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In many systems of engineering interest the moment transformation of population balance is applied. 
One of the methods to solve the transformed population balance equations is the quadrature method 
of moments.  It is based on the approximation of the density function in the source term by the 
Gaussian quadrature so that it preserves the moments of the original distribution. In this work we 
propose another method to be applied to the multivariate population problem in chemical 
engineering, namely a Gaussian cubature (GC) technique that applies linear programming for the 
approximation of the multivariate distribution. Examples of the application of the Gaussian cubature 
(GC) are presented for four processes typical for chemical engineering applications. The first and 
second ones are devoted to crystallization modeling with direction-dependent two-dimensional and 
three-dimensional growth rates, the third one represents drop dispersion accompanied by mass 
transfer in liquid-liquid dispersions and finally the fourth case regards the aggregation and sintering 
of particle populations. 

Keywords: crystallization, drop breakage, extraction, Gaussian cubature, population balance, 
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1. INTRODUCTION 

Multiphase reactors are very common in chemical industry and the population balance framework is 
considered as a pragmatic approach for modeling particulate, bubble or droplet dynamics in multiphase 
processes including polymerization, crystallization and precipitation systems. The last two processes 
i.e. crystallization and precipitation are used for more than 70% of solid materials produced by the 
chemical industry (Silva, 2007). Concerning industrial requirements it is preferred to have particles 
with high purity, desired size distribution, satisfactory stability and good shape. Producing a material 
with the desired quality often requires knowledge of the elementary steps involved in the process: 
creation of supersaturation, nucleation, particle growth, aggregation and other secondary processes. The 
product quality is mainly determined by operating conditions. However, these processes are still not 
well predictable because their course is strongly affected by complex interactions between fluid flow, 
mixing, particle aggregation and particle breakage subprocesses. Simple models are often used to 
interpret these effects but they do not account well for such complex interactions. To achieve real 
progress in an efficient process control and scale-up, a wide range of problems needs to be addressed 
by multidisciplinary, multiphysics and multiscale approaches – starting from the modeling of molecular 
level phenomena, to the crystal and, subsequently, the product design, including advanced 
measurement techniques coupled to advanced modeling tools. In order to properly model such complex 
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phenomena, population balance equations supplemented with fast and efficient solution algorithms can 
be coupled with Computational Fluid Dynamics (CFD) modeling to correctly predict the particle size 
distribution (PSD). 

One of the commonly used approaches for solving population balance equations in chemical 
engineering applications is the quadrature method of moments (QMOM), which has been introduced by 
McGraw (1997) to simulate the course of particulate processes. It is based on the approximation of the 
density function in the source term by the Gaussian quadrature so that it preserves the moments of the 
original distribution. In this method one determines weights and abscissas that are used in the 
quadrature approximation using inversion algorithms. McGraw (1997) applied the product-difference 
algorithm by Gordon (1968), although more such algorithms are available in the literature. One can 
mention the long quotient-modified difference algorithm from Sack and Donovan (1972) and the 
Golub-Welsch (1969) algorithm. 

The Gaussian quadrature (GQ) approach generates the moment-preserving approximations for one-
dimensional distributions. However, this feature does not generalize to multivariate probability 
distributions, with the exception of independent random variables. 

Wright et al. (2001) extended the QMOM method to the multivariate population problem. As 
mentioned above, in this case no exact algorithms are available. Several attempts have been made to 
apply approximate algorithms also for the multidimensional case, which resulted for example in a 
multiple 3-point quadrature technique and a 12-point quadrature technique (Wright et al., 2001). The 
DQMOM equations (Marchisio and Fox, 2005) are derived via the moment transfer method, in a 
similar way to QMOM. 

Currently there are no numerical techniques allowing to solve the closure problem generated by the 
moment transformation of population balance equations for the number of internal dimensions higher 
than two. In this work another method is proposed to be applied to the multivariate population problem 
in chemical engineering, namely a Gaussian cubature (GC) technique which applies linear 
programming for the approximation of the multivariate distribution. It can be applied to systems of an 
arbitrary number of internal dimensions without reformulation. This leads to simplicity of the solution 
method and shows universality of this approach. Gaussian cubatures are feasible for joint, but 
independent distributions. In spite of the fact that this method is heuristic for joint, dependent 
distributions, it appears to be reliable and to accurately approximate expectations of many functions. 
This approach has been used by DeVuyst and Preckel (2007) for the modeling of economic processes. 
Linear program returns weights (restricted to be positive) for each of the created lattice points. The 
maximum number of points with strictly positive weights is equal to the number of constraints used. 

Examples of the application of the Gaussian cubature (GC) are presented in this paper for four 
processes typical for chemical engineering applications. The first and second cases are devoted to 
crystallization modeling with direction-dependent growth rates. The third one represents drop 
dispersion accompanied by mass transfer in liquid-liquid dispersions, and in the fourth case the 
aggregation and sintering of particle populations is considered. In the first, third and fourth cases, two-
dimensional population balance equations (PBE) are used. In the second case a 3-dimensional crystal 
growth in the MSMPR crystallizer is simulated to show the possibility of the proposed numerical 
scheme to address the cases with more internal dimensions. 

2. THE METHOD OF MOMENTS APPROACH FOR SOLVING POPULATION BALANCE 
EQUATIONS 

The population balance equations are powerful tools that are used to predict the behavior of dispersed 
systems. For the first time they were introduced by Hulburt and Katz (1964) and emerged from the 
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dynamic description of a dispersed system treated as a statistical ensemble moving through the phase 
space. This statistical mechanical approach resulted in the system of integro-differential equations  
(Eq. (1)) governing the evolution of the distribution ݂, of dispersed phase properties in a way similar to 
the Liouville theorem of classical statistical mechanics (Sorgato, 1981; Hulburt and Katz, 1964). 
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The phase space consists of external coordinates, ࢞, describing the position of particles in the physical 
space and internal coordinates, ࢘, that characterize properties of the dispersed phase, i.e. the size of 
particles or droplets, species concentration within droplets, fractal dimension of aggregates and many 
other. The convective flow of points through the phase space is described by the velocities ݒ௜ in the 
physical space, and ܩ௝ in the space of internal coordinates, which can be physically interpreted as the 

growth rate of crystals or dissolution of liquid droplets depending on the system under consideration. 
Also new points can appear or disappear in the phase space corresponding to effects of breakage or 
coalescence of droplets, as well as aggregation and breakage of solid crystals. Those effects are defined 
by the birth and death functions, ܤሺ࢞, ,࢘ ,࢞ሺܦ ሻ andݐ ,࢘  ሻ. Although the population balance equationsݐ
are well defined, they are difficult to solve due to high dimensionality of the system, especially when 
nonlinear source terms are present. For linear cases, Hulburt and Katz (1964) introduced the method of 
moments which allowed to transform the set of partial differential equations into the set of ordinary 
differential equations and reduce the dimensionality of the system. The transformed set of population 
balance equations is easier to solve. However, instead of the full distribution of the dispersed phase 
properties one gets only average values defined by the moments of distribution: 
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The expected values of distribution can describe many physical properties of the dispersed phase like 
the number of particles, average size, area or volume. The set of the ordinary differential equations for 
the moments is generated by the moment transformation as given below: 
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In many cases the birth and death functions consist of nonlinear terms, a good example here is 
aggregation. In such cases the moment transformation creates the closure problem, i.e. the set of 
equations becomes unclosed as there are more unknowns than equations. The closure problem can be 
solved by introducing some additional information. For systems with one internal dimension this can be 
done by using the quadrature method of moments (QMOM) introduced by McGraw (1997). It applies a 
quadrature approximation of the source term integrals using so called inversion algorithms such as a 
product-difference (PD) algorithm (Gordon, 1968). QMOM has been further generalized to bivariate 
cases (Wright et al., 2001) i.e. where two internal coordinates are used to describe the dispersed phase 
system. In the current state of the art there are no numerical techniques allowing to solve without 
approximation the closure problem generated by the moment transformation of population balance 
equations for the number of internal dimensions higher than two. Therefore another efficient 
approximate method, the Gaussian Cubature (GC) numerical scheme, has been developed to approach 
the closure problem in multidimensional cases for an arbitrary number of internal coordinates. 
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3. GAUSSIAN CUBATURE TECHNIQUE 

The introduced technique is based on the approximation of the source term integrals in the moment - 
transformed PBEs by a Gaussian cubature, such that: 
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where	ࢄ is an s-dimensional vector of random variables having density ݂ሺࢄሻ, and ݃ሺࢄሻ denotes the 
integrand function i.e. function whose expected value is to be computed. 

To apply this approximation it is necessary to determine weights ݓ௜, and abscissas ࢄ௜ of the cubature 
points. GC technique chooses points and weights for the cubature approximation so as to preserve the 
lower-order moments of the original distribution. A d-degree GC approximation can be defined by the 
following system of linear equations: 
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By E the expectation value is denoted, hence the right-hand sides of Equation (5) are the raw moments 
of order at most d of the approximated distribution. 

To determine weights and abscissas of the cubature points it is necessary to set up a lattice in s-
dimensional domain. It is done by following the algorithm presented by DeVuyst and Preckel (2007). 
First an equally spaced grid over each variable is set up. The range of each variable has to be chosen 
based on the knowledge of the process conditions. The number of created grid points is an important 
parameter that determines the convergence of the algorithm (more points to choose from) but also 
sufficiently influences calculation time, so it has to be chosen as low as possible but large enough to 
ensure determination of the cubature points. The lattice in s-dimensional phase space is formed by a 
Cartesian product of the previously created grids over each axis. 

The second step is to set up a linear program (LP) over the lattice points using the system expressed by 
Eq. (5) as the equality constraints. Because one is interested in obtaining any set of points having 
positive weights that satisfy Eq. (5), the objective function vector is set to zero. The LP can be solved 
via Simplex method, which results in a set of weights associated to vectors of the feasible basis. Each 
of those vectors corresponds to the specific point in the phase space resulting in a complete set of points 
with associated weights for the cubature approximation. 

During iterative solving of population balance equations the GC is calculated in each time step and then 
used to determine integrals in the source term. It occurred that during the time evolution of the initial 
distribution, the above presented algorithm could not find a feasible solution even for a dense lattice. 
Therefore some changes have been introduced to the algorithm to assure better convergence. The most 
important modification is the exchange of the set of equality constraints, Eq. (5), for the set of 
inequality constraints defined as follows: 
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In the above set, Tol denotes the tolerance of moments determination by the linear program. 
Introducing this parameter enables one to control the desired accuracy but also for some cases allows 
the LP to find a feasible solution. This modification also makes it easy to find the initial feasible basis 
for the linear programming solver. The initial basis consisting of vectors corresponding to the slack 
variables is in this case dual-feasible, hence the dual-simplex algorithm is further used to solve the LP. 

To demonstrate the possibilities of the above introduced algorithm, four test cases are presented in the 
following sections. The first one regards the seeded crystallization process including the nucleation and 
growth of crystals in two directions (2D growth). Then a 3-dimensional population balance model of 
crystal growth and nucleation will be presented, showing the possibility of applying the above 
presented numerical scheme. The third test case is the extraction process in a water-acetone-toluene 
system. Bivariate population balance is used to simulate the simultaneous drop breakage and mass 
transfer in the system. In the last test case the aggregation and sintering of the population of particles is 
considered, which has been also approached by Wright et al. (2001) when introducing the bivariate 
extension of the QMOM technique. PBEs are solved using MATLAB programming language and the 
dual-simplex algorithm implemented in the software. 

4. APPLICATION OF GC TO CRYSTALLIZATION PROCESS 

4.1. 2D case 

As the first test case for the presented method the two-dimensional population balance model of the 
pharmaceutical crystallization process (Sen et al., 2014) has been chosen. Sen et al. (2014) developed a 
model for the growth of crystals in two dimensions. Model constants for the kinetics of the process 
have been also determined. The population balance equation describing this process takes the form: 
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Where G1 and G2 denote the rate of crystal growth in directions L1 and L2 respectively and B0 stands for 
the rate of nucleation. The growth rates can be written as follows (Gunawan et al., 2004): 
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In this model only secondary nucleation is taken into account and its rate is given by: 
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Kinetic constants: kg1, kg2, kb, g1, g2, have been determined by Sen et al. (2014) by fitting them to 
experimental data. In the above equation C stands for the concentration of the solute and Csat denotes 
the solubility of the solute. Since it is assumed that the shape of crystals is cuboid with two 
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characteristic dimensions L1 and L2, the surface area of the single crystal is 21
2
1 42 LLL  , which after 

integration over the whole population results in the total surface area of the crystals S(L1, L2, t):  
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The above presented model has to be solved simultaneously with the mass balance in the form: 
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where c stands for the density of crystals. 

The described crystallization process is a cooling process so the nucleation and growth of crystals are 
caused by the decrease in solute solubility with decreasing temperature. For the test case of our GC 
technique, linear solubility change in time has been used (data set 1.1 from Sen et al. (2014)). The 
density of crystals has been assumed by us to be c = 1500 kg/m3. Moment transformation of (9) results 
in the system of ordinary differential equations for the lower-order moments of crystal size distribution. 
There is no closure needed in the model, hence it can be solved explicitly and therefore is the perfect 
base for comparison to the introduced GC technique. The parameters chosen to be compared for this 
process are the characteristic length and aspect ratio defined as follows: 
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Calculations were made using cubature of degrees 3 and 5. In this case they both gave exactly the same 
results because only moments of order equal of less than 3 were needed to calculate Davg and AR. 

 

Fig. 1. Comparison of calculated crystal average size for different cubature tolerance with results of direct 

solution 
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Fig. 2. Comparison of aspect ratio for different cubature tolerances with results of direct solution 

Table 1. Percent error of characteristic size and aspect ratio determination 

Tolerance 
Final average size  

[μm] 
Error  
[%] 

Final Aspect Ratio 
Error  
[%] 

Direct 64.810 0.000 1.2399 0.000 

0.20% 64.776 -0.052 1.2399 0.000 

0.5% 64.737 -0.113 1.2399 0.000 

1% 64.657 -0.236 1.2401 0.016 

2% 64.511 -0.461 1.2401 0.016 

3% 64.337 -0.730 1.2401 0.016 

5% 64.067 -1.146 1.2405 0.048 

7% 63.746 -1.642 1.2401 0.016 

10% 63.235 -2.430 1.2407 0.065 

In Figs. 1 and 2 time dependencies of those parameters are presented. It can be noticed that increasing 
the cubature tolerance only slightly influences the calculated final crystal size but has almost no 
influence on the final aspect ratio. The relative error of average size and aspect ratio determination is 
presented in Table 1. 

An important factor influencing the calculation time and the minimum possible tolerance is the number 
of divisions of each axis. Increasing the number of points along each axis enables to decrease the 
cubature tolerance but also sufficiently influences calculation time due to the significant rise in the 
number of lattice points. Calculation time of 6000 time steps is presented in Table 2. It can be noticed 
that for a certain number of domain divisions there exists a minimum achievable tolerance where the 
linear program solver can still find a feasible solution in each time step. Execution time generally does 
not depend on the cubature tolerance but for some reason for 20 axis divisions and 7% tolerance it 
calculates two times faster. A similar minimum seems to exist for 50 axis divisions and 1% tolerance. 
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The tolerance of 0.2% can be achieved with 80 axis divisions but it also results in the increase in 
execution time of up to around 1200s. 

Table 2. Calculation time in seconds of 6000 time steps depending on cubature tolerance and number of axis 
divisions (Intel Core i7-2630QM 2GHz, 8GB DDR3) 

Tolerance 
Number of axis divisions 

10 20 50 

10% 589 581 787 
7% - 296 818 
5% - 598 807 
3% - 561 817 
2% - - 833 
1% - - 659 

0.5% - - 872 

4.2. 3D case 

The crystal growth case can be extended to the 3D model if one needs to consider the independent 
growth of each crystal face. The natural extension is the growth model of 3D cuboid shaped crystals. 
As an example a process taking place in the MSMPR continuous crystallizer is considered. The process 
kinetics has been taken from Borchert et al. (2009). In this paper the authors considered a system in the 
steady state and checked the influence of the mean residence time on crystal dimensions. In the present 
work  a dynamic model has been developed and solved using GC to check if it converges to the steady 
state results presented in the paper by Borchert et al. (2009).  Similarly as in the previous test case the 
model equations were solved directly to have the dynamic results for comparison. A cuboid shape of 
crytals has been assumed with crystal dimensions, h1, h2, h3, measured from the center. For the 
simulation the  following set of moments of crystal size distribution: m0,0,0, m1,0,0, m0,1,0, m0,0,1, m1,1,1, 
m2,0,0, m0,2,0, m0,0,2, m1,1,0, m1,0,1, m0,1,1 was used.  This is equivalent to the GC of degree 2 with the 
additional moment m1,1,1 that is present in the mass balance and therefore has to be accurately 
determined to minimize the error. After performing the moment transformation of the population 
balance equations one gets the following set of governing equations for the moments of crystal size 
distribution in the crytalizer having mean residence time : 
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where G1, G2, G3 are the face specific growth rates given by: 
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Kinetic constants kg,i and gi are taken directly from the paper by Borchert et al. (2009) and the 
supersaturation is defined as follows: 
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where C is the mass concentration of the solute and Csat denotes the saturation concentration. 



Application of Gaussian cubature to model two-dimensional population balances 

cpe.czasopisma.pan.pl;  degruyter.com/view/j/cpe  401 
 

The rate of nucleation, B0, is assumed to be a power law dependency: 

 0
b

bB k   (21) 

It should be noted that the system parameters in the paper by Borchert et al. (2009) do not refer to a 
specific physical system. 

Simultaneously to the population balance equations, the mass balance given by Eq. (22) has been 
solved. 
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Where s denotes the solid density. The first term on the right-hand side of Eq. (22) describes the net 
flux of the solute to the system. The second term represents the decrease of solute concentration due to 
crystallization. Subscript kin denotes the first three terms on the right-hand side of Eq. (18) that 
describe the concentration drop described by the crystal growth kinetics. These three terms of Eq. (18) 
are substituted to Eq. (22) for k, l, m = 1. 

The considered system has been simulated for two mean residence time values,  = 0.36 s and  = 1 s, 
which correspond to the characteristic points predicted by the steady state model. As the initial 
condition a supersaturated state was assumed with the inlet and outlet solutions having  equal 
supersaturation, 0 = in = 2. In Fig. 3. the evolutions of the characteristic crystal dimensions obtained 
using GC and by direct calculation are presented depending on the mean residence time in the 
crystallizer. In the first case (Fig. 3a)) the needle-like shape of the crystals is observed, which also 
corresponds to the result presented by Borchert et al. (2009). In the second case (Fig. 3b)) the cubic 
crystal shape is predicted, which also was obtained by the steady state model. The cubature tolerances 
used in those cases were 0.01 and 0.02 respectively. For both accuracy levels the results do not differ 
much from results of the direct solution of the PB. The comparison of relative error obtained using GC 
approximation is presented in Table. 3. One can see that while for the crystal dimensions the relative 
error is of the order of a few percent, for supersaturation it is actually negligible even for the higher 
tolerance. The evolution of supersaturation in time is virtually identical for both numerical methods 
(see Fig. 4.). 

 

Fig. 3. Time evolution of the characteristic crystal dimensions for different mean residence times (direct solution - 

solid line, GC - dashed line); a)  = 0.36 s, b)  = 1 s 



J. Bałdyga, G. Tyl, M. Bouaifi, Chem. Process Eng., 2017, 38 (3), 393-409 

402  cpe.czasopisma.pan.pl;  degruyter.com/view/j/cpe 
 

Table 3. Relative error of determining the steady state values using GC approximation for the considered cases 

 
θ = 0.36 s θ = 1 s 

Direct Cubature Error [%] Direct Cubature Error [%] 

h1 [m] 6.40E-07 6.31E-07 1.41 1.00E-06 9.63E-07 3.73 

h2 [m] 4.80E-07 4.73E-07 1.42 1.00E-06 9.63E-07 3.68 

h3 [m] 2.02E-06 1.99E-06 1.35 1.00E-06 9.60E-07 4.01 

σ [-] 1.7768 1.7765 0.02 1.0000 0.9989 0.11 

 

Fig. 4. Evolution of the supersaturation in the crystallizer predicted using GC and direct method for  

a)  = 0.36 s, b)  = 1 s (direct method - solid line, GC - dashed line) 

5. APPLICATION OF GC TO MODELING OF MASS TRANSFER IN LIQUID - LIQUID 
SYSTEMS 

For the full description of some processes like extraction or absorption it is necessary to follow not only 
the dispersed phase size distribution but also concentration of the extracted/absorbed component in 
both phases. The system under investigation is water-benzoic acid-toluene with water as the continuous 
phase, toluene as the dispersed phase and benzoic acid as the component transferred between phases. 
The dispersion is mixed in a 10 dm3 stirred tank (diameter, T = 0.23 m, height, H = 0.24 m) equipped 
with a 0.133 m diameter Rushton turbine. 

For the modeling the two-cell model introduced by Okamoto (1981) is applied. Population balance 
equations are solved using GC technique and compared with results obtained using bivariate quadrature 
method of moments with a 3-point quadrature technique for the approximation of weights and 
abscissas. In QMOM diameter is chosen to be the main coordinate on which the process depends, 
therefore abscissas on the size axis are first calculated from the moments of distribution with respect to 
diameter using product-difference algorithm and then concentrations are calculated from the mixed 
moments m3,1, m4,1, m5,1 which define a linear system of equations. 

The partition coefficient of the benzoic acid has been calculated from the formulas proposed by 
Brändström (1966): 

 1.09 1.009BT
HBW

HBW

C
C

C
   (23) 
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where CBT is the total concentration of benzoic acid in toluene and CHBW is the concentration of not 
dissociated benzoic acid in water. The mass transfer coefficient introduced by Batchelor (1980) has 
been used with diffusion coefficient of the benzoic acid in water in 20 C equal to D = 0.9110-9 m2s-1. 
Driving force of the mass transfer process is: 

 bulk HBWC C C    (24) 

Where CHBW is the concentration of the benzoic acid in water which would be in the equilibrium state 
with CBT concentration in the dispersed phase so it directly depends on the droplet composition. The 
mean concentration of acid in the bulk Cbulk is calculated from the mass balance of the transferred 
component in the form: 

      0 0
1d d bulk bulkV C C V C C          (25) 

which gives: 

  0 01bulk bulk d dC C C C



  


 (26) 

It should be noted that in this case there are no direct solutions and the methods based on 
approximation have to be used. In the comparison of QMOM and GC model predictions, toluene is 
assumed to be the dispersed phase. Benzoic acid is initially present only in the droplets and transfers to 
the bulk during the process. In the calculations dispersed phase concentration  = 10% is used. Average 
energy dissipation rate in the tank is assumed to be  = 5 W/kg. 

The applied model consists of breakage kernel developed by Bałdyga and Podgórska (1998) based on 
the multifractal model of intermittency described in detail by Bałdyga and Bourne (1993, 1995). The 
continuous parabolic daughter size distribution introduced by Hill (1995) has been used. 

In Figs. 5 and 6 predicted mean drop diameters are presented. Results obtained using the introduced GC 
technique are in agreement with QMOM predictions for d10 as well as for Sauter diameter d32. Time 
dependence of the mean concentration of benzoic acid in the dispersed phase is presented in Fig. 7. In 
this case GC technique gives the same prediction as the QMOM. Details regarding the application of 
GC algorithm to modeling of mass transfer in liquid-liquid dispersions are presented in Appendix. 

 

Fig. 5. Comparison of mean drop size d10 calculated using GC and QMOM. Δd10 denotes the difference between 

the results obtained using GC and QMOM techniques 



J. Bałdyga, G. Tyl, M. Bouaifi, Chem. Process Eng., 2017, 38 (3), 393-409 

404  cpe.czasopisma.pan.pl;  degruyter.com/view/j/cpe 
 

 

Fig. 6. Comparison of droplet Sauter diameter d32 calculated using GC and QMOM. Δd32 denotes the difference 

between the results obtained using GC and QMOM techniques 

 

Fig. 7. Evolution of the mean concentration of benzoic acid in the dispersed phase. ΔC denotes the difference 

between the results obtained using GC and QMOM techniques 

6. APPLICATION OF GC TO MODELING OF AGGREGATION AND SINTERING OF SOLID 
PARTICLES 

The last test case regards the 2-dimensional model of aggregation and sintering of particle populations 
considered earlier by Wright et al. (2001). Aggregation is modeled by the Brownian coagulation kernel 
(Eq. 27) and the sintering by the convection in the phase space using relaxation term (Eq. 28). 

     1/ 1/ 1/ 1/

1 2 1 2 1 2, f f f fD D D DV V K V V V V       (27) 
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   ,
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p

sint

f V a
af V a

t a

           
  (28) 

with 

  1
min

f

a a a
t

    (29) 

where amin is the area of a fully compacted (spherical) particle and ݐ௙ is the characteristic time of 

sintering. In this case we have assumed tf = 10 s, K = 1 m3/s, and Df = 3 after McGraw et al. (2001). The 
initial distribution was lognormal over each axis with the initial moments taken directly from the paper. 

Due to the presence of nonlinear terms in the PB equations the closure problem is generated by the 
moment transformation. The model has been solved using GC and two variants of bivariate QMOM for 
comparison. Both of them are 3 point bivariate quadrature techniques. QMOM(v) has volume chosen to 
be the primary variable. It means that first the monovariate quadrature is calculated from pure volume 
moments and then the corresponding specific areas are recalculated from moments of order 1/3 over the 
area. QMOM(a) is constructed similarly using the area as the primary variable. They are less exact than 
the complete 12p QMOM but much faster. 

In GC the moments of the order up to 2 were followed, plus the 1/3 and -1/3 moments over the volume 
coordinate due to their presence in the aggregation kernel. 50 axis divisions and 0.1% tolerance have 
been used. The calculation time was 12.15 s/1000 time steps for the QMOM techniques and 79.6 
s/1000 time steps for GC. We can see that the QMOM is faster but the more accurate techniques like 
12p QMOM are about 100 times slower than QMOM as stated by the authors. For 12p QMOM we 
would also need to follow 36 moments of the distribution compared to 7 moments needed for the GC. 

In Fig. 8 the time changes of average volume and average surface area of the particles are presented. 
We can see that the GC can predict accurately the effect of aggregation as well as sintering. QMOM(v) 
results for the area differ from the others when predicting surface area and QMOM(a) predicts 
aggregation effect less accurately. 

 

Fig. 8. Time evolution of a) average surface area, b) average volume of the particle population  

(NS - without sintering, S - with sintering) 
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7. CONCLUSIONS 

A new moment based method for solving multidimensional population balance has been applied to 
chemical engineering processes. This new approach uses linear programming algorithms to develop a 
Gaussian cubature approximation of multivariate distributions which is further used to solve PBEs. The 
method has been applied to bivariate and 3-dimensional population balances, and proved to accurately 
describe the evolution of systems under investigation. Therefore it can be considered as a promising 
technique for the future implementation in CFD codes. Compared to other methods like QMOM the 
presented algorithm has no limitations in the number of internal dimensions and therefore it can be used 
to precisely determine the evolution of many independent parameters of the system under 
consideration. Also, the algorithm itself does not require any reformulation before being applied to 
higher dimensional systems, which makes it convenient to use. However, there are two parameters to 
be adjusted by the user, which severely influences the performance of this numerical scheme. From 
those two i.e. the grid resolution and cubature tolerance the latter seems to be more important for the 
overall performance while keeping the grid density in reasonable range (between 20 and 50 divisions of 
each axis). The tolerance influences the convergence of the algorithm and its precision. To overcome 
the problem of lack of convergence at some points in simulations, which would cause the crash of the 
program, the authors suggest using a loop, which in each time step starts the cubature with low 
tolerance.  In the case of no convergence the tolerance should be subsequently increased to the level 
which allows for convergence. For simulations of higher dimensional systems another problem may 
arise, namely a significant increase in the number of lattice points with the rising number of axis 
divisions. In those cases it would be necessary to decrease the number of axis divisions at the cost of 
increasing the tolerance to keep the execution time reasonable. Those issues will have to be addressed 
before implementing the GC algorithm in the CFD code to ensure the stability and convergence of the 
simulation. 

The authors gratefully acknowledge the financial support from Solvay, France. 

SYMBOLS 

a dimensionless surface area of the particle 
aavg dimensionless average surface area of the population of particles 
amin dimensionless area of the fully compacted particle 
AR aspect ratio 
B(x, r, t) birth function 
B0 nucleation rate, m-3s-1 
C concentration of solute, kg/m3 
Cbulk concentration of benzoic acid in water phase, mol/dm3 
CBT equilibrium concentration of benzoic acid in toluene, mol/dm3 
Cd concentration of benzoic acid in toluene phase, mol/dm3 
CHBW equilibrium concentration of benzoic acid in water, mol/dm3 
Csat saturation concentration, kg/m3 
d degree of GC approximation 
dd droplet diameter, μm 
d10 average droplet size, μm 
d32 droplet Sauter diameter, μm 
D diffusion coefficient of benzoic acid in water, m2s-1 
D(x, r, t) death function 
Davg average crystal size, m 
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Df fractal dimension 
E expectation value 
f number density function 
g(d’) breakage kernel, s-1 
g(X) arbitrary function of vector X 
Gi growth rate in i-th dimension 
h1, h2, h3 characteristic dimensions of cuboid crystal, m 
kb kinetic constant, m-3min-1 
kg,1, kg,2 kinetic constants, m/min 
K constant in the aggregation kernel 
Li length of crystal in i-th dimension, m 
mi raw moment of the distribution of order i 
N number of cubature points 
r=[r1, r2,…,rN] vector of internal coordinates 
s number of phase space dimensions 
t time, s 
Tol cubature tolerance 
V1, V2 dimensionless volumes of the aggregating particles 
V volume of stirred tank, dm3 
Vavg dimensionless average volume of the population of particles 
Vp dimensionless volume of the particle 
vi i-th component  of the velocity vector in physical space, m/s 
wi weight of the i-th cubature point 
x=[x1, x2, x3] position in the physical space 
xij j-th coordinate of the i-th abscissa of GC approximation 
X s-dimensional vector of random variables 

Greek symbols 
β aggregation kernel, m3/s 
βd(d,d’) daughter size distribution, m-1 
ε average energy dissipation rate, W/kg 
ν(d’,ε) number of daughter droplets 
ϕ concentration of the dispersed phase 
ρc density of crystal phase, kg/m3 
ρs density of solid phase, kg/m3 
σ supersaturation 
σ0 initial supersaturation 
σin supersaturation of the inlet solution 
θ mean residence time, s 

Subscripts 
k1, k2, …, kN order of moment over i-th coordinate 

Superscript 
bs kinetic exponent 
g1, g2 kinetic exponent 

Abbreviations 
DQMOM direct quadrature method of moment 
GC Gaussian cubature 
GQ Gaussian quadrature 
LP linear program 
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PB population balance 
PBE population balance equation 
QMOM quadrature method of moments 
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 APPENDIX  

The details of application of the GC algorithm to modeling of drop break up with simultaneous mass 
transfer, as considered in Section 4, are presented in what follows. One starts with choosing internal 
coordinates, which in this case are the droplet diameter, dd , and the concentration of the benzoic acid in 
the dispersed phase, Cd.  The bivariate moments of the distribution of order k over droplet diameter and 
l over the concentration are obtained by transforming Eq. (2): 

  ,

0 0

, ,k l
k l d d d d d dm d C f d C t dC dd

 

    (30) 

After performing a moment transformation of the population balance equations, Eq. (3), one gets a set 
of integro-differential equations governing the time evolution of the system: 
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 (31) 

where dC denotes the mass flux,  (d’d, ) the number of daughter droplets created in the breakage 

event, d (dd, d’d) the daughter size distribution, and g(d’d) is a breakage kernel. The right hand side 
terms refer to mass transfer (convection in a phase space), appearing and disappearing of droplets due 
to breakage (birth and death terms), respectively. The source term integrals are now approximated 
using the Gaussian Cubature (Eq. (4)) leading to the set of differential equations: 

 
       , 1
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dt
  

 

 
    

 
    (32) 

To obtain weights, wi, and abscissas, ddi and Cdi, of the cubature, the GC algorithm is used following 
Eqs. (5) to (8). One of the output parameters in this case is the Sauter diameter, d32, which requires the 
second and the third moment of distribution. Hence, the Gaussian cubature of order 3 is used. This 
order of approximation should ensure sufficient accuracy. Therefore one gets a set of 10 moments of 
distribution to be followed during the simulation. The linear program (LP) resulting from the GC 
procedure is then solved in each time step using the dual-simplex method implemented in the 
MATLAB software libraries giving weights for each point of the previously set up lattice. Points 
having strictly positive weights are then used for the GC approximation. 


