longest path from the 
vertex αl(1) to vertex j,

2. 	Ql( j) we designate the length of the longest path from 
vertex j to vertex representing operation αl(nl).

The value of the formula

	
LBl(π, v) = max{Rl(αk(s ¡ 1)),  Rl(v) ¡ pv} +
LBl(π, v) + max{Ql(αk(s)),  Ql(v) ¡ pv} + pv}

� (28)

is the length of the longest path in the graph G©(β), from vertex 
αl(1) do αl(nl) passing through vertex i.

Lemma 1. If β was generated from the π 2 Φ by making a move 
v = (i, k, s) 2 

Minimal cycle time determination and golf neighborhood . . .

M , 1 ≤ a,b ≤ nk) such that βl = πl , l = 1,2, . . . ,k − 1,k +
1, . . . ,n) and if b ≥ a, then

βk(l) =




πk(l), if 1 ≤ l < a∨b < l ≤ nk,

πk(l +1), if a ≤ l < b,
πk(a), if l = b.

It is similar when b < a.
The set of i-moves of operation s is denoted by Is, whereas by
I (π) = ∑s∈O Is The set of all such moves.
2. Transfer (in short t-move) tk,l

a the equivalent of strong stroke.
It transfers the operation πk(a) from k-th machine on the last
position on l-th machine (machines k, l are from the same nest).
In this case tk,l

a (π) = β , where

βs = πs, s �= k, l, s = 1,2, . . . ,m.

Moreover, operation πk(a) is removed from k-th machine, i.e.

βk( j) = πk( j), j = 1,2, . . .a−1,

βk( j) = πk( j+1), j = a,a+1 . . . ,nk −1,

and then we put the operation on the last position on the l-th
machine, i.e.

βl( j) = πl( j), j = 1,2, . . . ,nl , and πl(nl +1) = πk(a).

There are also swaps nk ← nk − 1 and nl ← nl + 1 per-
formed. The set Ts includes t-moves of operation s, and
T (π) = ∑s∈O Ts is the set of all such moves.

According to the definition (27) the neighborhood N (π) is
generated by the compilation of all i-moves and t-moves, i.e.

N (π) = {τ(π) : i◦ t, i ∈ I (π), t ∈ T (π)}.

In the golf algorithm AGF the move (stroke) generating the
best element from the neighborhood is to be determined. It fol-
lows from property 1 and theorem 3 that while determination
of neighborhood there are only the following types of moves
to be considered:

(i) generating feasible solutions,
(ii) changing the order of operations on the critical path.

In addition, in the case of i-moves, the operations will be repo-
sitioned immediately before the first and after the last opera-
tion in the block. This method of generating the neighborhood
is successfully used in the best algorithms for solving the the
flexible job shop problem with criterion Cmax ( [2, 4, 11]).

Attributes of generated solutions are stored in the MEM
memory in the form of triplets (s,v,k). The elements s and v
identify operations whereas k - the machine. In step 1 of AGF
algorithm for each triplet (s,v,k) in the MEM, memory from
the set N (π) there are solutions removed in which operations
s and v are performed on the machine k in the order s before
v. In Step 3 there is an addition of the attributes of the selected
element from the neighborhood into MEM memory. If the exe-
cution of the complex move τ causes transfer of the operations
πl(a) from machine Ml on position b on machine Mk, then to
MEM memory the following three are added:

- (πk(b−1),πk(a),k) for k = l, a > b,
- (πk(a),πk(a+1),k) for k = l, a < b,
- (πk(b−1),πk(a),k) and (πk(a),πk(b+1),k) for k �= l.

7. Strategy of neighborhood search
In the algorithms based on the search of the solution space the
procedure for determination of the value of the objective func-
tion has a major impact on the running time of the algorithm.
In case of the considered in the work problem determination of
the minimum cycle time (for a single solution) has a compu-
tational complexity O(om2). Thus, instead of calculating the
exact value of the cycle time, we will use lower bound which
is determined much faster.

7.1. Lower bound of the minimum cycle time Any move
τ ∈ I (π) ∪T (π) can be unambiguously represented by a
triple v = (i,k,s) (i ∈ O,k ∈ M ,s = 1,2, . . . ,n). Its execution
can be divided into two stages:

(i) removal of operation i,
(ii) inserting of operation i on position s on the machine k.

Let α = (α1,α2, . . . ,αm) be a solution generated from π in
the first stage, whereas β = (β1,β2, . . . ,βm) during the second
stage. In the first component of the cyclic graph G⊕(α) we
define certain paths (more precisely - the length of these paths,
i.e. the sum of the weights of all vertices):

1. Rl( j) (l ∈ M , j ∈ O) - length of the longest path from the
vertex αl(1) to vertex j,

2. Ql( j) we designate the length of the longest path from vertex
j to vertex representing operation αl(nl).

The value of the formula

LBl(π,v) = max{Rl(αk(s−1)),Rl(v)− pv}+

+max{Ql(αk(s)),Ql(v)− pv}+ pv} (28)

is the length of the longest path in the graph G⊕(β ), from ver-
tex αl(1) do αl(nl) passing through vertex i.

LEMMA 1. If β was generated from the π ∈ Φ by making
a move v = (i,k,s) ∈ I (π)∪T (π), then the minimum cycle
time

T o(β )≥ LB(α) = max
l∈M

LBl(α). (29)

Proof. For the proof it is enough to note that the LBl(π,v) is
equal to the length of the longest path from the vertex βl(1)
do βl(nl) passing through the vertex representing operation i.
Since LBl(π,v) is equal to the length of one of the paths from
the vertex βl(1) to βl(nl) (not necessarily the longest one).
Therefore, LBl(π,v)≤ λβl(1),2 ≤ Λ∗ for l ∈ M , where λβl(1),2
and Λ∗ were determined for the solution β .

The set Z j(π) = {i◦ t : i ∈I j, t ∈T j} includes moves rep-
resenting the operation j ∈ O to another position or another
machine.

LEMMA 2. Computation of all the lower bounds of the cycle
time LB(π,v), v ∈ Z j(π), j ∈ O can be executed in time O(o ·
m).
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mation is given, respectively, by

B
0 Dα(t)

t x(t) = lim
h→0

η

∑
j=0

(−1) j

hα(t− jh)

�
α(t − jh)

j

�
x(t − jh)

and
B∆αl xl =

l

∑
j=0

(−1) j

hαl− j

�
αl− j

j

�
xl− j.

The D-type variable-order derivative and its discrete approxi-
mation is given, respectively, by

D
0 Dα(t)

t x(t) = lim
h→0

�
x(t)
hα(t) −

η

∑
j=1

(−1) j
�
−α(t)

j

�
D
0 Dα(t)

t− jhx(t)

�

and

D∆αl xl =
xl

hαl
−

l

∑
j=1

(−1) j
�
−αl

j

�
D∆αl− j xl− j.

The E -type variable-order derivative and its discrete approxi-
mation is given, respectively, by

E
0 Dα(t)

t x(t) = limh→0

�
x(t)
hα(t)

−∑η
j=1(−1) j�−α(t− jh)

j
� hα(t− jh)

hα(t)
E
0 Dα(t)

t− jhx(t)
�

and

E∆αl xl =
xl

hαl
−

l

∑
j=1

(−1) j
�
−αl− j

j

�
hαl− j

hαl
∆αl− j xl− j.

The main motivation of considering the above definitions
of fractional variable order derivatives is a fact, that they are
widely presented in literature and can be applied in physi-
cal systems. In [22], the A -type of fractional variable order
derivative was successfully used to design the variable order
PD controller in robot arm control. In [23], the heat trans-
fer process in specific grid-holes media whose geometry is
changed in time was modeled by a new D-type definition.
Moreover, these definitions posses mutual duality properties
described in [24], which can be adapt to solve the fractional
variable order differential equations (see [21]).

2.2. Matrix forms of fractional variable order differences
The matrix form of the fractional constant order difference (1)
is given as follows ([25, 26]):




∆α x0

∆α x1

∆α x2
...

∆α xk




=W (α,k)




x0

x1

x2
...

xk



,

where

W (α,k) =




h−α 0 0 . . . 0
wα ,1 h−α 0 . . . 0
wα ,2 wα ,1 h−α . . . 0
wα ,3 wα ,2 wα ,1 . . . 0

...
...

...
...

...
wα ,k wα ,k−1 wα ,k−2 . . . h−α




,

W (α,k) ∈ R
(k+1)×(k+1), and

wα ,l =
(−1)l�α

l
�

hα , l = 0, . . . ,k. (2)

Let us define the 4-tuple T = (A ,B,D ,E ), where Tℓ is
the ℓ-th element of T and denotes a type of variable order
derivative (difference). The matrix numerical forms of the al-
ready mentioned variable order differences A , B, D , E are
the following




Tℓ∆α0 x0
Tℓ∆α1 x1
Tℓ∆α2 x2

...
Tℓ∆αk xk




= TℓW (ᾱ,k)




x0

x1

x2
...

xk



, ℓ= 1, . . .4,

where the matrices TℓW (ᾱ,k) ∈ R
(k+1)×(k+1), with ᾱ =

(α0, . . . ,αk), and ℓ= 1, . . .4, are already defined in [18, 27].

3. Solution of linear control system in state-space
form

Recall the 4-tuple T = (A ,B,D ,E ) and define other quadru-
ple T̃ = (D ,E ,A ,B), where Tℓ and T̃ℓ denote the ℓ-th ele-
ments of T and T̃ , respectively. We also define two n-tuples
T= (T1, . . . ,Tn), where T

i ∈ T , and T̃= (T̃1, . . . , T̃n), where
T̃

i ∈ T̃ , in both cases i = 1, . . . ,n, and such that if Ti = Tℓ

then T̃
i = T̃ℓ for some ℓ ∈ {1, . . . ,4}.

3.1. Time-variant control system Now, consider a time-
variant non-commensurate fractional variable order system

T
0 Dα(t)

t x = A(t)x+B(t)u, x(0) = 0 (3a)
y =C(t)x+D(t)u, (3b)

where x = x(t) ∈R
n, u = u(t) ∈R

m, y = y(t) ∈R
p, T0 Dα(t)

t x =�
T1
0 Dα1(t)

t x1(t), . . . ,Tn
0 Dαn(t)

t xn(t)
�T

∈ R
n, A(t) = [ai j(t)] ∈

R
n×n, B(t) = [bir(t)] ∈ R

n×m, C(t) = [csi(t)] ∈ R
p×n, D(t) =

[dsr(t)] ∈ R
p×m, for t ∈ R, i, j = 1, . . . ,n, r = 1, . . . ,m, s =

1, . . . , p; and T
i ∈ T is a type of variable order derivative def-

inition. We assume variable orders to be piece-wise constant
functions, i.e., for i = 1, . . . ,n

αi(t) = αν+1
i ∈ R for tν ≤ t < tν+1, ν = 0, . . . ,N −1,

where N ∈ N denotes the number of time-intervals.
System (3) can be approximated, with the discretization step

time h > 0, by the following numerical form
T
0 ∆α(l)

t x = A(l)x+B(l)u (4a)
y(l) =C(l)x+D(l)u, (4b)

where T
0 ∆α(l)

t x =
�
T

1
0 ∆α1(l)

t x1(l), . . . ,T
n

0 ∆αn(l)
t xn(l)

�T
∈R

n, and
T

i
0 ∆αi(l)

t xi(l) is a T
i-type difference, and l = 0, . . . ,k. The i j-th

entry of A(l) is al
i j = ai j(lh) ∈ R, the ir-th entry of B(l) is

bl
ir = bir(lh) ∈ R, the si-th entry of C(l) is cl

si = csi(lh) ∈ R,
and the sr-th entry of D(l) is dl

sr = dsr(lh) ∈ R.
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1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for

1

LBl(α).� (29)
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Proof. For the proof it is enough to note that the LBl(π, v) is 
equal to the length of the longest path from the vertex β l(1) to 
β l(nl) passing through the vertex representing operation i. Since 
LBl(π , v) is equal to the length of one of the paths from the 
vertex β l(1) to β l(nl) (not necessarily the longest one). There-
fore, LBl(π, v) ∙ λβ l(1), 2 ∙ Λ¤ for l 2 
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Abstract. In the work there was a problem of scheduling operations in the cyclic flexible job shop system considered. There was also
presented the new, very fast method of determining the cycle time for any order of tasks on machines. It is based on the analysis of the paths
in the graph representing the examined problem. The theorems concerning specific properties of the graph were proven. They have been
used in the construction of the heuristic algorithm searching the solutions space by using the so-called golf neighborhood, whose generation
is similar to the game of golf, which helps to intensify and diversify calculations. The conducted computational experiments fully confirmed
the effectiveness of the proposed method. The proposed methods and properties can be adapted and used in the construction of local search
algorithms for solving many other optimization problems.

Key words: cyclic scheduling, metaheuristic, discrete optimization

List of main symbols
al – l-th copy of operation a in l-th MTS

Ca – operation a completion time in 1-th MTS
G⊕(π) – graph for solution π of cyclic job shop

H(π) – graph for solution π of job shop problem
J – set of tasks
M – set of machines

MTS – Minimal Task Set
O – set of operations
π – solution (m-tuple of permutations)
πi – permutation of operations on i-th machine
Sa – operation a starting time in 1-th MTS
Sl

a – operation a starting time in l-the MTS
T (π) – cycle time of solution π

T ◦(π) – minimal cycle time of solution π
T ∗ – optimal cycle time

1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for

1

, where λβ l(1), 2 and Λ¤ 
were determined for the solution β.� □
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that the fractional h-sum of order α does not change the do-
main of the function and a∆−α

h x : (hN)a →R. Let us recall that
the Z-transform of a sequence {y(q)}q∈N0 is a complex func-
tion given by Y (z) := Z [y](z) = ∑∞

q=0 y(q)z−q , where z ∈ C

is a complex number for which the series ∑∞
q=0 y(q)z−q con-

verges absolutely. Then the inverse Z-transform addresses the
reverse problem, i.e., given a function Y (z) and a region of
convergence, find the signal y(q) whose Z-transform is Y (z)
and has the specified region of convergence. The presented
Z-transform involves, by definition, only the values y(q) of
the sequence {y(q)}q∈N0 . Note that since c(α)(q) = (−1)q(α

q
)
,

then for |z|> 1 we have

Z

[
c(α)

]
(z) =

∞

∑
q=0

(−1)q
(

α
q

)
z−q=

∞

∑
g=0

(
q−α −1

q

)
z−q

=
(
1− z−1)α

(1)

and
Z

−1
[(

1− z−1)α]
= c(α)

. (2)

The operator a∆−α
h is defined as the convolution of two se-

quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

PROPOSITION 1. For t = a + qh ∈ (hZ)a let us define
y(q) :=

(
a∆−α

h x
)
(t) and x(q) := x(a+qh). Then

Z [y] (z) = hα (
1− z−1)−α X(z) , (3)

where X(z) := Z [x] (z).

For h = 1 the equation (3) can be rewritten as
Z

[
a∆−α

1 x
]
(z) =

(
1− z−1)−α X(z) , where

(
a∆−α

1 x
)
(a+q)=:

y(q) is treated as a sequence.
Let s ∈ N a

h
and x̃ : N a

h
→ R be defined by x̃(s) := x(sh).

Then s = a
h +q, q ∈ N0 and x(q) = x̃

( a
h +q

)
= x(a+qh) and

of course x : N0 → R. Note that by (3) we get

Z [y] = hα
Z [ỹ] , (4)

where ỹ(q) :=
(

a
h
∆−α

1 x̃
)
( a

h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.

LEMMA 1 [27]. Let x : (hN)a → R and α > 0. Then(
a∆−α

h x
)
(t) = hα

(
a
h
∆−α

1 x̃
)( t

h
)
, where t ∈ (hN)a and x̃(s) =

x(sh).

For simplicity of notation if h = 1, then we write:
a
h
∆−α := a

h
∆−α

1 .

2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by

(
a∆α

h x
)
(t) :=(

∆h

(
a∆−(1−α)

h x
))

(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
1 .

Using the properties of Z-transform the following proposi-
tion can be proven.

PROPOSITION 2 [30]. For a ∈ R, α ∈ (0,1] let us define
y(q) :=

(
a∆α

h x
)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = zh−α (

1− z−1)α X(z)− zh−αx(a) , (5)
where X(z) = Z [x](z) and x(q) := x(a+qh).

For α = 1 we have Z [y] (z) = 1
h ((z−1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

LEMMA 2 [27]. Let x : (hN)a → R and α > 0. Then,(
a∆α

h x
)
(t) = h−α( a

h
∆α x̃)( t

h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by

(
a∆̃α

h x
)
(t) := h−α

t−a
h

∑
q=0

c(α)(q)x(t −qh) . (6)

For simplicity of the notation, if h = 1, then we write:
a∆̃α :=a ∆̃α

1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
(

a∆̃α
h x

)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
a∆̃α

h x
)
(a+qh) = h−α

(
0∆̃α x

)
(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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M , 1 ≤ a,b ≤ nk) such that βl = πl , l = 1,2, . . . ,k − 1,k +
1, . . . ,n) and if b ≥ a, then

βk(l) =




πk(l), if 1 ≤ l < a∨b < l ≤ nk,

πk(l +1), if a ≤ l < b,
πk(a), if l = b.

It is similar when b < a.
The set of i-moves of operation s is denoted by Is, whereas by
I (π) = ∑s∈O Is The set of all such moves.
2. Transfer (in short t-move) tk,l

a the equivalent of strong stroke.
It transfers the operation πk(a) from k-th machine on the last
position on l-th machine (machines k, l are from the same nest).
In this case tk,l

a (π) = β , where

βs = πs, s �= k, l, s = 1,2, . . . ,m.

Moreover, operation πk(a) is removed from k-th machine, i.e.

βk( j) = πk( j), j = 1,2, . . .a−1,

βk( j) = πk( j+1), j = a,a+1 . . . ,nk −1,

and then we put the operation on the last position on the l-th
machine, i.e.

βl( j) = πl( j), j = 1,2, . . . ,nl , and πl(nl +1) = πk(a).

There are also swaps nk ← nk − 1 and nl ← nl + 1 per-
formed. The set Ts includes t-moves of operation s, and
T (π) = ∑s∈O Ts is the set of all such moves.

According to the definition (27) the neighborhood N (π) is
generated by the compilation of all i-moves and t-moves, i.e.

N (π) = {τ(π) : i◦ t, i ∈ I (π), t ∈ T (π)}.

In the golf algorithm AGF the move (stroke) generating the
best element from the neighborhood is to be determined. It fol-
lows from property 1 and theorem 3 that while determination
of neighborhood there are only the following types of moves
to be considered:

(i) generating feasible solutions,
(ii) changing the order of operations on the critical path.

In addition, in the case of i-moves, the operations will be repo-
sitioned immediately before the first and after the last opera-
tion in the block. This method of generating the neighborhood
is successfully used in the best algorithms for solving the the
flexible job shop problem with criterion Cmax ( [2, 4, 11]).

Attributes of generated solutions are stored in the MEM
memory in the form of triplets (s,v,k). The elements s and v
identify operations whereas k - the machine. In step 1 of AGF
algorithm for each triplet (s,v,k) in the MEM, memory from
the set N (π) there are solutions removed in which operations
s and v are performed on the machine k in the order s before
v. In Step 3 there is an addition of the attributes of the selected
element from the neighborhood into MEM memory. If the exe-
cution of the complex move τ causes transfer of the operations
πl(a) from machine Ml on position b on machine Mk, then to
MEM memory the following three are added:

- (πk(b−1),πk(a),k) for k = l, a > b,
- (πk(a),πk(a+1),k) for k = l, a < b,
- (πk(b−1),πk(a),k) and (πk(a),πk(b+1),k) for k �= l.

7. Strategy of neighborhood search
In the algorithms based on the search of the solution space the
procedure for determination of the value of the objective func-
tion has a major impact on the running time of the algorithm.
In case of the considered in the work problem determination of
the minimum cycle time (for a single solution) has a compu-
tational complexity O(om2). Thus, instead of calculating the
exact value of the cycle time, we will use lower bound which
is determined much faster.

7.1. Lower bound of the minimum cycle time Any move
τ ∈ I (π) ∪T (π) can be unambiguously represented by a
triple v = (i,k,s) (i ∈ O,k ∈ M ,s = 1,2, . . . ,n). Its execution
can be divided into two stages:

(i) removal of operation i,
(ii) inserting of operation i on position s on the machine k.

Let α = (α1,α2, . . . ,αm) be a solution generated from π in
the first stage, whereas β = (β1,β2, . . . ,βm) during the second
stage. In the first component of the cyclic graph G⊕(α) we
define certain paths (more precisely - the length of these paths,
i.e. the sum of the weights of all vertices):

1. Rl( j) (l ∈ M , j ∈ O) - length of the longest path from the
vertex αl(1) to vertex j,

2. Ql( j) we designate the length of the longest path from vertex
j to vertex representing operation αl(nl).

The value of the formula

LBl(π,v) = max{Rl(αk(s−1)),Rl(v)− pv}+

+max{Ql(αk(s)),Ql(v)− pv}+ pv} (28)

is the length of the longest path in the graph G⊕(β ), from ver-
tex αl(1) do αl(nl) passing through vertex i.

LEMMA 1. If β was generated from the π ∈ Φ by making
a move v = (i,k,s) ∈ I (π)∪T (π), then the minimum cycle
time

T o(β )≥ LB(α) = max
l∈M

LBl(α). (29)

Proof. For the proof it is enough to note that the LBl(π,v) is
equal to the length of the longest path from the vertex βl(1)
do βl(nl) passing through the vertex representing operation i.
Since LBl(π,v) is equal to the length of one of the paths from
the vertex βl(1) to βl(nl) (not necessarily the longest one).
Therefore, LBl(π,v)≤ λβl(1),2 ≤ Λ∗ for l ∈ M , where λβl(1),2
and Λ∗ were determined for the solution β .

The set Z j(π) = {i◦ t : i ∈I j, t ∈T j} includes moves rep-
resenting the operation j ∈ O to another position or another
machine.

LEMMA 2. Computation of all the lower bounds of the cycle
time LB(π,v), v ∈ Z j(π), j ∈ O can be executed in time O(o ·
m).
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mation is given, respectively, by

B
0 Dα(t)

t x(t) = lim
h→0

η

∑
j=0

(−1) j

hα(t− jh)

�
α(t − jh)

j

�
x(t − jh)

and
B∆αl xl =

l

∑
j=0

(−1) j

hαl− j

�
αl− j

j

�
xl− j.

The D-type variable-order derivative and its discrete approxi-
mation is given, respectively, by

D
0 Dα(t)

t x(t) = lim
h→0

�
x(t)
hα(t) −

η

∑
j=1

(−1) j
�
−α(t)

j

�
D
0 Dα(t)

t− jhx(t)

�

and

D∆αl xl =
xl

hαl
−

l

∑
j=1

(−1) j
�
−αl

j

�
D∆αl− j xl− j.

The E -type variable-order derivative and its discrete approxi-
mation is given, respectively, by

E
0 Dα(t)

t x(t) = limh→0

�
x(t)
hα(t)

−∑η
j=1(−1) j�−α(t− jh)

j
� hα(t− jh)

hα(t)
E
0 Dα(t)

t− jhx(t)
�

and

E∆αl xl =
xl

hαl
−

l

∑
j=1

(−1) j
�
−αl− j

j

�
hαl− j

hαl
∆αl− j xl− j.

The main motivation of considering the above definitions
of fractional variable order derivatives is a fact, that they are
widely presented in literature and can be applied in physi-
cal systems. In [22], the A -type of fractional variable order
derivative was successfully used to design the variable order
PD controller in robot arm control. In [23], the heat trans-
fer process in specific grid-holes media whose geometry is
changed in time was modeled by a new D-type definition.
Moreover, these definitions posses mutual duality properties
described in [24], which can be adapt to solve the fractional
variable order differential equations (see [21]).

2.2. Matrix forms of fractional variable order differences
The matrix form of the fractional constant order difference (1)
is given as follows ([25, 26]):




∆α x0

∆α x1

∆α x2
...

∆α xk




=W (α,k)




x0

x1

x2
...

xk



,

where

W (α,k) =




h−α 0 0 . . . 0
wα ,1 h−α 0 . . . 0
wα ,2 wα ,1 h−α . . . 0
wα ,3 wα ,2 wα ,1 . . . 0

...
...

...
...

...
wα ,k wα ,k−1 wα ,k−2 . . . h−α




,

W (α,k) ∈ R
(k+1)×(k+1), and

wα ,l =
(−1)l�α

l
�

hα , l = 0, . . . ,k. (2)

Let us define the 4-tuple T = (A ,B,D ,E ), where Tℓ is
the ℓ-th element of T and denotes a type of variable order
derivative (difference). The matrix numerical forms of the al-
ready mentioned variable order differences A , B, D , E are
the following




Tℓ∆α0 x0
Tℓ∆α1 x1
Tℓ∆α2 x2

...
Tℓ∆αk xk




= TℓW (ᾱ,k)




x0

x1

x2
...

xk



, ℓ= 1, . . .4,

where the matrices TℓW (ᾱ,k) ∈ R
(k+1)×(k+1), with ᾱ =

(α0, . . . ,αk), and ℓ= 1, . . .4, are already defined in [18, 27].

3. Solution of linear control system in state-space
form

Recall the 4-tuple T = (A ,B,D ,E ) and define other quadru-
ple T̃ = (D ,E ,A ,B), where Tℓ and T̃ℓ denote the ℓ-th ele-
ments of T and T̃ , respectively. We also define two n-tuples
T= (T1, . . . ,Tn), where T

i ∈ T , and T̃= (T̃1, . . . , T̃n), where
T̃

i ∈ T̃ , in both cases i = 1, . . . ,n, and such that if Ti = Tℓ

then T̃
i = T̃ℓ for some ℓ ∈ {1, . . . ,4}.

3.1. Time-variant control system Now, consider a time-
variant non-commensurate fractional variable order system

T
0 Dα(t)

t x = A(t)x+B(t)u, x(0) = 0 (3a)
y =C(t)x+D(t)u, (3b)

where x = x(t) ∈R
n, u = u(t) ∈R

m, y = y(t) ∈R
p, T0 Dα(t)

t x =�
T1
0 Dα1(t)

t x1(t), . . . ,Tn
0 Dαn(t)

t xn(t)
�T

∈ R
n, A(t) = [ai j(t)] ∈

R
n×n, B(t) = [bir(t)] ∈ R

n×m, C(t) = [csi(t)] ∈ R
p×n, D(t) =

[dsr(t)] ∈ R
p×m, for t ∈ R, i, j = 1, . . . ,n, r = 1, . . . ,m, s =

1, . . . , p; and T
i ∈ T is a type of variable order derivative def-

inition. We assume variable orders to be piece-wise constant
functions, i.e., for i = 1, . . . ,n

αi(t) = αν+1
i ∈ R for tν ≤ t < tν+1, ν = 0, . . . ,N −1,

where N ∈ N denotes the number of time-intervals.
System (3) can be approximated, with the discretization step

time h > 0, by the following numerical form
T
0 ∆α(l)

t x = A(l)x+B(l)u (4a)
y(l) =C(l)x+D(l)u, (4b)

where T
0 ∆α(l)

t x =
�
T

1
0 ∆α1(l)

t x1(l), . . . ,T
n

0 ∆αn(l)
t xn(l)

�T
∈R

n, and
T

i
0 ∆αi(l)

t xi(l) is a T
i-type difference, and l = 0, . . . ,k. The i j-th

entry of A(l) is al
i j = ai j(lh) ∈ R, the ir-th entry of B(l) is

bl
ir = bir(lh) ∈ R, the si-th entry of C(l) is cl

si = csi(lh) ∈ R,
and the sr-th entry of D(l) is dl

sr = dsr(lh) ∈ R.
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Minimal cycle time determination and golf neighborhood generation
for the cyclic flexible job shop problem
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Abstract. In the work there was a problem of scheduling operations in the cyclic flexible job shop system considered. There was also
presented the new, very fast method of determining the cycle time for any order of tasks on machines. It is based on the analysis of the paths
in the graph representing the examined problem. The theorems concerning specific properties of the graph were proven. They have been
used in the construction of the heuristic algorithm searching the solutions space by using the so-called golf neighborhood, whose generation
is similar to the game of golf, which helps to intensify and diversify calculations. The conducted computational experiments fully confirmed
the effectiveness of the proposed method. The proposed methods and properties can be adapted and used in the construction of local search
algorithms for solving many other optimization problems.

Key words: cyclic scheduling, metaheuristic, discrete optimization

List of main symbols
al – l-th copy of operation a in l-th MTS

Ca – operation a completion time in 1-th MTS
G⊕(π) – graph for solution π of cyclic job shop

H(π) – graph for solution π of job shop problem
J – set of tasks
M – set of machines

MTS – Minimal Task Set
O – set of operations
π – solution (m-tuple of permutations)
πi – permutation of operations on i-th machine
Sa – operation a starting time in 1-th MTS
Sl

a – operation a starting time in l-the MTS
T (π) – cycle time of solution π

T ◦(π) – minimal cycle time of solution π
T ∗ – optimal cycle time

1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:

∗e-mail: wojciech.bozejko@pwr.edu.pl

(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for

1
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that the fractional h-sum of order α does not change the do-
main of the function and a∆−α

h x : (hN)a →R. Let us recall that
the Z-transform of a sequence {y(q)}q∈N0 is a complex func-
tion given by Y (z) := Z [y](z) = ∑∞

q=0 y(q)z−q , where z ∈ C

is a complex number for which the series ∑∞
q=0 y(q)z−q con-

verges absolutely. Then the inverse Z-transform addresses the
reverse problem, i.e., given a function Y (z) and a region of
convergence, find the signal y(q) whose Z-transform is Y (z)
and has the specified region of convergence. The presented
Z-transform involves, by definition, only the values y(q) of
the sequence {y(q)}q∈N0 . Note that since c(α)(q) = (−1)q(α

q
)
,

then for |z|> 1 we have

Z

[
c(α)

]
(z) =

∞

∑
q=0

(−1)q
(

α
q

)
z−q=

∞

∑
g=0

(
q−α −1

q

)
z−q

=
(
1− z−1)α

(1)

and
Z

−1
[(

1− z−1)α]
= c(α)

. (2)

The operator a∆−α
h is defined as the convolution of two se-

quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

PROPOSITION 1. For t = a + qh ∈ (hZ)a let us define
y(q) :=

(
a∆−α

h x
)
(t) and x(q) := x(a+qh). Then

Z [y] (z) = hα (
1− z−1)−α X(z) , (3)

where X(z) := Z [x] (z).

For h = 1 the equation (3) can be rewritten as
Z

[
a∆−α

1 x
]
(z) =

(
1− z−1)−α X(z) , where

(
a∆−α

1 x
)
(a+q)=:

y(q) is treated as a sequence.
Let s ∈ N a

h
and x̃ : N a

h
→ R be defined by x̃(s) := x(sh).

Then s = a
h +q, q ∈ N0 and x(q) = x̃

( a
h +q

)
= x(a+qh) and

of course x : N0 → R. Note that by (3) we get

Z [y] = hα
Z [ỹ] , (4)

where ỹ(q) :=
(

a
h
∆−α

1 x̃
)
( a

h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.

LEMMA 1 [27]. Let x : (hN)a → R and α > 0. Then(
a∆−α

h x
)
(t) = hα

(
a
h
∆−α

1 x̃
)( t

h
)
, where t ∈ (hN)a and x̃(s) =

x(sh).

For simplicity of notation if h = 1, then we write:
a
h
∆−α := a

h
∆−α

1 .

2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by

(
a∆α

h x
)
(t) :=(

∆h

(
a∆−(1−α)

h x
))

(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
1 .

Using the properties of Z-transform the following proposi-
tion can be proven.

PROPOSITION 2 [30]. For a ∈ R, α ∈ (0,1] let us define
y(q) :=

(
a∆α

h x
)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = zh−α (

1− z−1)α X(z)− zh−αx(a) , (5)
where X(z) = Z [x](z) and x(q) := x(a+qh).

For α = 1 we have Z [y] (z) = 1
h ((z−1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

LEMMA 2 [27]. Let x : (hN)a → R and α > 0. Then,(
a∆α

h x
)
(t) = h−α( a

h
∆α x̃)( t

h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by

(
a∆̃α

h x
)
(t) := h−α

t−a
h

∑
q=0

c(α)(q)x(t −qh) . (6)

For simplicity of the notation, if h = 1, then we write:
a∆̃α :=a ∆̃α

1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
(

a∆̃α
h x

)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
a∆̃α

h x
)
(a+qh) = h−α

(
0∆̃α x

)
(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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Abstract. In the work there was a problem of scheduling operations in the cyclic flexible job shop system considered. There was also
presented the new, very fast method of determining the cycle time for any order of tasks on machines. It is based on the analysis of the paths
in the graph representing the examined problem. The theorems concerning specific properties of the graph were proven. They have been
used in the construction of the heuristic algorithm searching the solutions space by using the so-called golf neighborhood, whose generation
is similar to the game of golf, which helps to intensify and diversify calculations. The conducted computational experiments fully confirmed
the effectiveness of the proposed method. The proposed methods and properties can be adapted and used in the construction of local search
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T (π) – cycle time of solution π

T ◦(π) – minimal cycle time of solution π
T ∗ – optimal cycle time

1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:

∗e-mail: wojciech.bozejko@pwr.edu.pl

(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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that the fractional h-sum of order α does not change the do-
main of the function and a∆−α

h x : (hN)a →R. Let us recall that
the Z-transform of a sequence {y(q)}q∈N0 is a complex func-
tion given by Y (z) := Z [y](z) = ∑∞

q=0 y(q)z−q , where z ∈ C

is a complex number for which the series ∑∞
q=0 y(q)z−q con-

verges absolutely. Then the inverse Z-transform addresses the
reverse problem, i.e., given a function Y (z) and a region of
convergence, find the signal y(q) whose Z-transform is Y (z)
and has the specified region of convergence. The presented
Z-transform involves, by definition, only the values y(q) of
the sequence {y(q)}q∈N0 . Note that since c(α)(q) = (−1)q(α

q
)
,

then for |z|> 1 we have

Z

[
c(α)

]
(z) =

∞

∑
q=0

(−1)q
(

α
q

)
z−q=

∞

∑
g=0

(
q−α −1

q

)
z−q

=
(
1− z−1)α

(1)

and
Z

−1
[(

1− z−1)α]
= c(α)

. (2)

The operator a∆−α
h is defined as the convolution of two se-

quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

PROPOSITION 1. For t = a + qh ∈ (hZ)a let us define
y(q) :=

(
a∆−α

h x
)
(t) and x(q) := x(a+qh). Then

Z [y] (z) = hα (
1− z−1)−α X(z) , (3)

where X(z) := Z [x] (z).

For h = 1 the equation (3) can be rewritten as
Z

[
a∆−α

1 x
]
(z) =

(
1− z−1)−α X(z) , where

(
a∆−α

1 x
)
(a+q)=:

y(q) is treated as a sequence.
Let s ∈ N a

h
and x̃ : N a

h
→ R be defined by x̃(s) := x(sh).

Then s = a
h +q, q ∈ N0 and x(q) = x̃

( a
h +q

)
= x(a+qh) and

of course x : N0 → R. Note that by (3) we get

Z [y] = hα
Z [ỹ] , (4)

where ỹ(q) :=
(

a
h
∆−α

1 x̃
)
( a

h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.

LEMMA 1 [27]. Let x : (hN)a → R and α > 0. Then(
a∆−α

h x
)
(t) = hα

(
a
h
∆−α

1 x̃
)( t

h
)
, where t ∈ (hN)a and x̃(s) =

x(sh).

For simplicity of notation if h = 1, then we write:
a
h
∆−α := a

h
∆−α

1 .

2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by

(
a∆α

h x
)
(t) :=(

∆h

(
a∆−(1−α)

h x
))

(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
1 .

Using the properties of Z-transform the following proposi-
tion can be proven.

PROPOSITION 2 [30]. For a ∈ R, α ∈ (0,1] let us define
y(q) :=

(
a∆α

h x
)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = zh−α (

1− z−1)α X(z)− zh−αx(a) , (5)
where X(z) = Z [x](z) and x(q) := x(a+qh).

For α = 1 we have Z [y] (z) = 1
h ((z− 1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

LEMMA 2 [27]. Let x : (hN)a → R and α > 0. Then,(
a∆α

h x
)
(t) = h−α( a

h
∆α x̃)( t

h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by

(
a∆̃α

h x
)
(t) := h−α

t−a
h

∑
q=0

c(α)(q)x(t −qh) . (6)

For simplicity of the notation, if h = 1, then we write:
a∆̃α :=a ∆̃α

1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
(

a∆̃α
h x

)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
a∆̃α

h x
)
(a+qh) = h−α

(
0∆̃α x

)
(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for

1

 can be realized 
in time O(o). Thus, execution of the first stage for all the op-
erations has a complexity O(m ¢ o). Computation of the lower 
bound (28) is performed in a constant time, i.e. O(1). Oper-
ation j can be moved to at most ∑ l 2 

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2017-00ZZ

Minimal cycle time determination and golf neighborhood generation
for the cyclic flexible job shop problem
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List of main symbols
al – l-th copy of operation a in l-th MTS

Ca – operation a completion time in 1-th MTS
G⊕(π) – graph for solution π of cyclic job shop

H(π) – graph for solution π of job shop problem
J – set of tasks
M – set of machines
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Sa – operation a starting time in 1-th MTS
Sl

a – operation a starting time in l-the MTS
T (π) – cycle time of solution π

T ◦(π) – minimal cycle time of solution π
T ∗ – optimal cycle time

1. Introduction
Flexible manufacturing systems are currently the object of very
intensive research in many scientific centers. This process is
caused by the fact that many companies adopted the strategy
of manufacturing on demand, where production is conditioned
by current orders thereby reducing the costs of storage of raw
materials and finished products. Moreover, technological de-
velopment and in particular the machines configured and con-
trolled by computers enable a short-term and multi-assortment
production. Scheduling of operations in the flexible job shop
system requires taking a simultaneous decision on two levels:
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(i) the allocation of operations to machines, (ii) determina-
tion of the order of operations on each machine. Compared
to conventional scheduling problems it is a meaningful gener-
alization and significantly hinders the design of efficient algo-
rithms. The vast majority of works devoted to the flexible job
shop problem concerns the minimization of completion of all
executed operations. Due to the NP-hardness of the problem,
the attention of scientists was focused on the construction of
heuristic algorithms, or exact approaches of a small size (e.g.
mixed integer programming, Sawik [20], branch and bound
method with using max-plus algebra, Houssin [12]). These are
mainly algorithms based on tabu search method (Hurink, Ju-
rish and Thole [13], Mastrolilli and Gambardella [17], Boże-
jko et al. [3, 5]) or simulated annealing (Bożejko et al. [6]).
On the other hand, a genetic algorithm was used by Yang,
Kacem and Borne [15]. The most effective are hybrid algo-
rithms. Xia and Wu [21] proposed particle swarm algorithm
using an additional simulated annealing, whereas Jie, Linyan
and Mitsuo [14] genetic algorithm combined with tabu search
algorithm with a variable neighborhood. In turn, Bożejko et
al. [4] presented parallel population-based meta2heuristics.

In the cyclic production system, the basic set of tasks is ex-
ecuted repeatedly at fixed intervals (cycle time). This allows a
considerable simplification of the logistical operations related
to the supply of raw materials and receiving of products, be-
cause these activities are carried out at regular intervals. The
main problem with which we are dealing in constructing of
algorithms for such problems is the lack of effective methods
of determining cycle time and good lower or upper bounds.
General computational models for cyclic scheduling problems
are presented in the work of Kampmayer [16]. In conclusion,
the author stated that the use of universal packages of discrete
optimization allows the solution in a reasonable time only in
case of instances of small size. Local Search Algorithms for
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(nl  + 1) = o + m ¡ 1 
positions. Therefore, the computations associated with the 
second stage, for all the moves, can be performed in a total 
time O((n + m) ¢ m).� □

The average number of elements of the set 
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that the fractional h-sum of order α does not change the do-
main of the function and a∆−α

h x : (hN)a →R. Let us recall that
the Z-transform of a sequence {y(q)}q∈N0 is a complex func-
tion given by Y (z) := Z [y](z) = ∑∞

q=0 y(q)z−q , where z ∈ C

is a complex number for which the series ∑∞
q=0 y(q)z−q con-

verges absolutely. Then the inverse Z-transform addresses the
reverse problem, i.e., given a function Y (z) and a region of
convergence, find the signal y(q) whose Z-transform is Y (z)
and has the specified region of convergence. The presented
Z-transform involves, by definition, only the values y(q) of
the sequence {y(q)}q∈N0 . Note that since c(α)(q) = (−1)q(α

q
)
,
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The operator a∆−α
h is defined as the convolution of two se-

quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

PROPOSITION 1. For t = a + qh ∈ (hZ)a let us define
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where ỹ(q) :=
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h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.
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For simplicity of notation if h = 1, then we write:
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2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by

(
a∆α

h x
)
(t) :=(
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a∆−(1−α)

h x
))

(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
1 .

Using the properties of Z-transform the following proposi-
tion can be proven.

PROPOSITION 2 [30]. For a ∈ R, α ∈ (0,1] let us define
y(q) :=

(
a∆α

h x
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(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = zh−α (

1− z−1)α X(z)− zh−αx(a) , (5)
where X(z) = Z [x](z) and x(q) := x(a+ qh).

For α = 1 we have Z [y] (z) = 1
h ((z−1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

LEMMA 2 [27]. Let x : (hN)a → R and α > 0. Then,(
a∆α

h x
)
(t) = h−α( a

h
∆α x̃)( t

h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by

(
a∆̃α
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(t) := h−α

t−a
h

∑
q=0

c(α)(q)x(t − qh) . (6)

For simplicity of the notation, if h = 1, then we write:
a∆̃α :=a ∆̃α

1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
(

a∆̃α
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)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+ qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
a∆̃α

h x
)
(a+qh) = h−α

(
0∆̃α x

)
(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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THEOREM 3. If permutation β was generated from π ∈ Φ
by changing the order of certain internal operations of the
block, then the length of the cycle time T ◦(β )≥ T ◦(π).

Proof. The theorem is proved just in the same way as in case
of the block theorems for a wide class of scheduling problems
with the criterion Cmax, in particular for flexible job shop prob-
lem [4].

5. Golf algorithm
In this part we shortly present a new heuristic method of
searching the space of feasible solutions. Its basic element
is the neighborhood, i.e. the set of solutions generated by a
simple modification (moves) in the current solution. The idea
of determining the neigborhood is based on the game of golf.
This game, in large simplification, relies in carring out two
types of strokes (see fig. 4):

1. strong, transferring the ball to the further area of the golf
course, and

2. weak, whose aim is a direct transfer of the ball into the hole.

The game takes place in several rounds. The player uses some
knowledge (e.g. gets to know the topography of the playing
area) what enables him to improve the efficiency of the game).
Based on this idea we introduce two types of moves transform-

Fig. 4: Strokes in the game of golf.

ing the elements of the solution space

Γ,γ : Φ → Φ. (26)

The first of the moves Γ, corresponding to the strong stroke in
a game of golf, generates from π ∈ Φ the solution Γ(π) ∈ Φ
significantly different from it, causing diversification of explo-
ration. In case of move of γ , type the solution γ(π) ∈ Φ is
only little different from π (thus it corresponds to the weak
stroke) and causes intensification of exploration. By apply-
ing these moves it is possible to determine, depending on the
needs, neighborhoods which vary greatly.

We are considering the problem of minimizing the F func-
tion on the set Φ. Let S�� i S� be respectively the set of strong
and weak moves. If the transformation τ(π) = γ(Γ(π)), where
Γ ∈ S��, γ ∈ S�, π ∈ Φ, we can say that τ is a complex move
and we can put it down as τ = γ ◦Γ. Then the set

N (π) = {τ(π) : τ = γ ◦Γ, Γ ∈ S��,γ ∈ S�, π ∈ Φ} (27)

is golf neighborhood of the element π ∈Φ (see also [2]). While
generating it we will use the 3, theorem, i.e. we can omit the

moves changing the order of tasks within the block. The neigh-
borhood will be used in the algorithm based on the local search
method.

In the description of the algorithm, the search history
memory MEM is limited in length and supported in the
principle of the queue of FIFO. The AT R(π) function returns
attributes of the solutions π . The algorithm terminates after
execution of Maxiter iterations.

Golf algorithm (AGF)
Let π ∈ Φ be any starting solution;
πbest ← π; MEM ← 0; iter ← 0;
repeat

Step 1: Generate golf neighborhood N (π)
of the solution π omitting the elements,
whose attributes are on the MEM list;

Step 2: Determine the element β ∗ ∈ N (π) Such that
F(β ∗) = min{F(δ ) : δ ∈ N (π)};

if F(β ∗)< F(πbest), then πbest ← β ∗;
Step 3: Substitute MEM ← MEM∪AT R(β );
iter ← iter+1;

until iter < Maxiter;

Implementation of the golf algorithm requires defining of:

1. ’weak’ and ’strong’ moves, as well as sets of these moves
used to generate the neighborhood

2. determination of attribute moves and the principles of creat-
ing and using the MEM memory (it should protect against
returning to previously viewed areas of the solution space).

6. Golf algorithm for CFJS problem
One of the most important elements of algorithms based on
the local search methods is the neighborhood. In case of task
scheduling problems for which solutions are represented by
permutations, the elements of the neighborhood are usually
generated by swapping or moving the elements in the permuta-
tion. In the considered problem of minimizing the cycle time,
solutions are arrangements of a permutation of operations on
individual machines.

Changing of the order of operations on any machine un-
doubtedly does not change the assignment of operations to ma-
chines. Therefore, it is necessary to introduce a mechanism of
reallocating the operations to machines. In the case of the golf
algorithm course, this change will be implemented by a strong
stroke. In contrast, weak stroke will cause the change in the
order of operations on a machine. Below there is an detailed
description of both moves.

Let π = (π1,π2, . . . ,πm) be a certain solution of the CJFS
problem. Therefore, on a machine Mi ∈ M there are executed
operations from the set O i in the order πi. We consider two
machines Mk,Ml from the same nest. While generating the
neighborhood of π we will use two types of moves:

1. Insert (in short i-move) ika,b the equivalent of the weak
stroke. This moves depicts the element πk(a), from position a
to position b in πk, generating permutation ika,b(π) = β (Mk ∈
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(π). 
It equals O(m2).

7.2. Selection of an element from the neighborhood. The 
idea to use a lower bound in the procedure of neighborhood 
searching comes from the methods of construction optimal 
Branch and Bound algorithms and it consists of two phases. 
In the first phase solutions are ordered in accordance with de-
creasing values of the lower bounds of the cycle time. In the 
second phase the solutions are examined in accordance with 
the sequence from the first phase. For further solutions there is 
a minimum cycle time (Section 4) determined. If for some solu-
tion the minimum time, from so far calculated cycle times, is 
not greater than the lower bound of the considered solution, then 
we finish calculations (other solutions are omitted, because they 
have not reduced the minimum cycle time). Therefore Step 2 of 
AGF algorithm is modified, which takes the form:

Step 2:
PHASE 1: Sort the elements of the neighborhood
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ing these moves it is possible to determine, depending on the
needs, neighborhoods which vary greatly.

We are considering the problem of minimizing the F func-
tion on the set Φ. Let S�� i S� be respectively the set of strong
and weak moves. If the transformation τ(π) = γ(Γ(π)), where
Γ ∈ S��, γ ∈ S�, π ∈ Φ, we can say that τ is a complex move
and we can put it down as τ = γ ◦Γ. Then the set

N (π) = {τ(π) : τ = γ ◦Γ, Γ ∈ S��,γ ∈ S�, π ∈ Φ} (27)

is golf neighborhood of the element π ∈Φ (see also [2]). While
generating it we will use the 3, theorem, i.e. we can omit the

moves changing the order of tasks within the block. The neigh-
borhood will be used in the algorithm based on the local search
method.

In the description of the algorithm, the search history
memory MEM is limited in length and supported in the
principle of the queue of FIFO. The AT R(π) function returns
attributes of the solutions π . The algorithm terminates after
execution of Maxiter iterations.

Golf algorithm (AGF)
Let π ∈ Φ be any starting solution;
πbest ← π; MEM ← 0; iter ← 0;
repeat

Step 1: Generate golf neighborhood N (π)
of the solution π omitting the elements,
whose attributes are on the MEM list;

Step 2: Determine the element β ∗ ∈ N (π) Such that
F(β ∗) = min{F(δ ) : δ ∈ N (π)};

if F(β ∗)< F(πbest), then πbest ← β ∗;
Step 3: Substitute MEM ← MEM∪AT R(β );
iter ← iter+1;

until iter < Maxiter;

Implementation of the golf algorithm requires defining of:

1. ’weak’ and ’strong’ moves, as well as sets of these moves
used to generate the neighborhood

2. determination of attribute moves and the principles of creat-
ing and using the MEM memory (it should protect against
returning to previously viewed areas of the solution space).

6. Golf algorithm for CFJS problem
One of the most important elements of algorithms based on
the local search methods is the neighborhood. In case of task
scheduling problems for which solutions are represented by
permutations, the elements of the neighborhood are usually
generated by swapping or moving the elements in the permuta-
tion. In the considered problem of minimizing the cycle time,
solutions are arrangements of a permutation of operations on
individual machines.

Changing of the order of operations on any machine un-
doubtedly does not change the assignment of operations to ma-
chines. Therefore, it is necessary to introduce a mechanism of
reallocating the operations to machines. In the case of the golf
algorithm course, this change will be implemented by a strong
stroke. In contrast, weak stroke will cause the change in the
order of operations on a machine. Below there is an detailed
description of both moves.

Let π = (π1,π2, . . . ,πm) be a certain solution of the CJFS
problem. Therefore, on a machine Mi ∈ M there are executed
operations from the set O i in the order πi. We consider two
machines Mk,Ml from the same nest. While generating the
neighborhood of π we will use two types of moves:

1. Insert (in short i-move) ika,b the equivalent of the weak
stroke. This moves depicts the element πk(a), from position a
to position b in πk, generating permutation ika,b(π) = β (Mk ∈

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

(π) = {β1, …, βr} such, that
LB(β1) ∙ LB(β2) ∙ … ∙ LB(βr);

PHASE 2: Substitute β ¤   β1; i   1;
while (i ∙ r) and (LB(β i) < T°(β ¤)) do

if T°(β ¤) < T°(β i) then β ¤   β i;
i   i + 1;

The effectiveness of the described method depends on the 
quality of the lower bounds which can be evaluated statistically 
by performing certain computational experiments. Sorting the 
list increases the chances of finding a good solution β ¤ already 
in the first iterations (while instruction). The conducted com-
putational experiments confirmed the effectiveness of the pro-
posed method.

8.	 Computational experiments

The main aim of the computational experiments was to de-
termine the speed up process of calculations of the algorithm 
using the lower bound of the length of the cycle time relative 
to the algorithm defining the exact value. In the further part of 
the work the above mentioned versions of the algorithms will 
be marked with symbols AGFLB and AGF. Algorithms AGF 
and AGFLB were programmed in C++ in Visual Studio 2010. 
The computations were performed on an Intel I7-core 2.4 GHz, 
4 GB RAM, managed by 32-bit operating system Windows 7. 
The experimental study was conducted on two groups of the 
test data:

(a) Barnes and Chambers [1], 21 instances,
(b) Brandimarte [7], 10 instances.

Individual examples differ in the number and structure of 
tasks, the number of machines and the operation and the degree 
of flexibility Flex (the average number of alternative machines 
per one operation). The first group includes instances con-
sisting of 11‒18 machines, 10‒15 tasks and 100‒225 operations. 
The degree of flexibility falls within the range 1.07‒1.30. In 
turn, the second group of instances has a greater degree of 
flexibility, i.e. 1.43‒4.10. The number of machines is 6‒15, 
10‒20 tasks and 55‒240 operations. The initial solutions were 
determined by the golf algorithm based on the metaheuris-
tics TSM2h described in the work [4] for the flexible job shop 
problem with the criterion of minimizing the completion time 
of all tasks (Cmax).

Both algorithms AGF and AGFLB have been started from the 
same initial solution with a number of iterations 10 000 and the 
size of short-term memory of 15.

With every start of the algorithm the following values were 
set: the best solution (i.e. the value of cycle time), the number 
of starting procedures for the designation of the exact cycle time 
and the time of calculations. Then, basing on these results, for 
each example, there were determined:

• � T ¤ – approximate value of the optimal length of the 
cycle time,

• � CPU(A) – time of computations of the algorithm 
A, A 2 {AG, AGLB},

• � EPI(A) – the average number of solutions, for which 
the minimum length of the cycle was designated, per 
one iteration of the algorithm A 2 {AG, AGLB}.

Tables 1 and 2 summarize the total results of the golf algorithm 
AGFLB. The first column presents the name of example, and 
next: the number of tasks (n), the number of machines (m) and 
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a degree of flexibility (Flex). The next column presents refer-
ence values for the flexible job shop problem with criterion 
Cmax (this value is the upper bound for the optimal cycle time). 
The last column contains values determined by the algorithm 
of the cycle length value.

They are significantly smaller than the upper bound Cmax. 
This relationship is present in 18 out of 21 examples. Only three 
examples: seti5cc, seti5xxx and seti5xy the obtained solutions 
were worse. In case of mtl0cl instance designated cycle time 
is more than 30% smaller than the upper bound value Cmax. 
In four cases the determined length of the cycle time is not an 
integer. It follows form the above that the critical path in the 
best found solution, passes through two or more components 
of the cyclic graph.

Table 2 shows the results of examples from group (b). 
Notations of columns are the same as in the case of Table 1 
(column Cmax, was omitted since its values are not known). 
It should be emphasized that these examples have much 
higher values of flexibility coefficient Flex. For eight cases 
of instances, with varying degrees of flexibility the optimum 
solution was found.

The results showing the calculation time for the two algo-
rithms are presented in Table 3. Before its thorough analysis, 
it is worth noting that the time of a single iteration of the golf 
algorithm depends, above all, on the size of the neighborhood, 
which depends on the number of:

1.	 operations on the critical path,
2.	 machines, on which operation from the critical path can 

be executed,
3.	 operations allocated to each machine.

These figures indirectly result from two parameters of a single 
instance: the number of operations and the degree of flexi-
bility of the system. In the case of the algorithm AGFLB an 
important element is the effectiveness of the lower bound 
bound. It allows us for the omission of certain elements from 
the neighborhood.

Results presented in the Table 3 clearly show that the time 
of running of the algorithm AGFLB is much shorter than the 
algorithm AGF. Algorithm AGF operates from 3.1 to as much 
as 332 times longer than the algorithm AGFLB. In both algo-
rithms the most time (computing power) took the procedure 
for the designation of the exact value of the cycle time. In 
the algorithm AGFLB, due to pre-assessing the lower bound 
of this value, in most cases the exact value of the cycle time 
is determined, on average only for a few best solutions from 
the neighborhood. The conducted computations show that this 
number (column EPI AGF, Table 3) practically does not depend 
on the size of the instance and slightly increases with the de-
gree of flexibility. It follows from the additional testing of the 
algorithm AGFLB that the determination of the exact length of 
the cycle time consumes at least 90% of the total computation 
time. Therefore, the time of the running of algorithm AGFLB 
is much less sensitive to the number of viewed elements of the 
neighborhood. For instance Mkl0 the value EPI of the algo-
rithm AGFLB is 1.6 whereas for the algorithm AGF it is 171, 
i.e. approximately 107 times more. The running time of the 
algorithm AGFLB executing 10,000 iterations, in most cases, 
it was a few dozen seconds, while in the worst case it did not 
exceed 300 seconds. Given the fact that the best solutions were 
determined after a small number of iterations, it is possible to 
state that this algorithm can be successfully applied to solve 
practical examples of large sizes.

Table 2 
Computational results of the algorithm AGFLB,  

for instances from group (b)

instance n£m o Flex Cmax T ¤

Mk01 10£6 55 2.09 927 36¤

Mk02 10£6 58 4.10 908 26
Mk03 15£8 150 3.01 918 204¤

Mk04 15£8 90 1.91 918 60
Mk05 15£4 106 1.71 918 176
Mk06 10£15 150 3.27 905 58
Mk07 20£5 100 2.83 847 153
Mk08 20£10 225 1.43 914 523¤

Mk09 20£10 240 2.53 907 299
Mk10 20£15 240 2.98 925 198.67
¤ – optimal solution

Table 1 
Computational results of the algorithm AGFLB,  

for instances from group (a)

instance n£m o Flex Cmax T ¤

mt10c1 10£11 100 1.10 927 631¤

mt10cc 10£12 100 1.20 908 631¤

mt10x 10£11 100 1.10 918 579
mt10xx 10£12 100 1.20 918 595.50

mt10xxx 10£13 100 1.30 918 576
mt10xy 10£12 100 1.20 905 576
mt10xyz 10£13 100 1.30 847 667
setb4c9 15£11 150 1.10 914 910.50
setb4cc 15£12 150 1.20 907 886
setb4x 15£11 150 1.10 925 876

setb4xx 15£12 150 1.20 925 883
setb4xxx 15£13 150 1.30 925 873
setb4xy 15£12 150 1.20 910 845¤

setb4xyz 15£13 150 1.30 903 838¤

seti5c12 15£16 225 1.07 1174 1126
seti5cc 15£17 225 1.13 1136 1468
seti5x 15£16 225 1.07 1198 1105

seti5xx 15£17 225 1.13 1197 1115
seti5xxx 15£18 225 1.20 1197 1363.50
seti5xy 15£17 225 1.13 1136 1468
seti5xyz 15£18 225 1.20 1125 1052

¤ – optimal solution
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9.	 Summary

In the paper, a cyclical f lexible job shop problem was pre-
sented. A graph model was also constructed for a fixed order 
of operations on individual machines. Based on the analysis 
of the paths in the graph, the theorems were proven which 
enable efficient testing for the feasibility of any order of oper-
ation execution, setting the minimum cycle time, and its lower 
bound. A new method of constructing heuristic algorithms 
was used with the so-called golf neighborhood, enabling both 
intensification and diversification of the search process for the 
feasible solutions. In the algorithm a unique strategy was ap-
plied for the determination of solutions, with minimum cycle 
time significantly accelerating calculations. The efficiency of 
the algorithm has been the subject of experimental tests on 
instances taken from the literature. Based on these results, 
it can be stated that the presented approach in a short time 

determines the approximate solutions accepted in practice for 
the problem of minimal cycle time determination. In practice, 
the proposed properties can be successfully used in the con-
struction of new fast algorithms for solving difficult problems 
from the field of optimization of cyclic manufacturing sys-
tems. cyclic manufacturing systems.
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