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A 4-D chaotic hyperjerk system with a hidden attractor,
adaptive backstepping control and circuit design

SUNDARAPANDIAN VAIDYANATHAN, SAJAD JAFARI, VIET-THANH PHAM, AHMAD TAHER AZAR and
FAWAZ E. ALSAADI

A novel 4-D chaotic hyperjerk system with four quadratic nonlinearities is presented in this
work. It is interesting that the hyperjerk system has no equilibrium. A chaotic attractor is said to
be a hidden attractor when its basin of attraction has no intersection with small neighborhoods
of equilibrium points of the system. Thus, our new non-equilibrium hyperjerk system possesses
a hidden attractor. Chaos in the system has been observed in phase portraits and verified by pos-
itive Lyapunov exponents. Adaptive backstepping controller is designed for the global chaos
control of the non-equilibrium hyperjerk system with a hidden attractor. An electronic circuit
for realizing the non-equilibrium hyperjerk system is also introduced, which validates the theo-
retical chaotic model of the hyperjerk system with a hidden chaotic attractor.

Key words: chaos, chaotic systems, hyperjerk systems, hidden attractors, adaptive control,
backstepping control, circuit design

1. Introduction

Various dynamical systems with chaos have been reported in many modelling
applications [1–4]. A number of authors have considered applications of chaos in
different fields [5–16]. In [5–7], Vaidyanathan discussed chaos control and syn-
chronization of novel 3-D chemical chaotic reactors. In [8–11], Vaidyanathan
discussed Cellular Neural Network (CNN) attractors, FitzHugh-Nagumo neurol-
ogy models, Tokamak systems and Lotka-Volterra population biology models.
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In [12], Vaidyanathan et al. discussed backstepping controller design for the anti-
synchronization of WINDMI chaotic systems. In [13], Cavusoglu et al. proposed
a new chaotic system with high dynamic features and designed chaos-based hy-
brid RSA (CRSA) encryption encryption algorithm design in which RNG and
RSA algorithms were used together. In [14], Ravi et al. proposed two 3-stage
hybrid prediction models to address financial time-series prediction problem.
In [15], Khorashadizadeh and Majidi proposed a new method for secure commu-
nication based on chaos synchronization using Fourier series expansion for com-
pensation of uncertainties. In [16], Hawchar et al. proposed an efficient method
for time-variant reliability analysis using principal component analysis and poly-
nomial chaos expansion.

A jerk equation is given by an explicit third-order differential equation in
Classical Mechanics that describes the dynamics of a single scalar variable x
(displacement) and having the general form as

d 3x

d t3 = f

(
x,

dx

d t
,

d 2x

d t2

)
. (1)

The ODE (1) is called a jerk equation because the consecutive derivatives of
the displacement (x) are velocity (ẋ), acceleration (ẍ), and jerk (

...
x ) in Classical

Mechanics.
A generalization of the jerk dynamics (1) yields the higher-order differential

equation
d (n)x

d tn
= f

(
x,

dx

d t
, . . . ,

d (n−1)x

d tn−1

)
, (n ­ 4). (2)

The ODE (2) is called a hyperjerk equation since it features time derivatives
d ( j)x

d t j
, ( j = 1, . . . ,n−1) of a jerk function.

By denoting

x1 = x, x2 =
dx

d t
, . . . , xn =

dx(n−1)

d tn−1 , (3)

we can also represent the ODE (2) as




ẋ1 = x2 ,
ẋ2 = x3 ,
...

...
...

ẋn−1 = xn ,
ẋn = f (x1,x2, . . . ,xn).

(4)

We call the nonlinear system of differential equations (4) as a hyperjerk sys-
tem, when n ­ 4.
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Several attempts have been made to discover chaotic hyperjerk system [17].
Elementary chaotic hyperjerk flows were found by Munmuangsaen and Srisuch-
inwong [18]. By applying the concept of memory element, Bao et al. presented
a simple chaotic memory system with complex dynamics [19]. In [20], Dalkiran
and Sprott constructed a hyperjerk system with exponential nonlinear function.
Four-dimensional hyperchaotic hyperjerk systems were reported in [21, 22]. All
these hyperjerk systems have equilibrium points and the stability types of the
unstable equilibrium points of these systems have been discussed as well. We re-
mark that there has been no detailed investigation of hyperjerk systems without
equilibrium. In this work, we propose a new non-equilibrium hyperjerk system
and discuss its properties, circuit design and applications.

A chaotic attractor is said to be a hidden attractor when its basin of attrac-
tion has no intersection with small neighborhoods of equilibrium points of the
system [23]. Thus, our new non-equilibrium hyperjerk system possesses a hid-
den attractor. Chaotic systems with hidden attractors have applications in many
areas [24–28].

Controlling the state trajectories of chaotic systems have received good at-
tention in the control literature [29–33]. We use adaptive backstepping con-
trol [34–38] for the global chaos control of the new non-equilibrium hyperjerk
system.

2. A non-equilibrium hyperjerk system

In this work, we introduce a novel hyperjerk equation given by the dynamics

d 4x

d t4 = a
d 3x

d t3 +bx
dx

d t
+ x

d 3x

d t3 + c

(
x2 + x

d 2x

d t2 +1

)
. (5)

We define new state variables as
{

x1 = x ,
x2 = ẋ ,
x3 = ẍ .

(6)

Using (6), our novel hyperjerk equation (5) can be rewritten in system form as




ẋ1 = x2 ,
ẋ2 = x3 ,
ẋ3 = x4 ,
ẋ4 = ax4 +bx1x2 + x1x4 + c(x2

1 + x1x3 +1),

(7)

where a,b and c are positive parameters.
It is interesting to see that the system (7) is chaotic for the following set of

parameters: a = 2.2, b = 5 and c = 2.
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For (a,b,c) = (2.2,5,2), the Lyapunov exponents of the hyperjerk system
(7) are determined by using Wolf’s algorithm [43] as L1 = 0.1557, L2 = 0, L3 =
−1.3455 and L4 =−3.9844.

The equilibrium points of the hyperjerk system (7) are determined by solving
the following system of equations:





x2 = 0 ,
x3 = 0 ,
x4 = 0 ,

ax4 +bx1x2 + x1x4 + c(x2
1 + x1x3 +1) = 0.

(8)

From the first three equations in Eq. (8), we obtain

x2 = 0, x3 = 0, x4 = 0. (9)

Substituting above in the last equation in Eq. (8), we obtain

c(x2
1 +1) = 0. (10)

Because c> 0, it is immediate that the system (7) has no equilibrium point. Thus,
we deduce that (7) is a chaotic hyperjerk system with a hidden attractor [23].

It is noted that the initial values of the chaotic non-equilibrium hyperjerk
system (7) are taken as X(0) = (0,−5,0,0) for our numerical simulations.

Figure 1: Phase portrait of the chaotic non-equilibrium hyperjerk system on (x1,x2) plane
for (a,b,c) = (2.2,5,2) and X(0) = (0,−5,0,0)
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Figures 1–3 illustrate the two-dimensional projections of the chaotic non-
equilibrium hyperjerk system (7) on (x1,x2), (x1,x3), (x1,x4) planes respectively.

Figure 2: Phase portrait of the chaotic non-equilibrium hyperjerk system on (x1,x3) plane
for (a,b,c) = (2.2,5,2) and X(0) = (0,−5,0,0)

Figure 3: Phase portrait of the chaotic non-equilibrium hyperjerk system on (x1,x4) plane
for (a,b,c) = (2.2,5,2) and X(0) = (0,−5,0,0)
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3. Adaptive control of the new non-equilibrium hyperjerk system

via backstepping control

In this section, we design an adaptive feedback control law for globally
stabilizing the new non-equilibrium hyperjerk system via backstepping control
method.

We take the new non-equilibrium hyperjerk system with a single feedback
control given by





ẋ1 = x2 ,

ẋ2 = x3 ,

ẋ3 = x4 ,

ẋ4 = ax4 +bx1x2 + x1x4 + c(x2
1 + x1x3 +1)+u ,

(11)

where a,b,c are unknown parameters and u is an adaptive feedback control
law which uses a time-varying parameter estimate (A(t),B(t),C(t)) in lieu of
(a,b,c).

The parameter estimation errors are defined as:

ea(t) = a−A(t), eb(t) = b−B(t), ec(t) = c−C(t). (12)

It is easy to see that

ėa = Ȧ, ėb = Ḃ, ėc = Ċ. (13)

Next, we establish the main adaptive control result of this section.

Theorem 1 The new non-equilibrium hyperjerk system (11) with unknown pa-
rameters (a,b,c) is globally and asymptotically stabilized by the adaptive feed-
back control law,

u(t) =−5x1 −10x2 −9x3 − [A(t)+4]x4−B(t)x1x2 − x1x4

− C(t)(x2
1+ x1x3 +1)−Kz4 , (14)

where K is a positive constant,

z4 = 3x1 +5x2 +3x3 + x4 (15)

and the update law for the parameter estimates (A(t),B(t),C(t)) is given by




Ȧ(t) = z4x4 ,

Ḃ(t) = z4x1x2 ,

Ċ(t) = z4(x
2
1 + x1x3 +1).

(16)
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Proof. We prove this result via Lyapunov stability theory [44].
In backstepping control method, we start with a quadratic Lyapunov function

V1(z1) =
1
2

z2
1 , (17)

where
z1 = x1 . (18)

Differentiating V1 along (11), we find that

V̇1 = z1ż1 = x1x2 =−z2
1 + z1(x1 + x2). (19)

We set
z2 = x1 + x2 . (20)

The equation (19) can be simplified as

V̇1 =−z2
1 + z1z2 . (21)

Next, we take a quadratic Lyapunov function

V2(z1,z2) =V1(z1)+
1
2

z2
2 =

1
2

(
z2

1 + z2
2

)
. (22)

Differentiating V2 along (11), we find that

V̇2 =−z2
1 − z2

2 + z2(2x1 +2x2 + x3). (23)

We set
z3 = 2x1 +2x2 + x3 . (24)

Using (24), the equation (23) can be simplified as

V̇2 =−z2
1 − z2

2 + z2z3 . (25)

Next, we take a quadratic Lyapunov function

V3(z1,z2,z3) =V2(z1,z2)+
1
2

z2
3 =

1
2

(
z2

1 + z2
2 + z2

3

)
. (26)

Differentiating V3 along the dynamics (11), we find that

V̇3 =−z2
1 − z2

2 − z2
3 + z3(3x1 +5x2 +3x3 + x4). (27)

We set
z4 = 3x1 +5x2 +3x3 + x4 . (28)
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Using (28), the equation (27) can be simplified as

V̇2 =−z2
1 − z2

2 − z2
3 + z3z4 . (29)

Finally, we take the quadratic Lyapunov function

V (z1,z2,z3,z4,ea,eb,ec) =V3(z1,z2,z3)+
1
2

z2
4 +

1
2

e2
a +

1
2

e2
b +

1
2

e2
c . (30)

It is clear that V is a positive definite function on R7.
Differentiating V along (11), we get

V̇ =−z2
1 − z2

2 − z2
3 − z2

4 + z4(z4 + z3 + ż4)− eaȦ− ebḂ− ecĊ. (31)

The equation (31) can be expressed in a compact manner as

V̇ =−z2
1 − z2

2 − z2
3 − z2

4 + z4S− eaȦ− ebḂ− ecĊ, (32)

where
S = z4 + z3 + ż4 = z4 + z3 +3ẋ1 +5ẋ2 +3ẋ3 + ẋ4 . (33)

It is easy to see that

S = 5x1 +10x2 +9x3 +(a+4)x4 +bx1x2 + x1x4

+ c(x2
1 + x1x3 +1)+u. (34)

Substitution of the adaptive control law (14) into (34) yields the result

S = [a−A(t)]x4+[b−B(t)]x1x2 +[c−C(t)](x2
1+ x1x3 +1)−Kz4 . (35)

Using (13), it is easy to simplify (35) as

S = eax4 + ebx1x2 + ec(x
2
1 + x1x3 +1)−Kz4 . (36)

Combining (36) and (32), we find that we obtain

V̇ =− z2
1 − z2

2 − z2
3 − (1+K)z2

4 + ea(z4x4 − Ȧ)

+ eb(z4x1x2 − Ḃ)+ ec[z4(x
2
1 + x1x3 +1)−Ċ]. (37)

Substituting the update law (16) into (37), we get

V̇ =−z2
1 − z2

2 − z2
3 − (1+K)z2

4 , (38)

which is a negative semi-definite function on R7.
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Using Barbalat’s lemma [44], we conclude that z(t) → 0 asymptotically as
t → ∞ for all initial conditions z(0) ∈ R4.

Hence, it is immediate that x(t)→ 0 asymptotically as t → ∞ for all initial
conditions x(0) ∈ R4.

This completes the proof.
For numerical simulations, we suppose that the parameter values of the new

hyperjerk system (11) are taken as in the chaotic case, i.e. (a,b,c) = (2.2,5,2).
Also, we take K = 20.

As initial conditions of the new hyperjerk system (11), we take x1(0) = 2.5,
x2(0) = 1.2, x3(0) = 3.6 and x4(0) = 1.7.

Also, as initial conditions of the parameter estimates, we take A(0) = 4.3,
B(0) = 10.4 and C(0) = 8.7.

In Figure 4, the asymptotic convergence of the controlled state x(t) is exhib-
ited, when the controls (14) and (16) are implemented.
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Figure 4: Time-history of the controlled states of the hyperjerk system (11)

4. Circuit implementation of the non-equilibrium hyperjerk system

In this section, we present an electronic circuit realizing new hyperjerk sys-
tem (7) to verify its feasibility. The designed circuit is shown in Figure 5. Here
we have used the general known approach [39–42], in which the state variables
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of system (7) correspond to the voltages at operational amplifiers U1, U2, U3, and
U4, respectively.

Figure 5: Designed circuit for the non-equilibrium hyperjerk system (7)

By applying Kirchhoff’s laws to the designed electronic circuit, we have
equations of circuit





Ẋ1 =
1

R1C
X2 ,

Ẋ2 =
1

R2C
X3 ,

Ẋ3 =
1

R3C
X4 ,

Ẋ4 =
1

R4C
X4+

1
10R5C

X1X2 +
1

10R6C
X1X3

+
1

10R7C
X1X4+

1
10R8C

X2
1 − 1

R9C
Vc ,

(39)

where X1, X2, X3, and X4 are the voltages at operational amplifiers U1, U2, U3,
and U4. It is simple to see that Eq. (39) matches with Eq. (7).
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The circuit is implemented in PSpice with C = 1 nF, R1 = R2 = R = 100 kΩ,
R3 = 20 kΩ, R4 = 45.45 kΩ, R5 = R7 = 1 kΩ, R6 = R8 = 2.5 kΩ, R9 = 2.5 MΩ,
and Vc =−1 VDC.

Figures 6, 7, and 8 illustrate phase portraits of the circuit (39) in (X1,X2),
(X1,X3) and (X1,X4) coordinate planes respectively.

Figure 6: Phase portrait of the designed circuit (39) in (X1,X2)-plane

Figure 7: Phase portrait of the designed circuit (39) in (X1,X3)-plane
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Figure 8: Phase portrait of the designed circuit (39) in (X1,X4)-plane

We notice that circuit simulations of the new non-equilibrium hyperjerk sys-
tem (39) shown in Figures 6–8 show good agreement with the MATLAB simu-
lations of the non-equilibrium hyperjerk system (7) shown in Figures 1–4. This
validates the theoretical model of the non-equilibrium hyperjerk system.

5. Conclusion

We presented results for a new 4-D chaotic hyperjerk system with four
quadratic nonlinearities. An interesting feature of this new chaotic hyperjerk sys-
tem is that it has no equilibrium points and hence it possesses a hidden chaotic
attractor. We verified chaos in the new hyperjerk system by a positive Lyapunov
exponent. Adaptive backstepping controller was designed for the global chaos
control of the non-equilibrium hyperjerk system with a hidden attractor and
MATLAB simulation was given in detail. An electronic circuit for realizing the
non-equilibrium hyperjerk system was implemented in PSpice and circuit simu-
lations were detailed.
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