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Abstract 
 
The paper presents the results of the computer simulations of solidification with consideration of the liquid phase movement. 
Simulations were conducted in a real, complex cast. There is a multi-stage resolution to the problem of convection in 
solidification simulations. The most important resolution concerns the development of the numerical model with the 
momentum and continuity equations, as well as conditions which are determined by the convection. Simulations were 
carried out with the use of our authorial software based on stabilized finite elements method (Petroy-Galerkin). In order to 
solve Navier-Stokes equation (with the convection element), Boussinesq’s approximation were used. Finite Elements 
Method (FEM) was responsible for the solidification. FEM is close to the heat conduction equation solution (with the 
internal heat source responsible for the heat released during phase transformation). Convection causes movement in the 
liquid phase in the solidifying cast and can significantly influence the process of heat transfer from the cast. It may change 
the distribution of the defects. Results of this article make it possible to assess the conditions in which the influence of the 
convection on solidification is significant. 
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1. Introduction 
 
Solidification remains one of the most troublesome 

phenomena in numerical modelling. The number and variety of 
physical processes that take place between microscale and 
macroscale poses a great challenge to the scientists working on a 
suitable calculation model connected with diffusion and 
convection. A great many different models have been proposed 
over the years that offered reasonable results [1, 2], but they did 
settle on certain simplifications. None of the results included all 

of the problems occurring during modelling of this complicated 
phenomenon. 

Many of the calculation models are subject to some 
restrictions. For instance, one such restriction is the omission of 
convection force in liquid metal. Unfortunately, their omission in 
a numerical model may cause crucial differences between the 
temperature range achieved in a computer simulations, and the 
temperature of the real casting itself. What is more, due to such a 
simplification (omission of convection) it is not possible to model 
certain phenomena which are vital factors influencing the quality 
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of castings – for example, dopant distribution in the casting or 
shrinkage during solidification [3]. 
 On the other hand, increasing complexity of models, by 
including a bigger number of processes (occurring during the 
solidification) in them, causes problems with the implementation 
of the models. That is why modern models must be implemented 
with the use of technology such as parallel computers [4], 
accelerated architectures, for example GPU (Graphics Processing 
Unit) [5], or by using specific organization of calculations [6]. 
 In the paper, a solution to the problem of convection in 
computer simulations of solidification is presented. The paper 
discusses each stage of the numerical model development, 
problems connected with occurrence of momentum and continuity 
equations, as well as conditions in which convection is the key 
factor. All of that is supplemented with illustrations of the range 
of temperature, pressure and velocity in different moments of 
process lasting. 
 
 

2. Mathematical model 
 

The governing equation for modeling solidification process is 
based on heat transfer equation with source term: 
 
𝜌𝜌𝑇̇ + 𝜌𝜌(𝐮 ∙ ∇)𝑇 = 𝜆∇2𝑇 + 𝑞̇,         (1) 
 
where T is temperature, u is velocity from convection force, λ is 
thermal conductivity, ρ is density, c is specific heat and q is heat 
source along with the heat of solidification. 

In the model solving equation (1) the Newton boundary 
condition on the external sides of the mould was implemented 
(heat exchange between the mould and the environment) and the  
contact condition for the heat exchange between the mould and 
the casting. Apparent heat capacity formulation can be obtained 
by using the following form of equation (1): 
 
𝑐∗𝑇̇ + 𝜌𝜌(𝐮 ∙ ∇)𝑇 = 𝜆∇2𝑇,         (2) 
 
where c* is the approximation of the effective heat capacity. There 
are different methods to obtain this approximation. Here, the 
Morgan method is used: 
 

𝑐∗ = 𝐻𝑡−𝐻𝑡−1

𝑇𝑡−𝑇𝑡−1
,           (3) 

 
where H is enthalpy and t in superscript is time level. 

Liquid metal in this model is assumed to be Newtonian fluid 
which makes it possible to write Navier-Stokes set of equations 
as: 
 
𝜌𝐮̇ + 𝜌�(𝐮 ∙ ∇)𝐮� − ∇𝑝 + 𝜌𝜌�(∇𝐮) + (∇𝐮)𝑇� + 
+𝜌𝜌 𝑓𝑙

𝐾𝜀
𝐮 = 𝜌𝐟           (4) 

 
∇ ∙ 𝐮 = 0,           (5) 
 
where p is pressure, μ is viscosity, fl is a liquid fraction, and Kε is 
the permeability of the mushy zone. 

Above equations are supplemented by the proper set of initial 
and boundary conditions. Initial u is set as an initial condition and 
the no-slip condition is used between the mould and the casting. 

The right-hand side of equation (4) describes body forces 
which arose in liquid. The first part is related to buoyancy force 
approximated by Boussinesq formula: 
 
𝐟 = −𝛽𝐠(𝑇 − 𝑇0),          (6) 
 
where g is gravitational acceleration, β is expansion coefficient, 
T0 is reference temperature, which in this particular case is from 
initial conditions temperature. 

The last part of the left-hand side of equation (4) is drag force 
which appears in a mushy zone due to liquid and an already 
solidified metal interacting with each other. This model assumes 
that the solidified part is immovable [7]. The Kozeny-Carman 
equation approximates the permeability of the mushy zone: 
 

𝐾𝜀 = 𝐾0
𝑓𝑙
3

(1−𝑓𝑙)2
,           (7) 

 
where K0  is secondary dendrite arm spacing, and fl is a liquid 
fraction. 

Following simple relation connects liquid fraction with solid 
fraction: 

 
𝑓𝑙 = 1 − 𝑓𝑠,           (8) 
 
where a value of fs is taken from phase equilibrium graph 
relationship: 
 
𝑓𝑠 = 1

1−𝑘
𝑇𝐿−𝑇
𝑇𝑀−𝑇𝐿

,           (9) 
 
where TL is liquidus temperature, TM is solidification temperature 
of the pure component, and k is dopant contribution coefficient. 

Equations (1), (4) and (5) are discretised using Finite Element 
Method, which results in the following set of equations: 

 
𝐌𝑆𝐓 + (𝐍𝑆𝐓 + 𝐊𝑆)𝐓 = 0       (10) 
 
𝐌𝐌 + (𝐍 + 𝐊)𝐮 − 𝐆𝐆 + 𝐃𝐃 = 𝐅       (11) 
 
𝐆𝑇𝐮 = 0,         (12) 
 
where superscript S is used to set apart matrices used in 
solidification equation, and T, u, p are vectors of unknown 
temperature, velocity and pressure. Elements of matrices Ms, M, 
Ns, N, Ks, K, GT, G and D can be calculated with the following 
formulas: 
 

𝑀𝛼𝛼
𝑆 = ∫ 𝑐∗𝑆𝑎𝑆𝑏Ω dΩ        (13) 

 

𝑁𝛼𝛼𝑆 = ∫ 𝜌𝜌𝑆𝑎𝑢𝑘𝑆𝑏,𝑘Ω dΩ        (14) 
 

𝐾𝛼𝛼𝑆 = ∫ 𝜆𝑆𝑎,𝑗𝑆𝑏,𝑗Ω dΩ        (15) 
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𝑀𝛼𝛼 = ∫ 𝜌𝜌𝑆𝑎𝑆𝑏Ω dΩ        (16) 
 

𝐾𝛼𝛼 = ∫ 𝜇𝜇𝑎,𝑘𝑆𝑏,𝑘𝛿𝑖𝑖Ω dΩ +  ∫ 𝜇𝑆𝑎,𝑗𝑆𝑏,𝑖Ω dΩ     (17) 
 

𝑁𝛼𝛼 = ∫ 𝜌𝑆𝑎𝑢𝑘𝑆𝑏,𝑘𝛿𝑖𝑖Ω dΩ       (18) 
 

𝐺𝛼 = ∫ 𝑆𝑎,𝑖𝑆𝑏Ω dΩ        (19) 
 

𝐷𝛼𝛼 = ∫ 𝜌𝜌 𝑓𝑙
𝐾𝜀
𝑆𝑎𝑆𝑏𝛿𝑖𝑖Ω dΩ       (20) 

 

𝐺𝛽𝑇 = ∫ 𝑆𝑏,𝑗𝑆𝑎Ω dΩ        (22) 
 

𝐹𝛼 = ∫ 𝜌𝑆𝑎𝑓𝑖Ω dΩ,        (23) 
 
where α, β are indices of single element matrix, a and b have the 
range up to number of nodes in an element, i, j, k have the range 
up to a number of dimensions, S is shape function of finite 
elements, and δ is Kronecker delta. 

Equations in that form can be solved with carefully selected 
finite elements [8]. The approach which is described in this paper 
is based on the use of the stabilized Finite Element Method [9]. It 
makes it possible to avoid limits set by the Ladyzhenskaya-
Babuska-Breezi condition.  

Treating the drag force part in stabilization requires special 
care [10]. An approach used in this paper determines stabilization 
coefficient values by the velocity of the liquid and limits it 
proportionally to the volume of liquid fraction. 

During the calculations the authors assumed a small time step, 
therefore the authors used temperature from the previous time 
step when temperature was needed to determine actual material 
properties values. That approach allows to treat solidification 
equation as linear and to solve it without Navier-Stokes equations, 
which makes for a better overall performance [11]. What is more, 
such an approach allows to use lumped mass matrix in 
solidification equation [11, 12]. At the moment any adaptive time 
stepping strategy was not implemented. A size of time step was 
only based on the authors' experience in computer simulations. 
Use an adaptation method could be planned in the future work. 

Bearing these assumptions in mind and using theta scheme for 
time integration, the final form of equations solved in the model 
is: 
 
[𝐌𝑠 + 𝐌𝑆𝑆𝑆𝑆

𝑠 + ∆𝑡𝑡(𝐍𝑠 + 𝐍𝑆𝑆𝑆𝑆𝒔 + 𝐊𝑠)]𝐓𝑡+1 
= [𝐌𝑠 + 𝐌𝑆𝑆𝑆𝑆

𝒔 + ∆𝑡(1 − 𝜃)(𝐍𝒔 + 𝐍𝑆𝑆𝑆𝑆𝒔 + 𝐊𝒔)]𝐓𝑡    (24) 
 
�𝐌 + 𝐌𝑆𝑆𝑆𝑆 +
∆𝑡𝑡�𝐍 + 𝐍𝑆𝑆𝑆𝑆 + 𝐊 + 𝐃 + 𝐃𝑆𝑆𝑆𝑆��𝐮𝑡+1 − ∆𝑡𝐆𝐩𝑡+1 +
    
+�𝐌 + 𝐌𝑆𝑆𝑆𝑆 + ∆𝑡(1 − 𝜃)�𝐍 + 𝐍𝑆𝑆𝑆𝑆 + 𝐊

+ 𝐃+𝐃𝑆𝑆𝑆𝑆��𝐮𝑡 = 
= ∆𝑡�𝜃�𝐅 + 𝐅𝑆𝑆𝑆𝑆� + (1 − 𝜃)�𝐅 + 𝐅𝑆𝑆𝑆𝑆��       (25) 
 

�𝐌𝑃𝑃𝑃𝑃 + ∆𝑡𝑡�𝐆𝑇 + 𝐍𝑃𝑃𝑃𝑃 + 𝐃𝑃𝑃𝑃𝑃��𝐮𝑡+1 −
∆𝑡𝐆𝑃𝑃𝑃𝑃𝐩𝑡+1 +      
+�𝐌𝑃𝑃𝑃𝑃 + ∆𝑡(1 − 𝜃)�𝐆𝑇 + 𝐍𝑃𝑃𝑃𝑃 + 𝐃𝑃𝑃𝑃𝑃��𝐮𝑡 =  
= ∆𝑡[𝜃𝐅𝑃𝑃𝑃𝑃 + (1 − 𝜃)𝐅𝑃𝑃𝑃𝑃],        (26) 
 
where matrices with SUPG (Streamline Upwind Petrov-Galerkin) 
and PSPG (Pressure Stabilized Petrov-Galerkin ) are terms 
supplied by stabilization, Δt is time step, and θ is parameter 
determining a type of time integration scheme (0 for Euler 
Backward and 0.5 for Cranck-Nicolson). 

While SUPG should repel oscillations in solutions that occur 
due to high velocities, obtaining a solution with oscillations 
(especially temperature) is still possible thanks to high gradients. 
To avoid oscillations caused by high gradients it is common to 
use a diagonal mass matrix in the heat transfer simulations. 

 

�
𝐌𝟏𝟏

𝑺 𝐌𝟏𝟏
𝑺 𝐌𝟏𝟏

𝑺

𝐌𝟐𝟐
𝑺 𝐌𝟐𝟐

𝑺 𝐌𝟐𝟐
𝑺

𝐌𝟑𝟑
𝑺 𝐌𝟑𝟑

𝑺 𝐌𝟑𝟑
𝑺
� ⟹  ⋯ 

�
𝐌𝟏𝟏
𝑺 + 𝐌𝟏𝟏

𝑺 + 𝐌𝟏𝟏
𝑺 0 0

0 𝐌𝟐𝟐
𝑺 + 𝐌𝟐𝟐

𝑺 + 𝐌𝟐𝟐
𝑺 0

0 0 𝐌𝟑𝟑
𝑺 + 𝐌𝟑𝟑

𝑺 + 𝐌𝟑𝟑
𝑺
�  

 
     (27) 

One of the tasks, which the authors contemplated during their 
work, was a possibility of using the SUPG and the diagonal mass 
matrix in one model to find out how well they work together. This 
model uses Newton-Raphson approach for linearization of 
Navier-Stokes equations. 
 
 

3. Simulations  
  

The model described in section 2 was implemented by authors 
hereof in C++ language with the use of TalyFEM  finite element 
routines library [13] and PETSc, as a provider of linear algebra 
algorithms and data structures [14].  

The results of calculations taking into account convection are 
shown for the domain presented in Fig. 1. The boundary 
conditions utilised following parameters: Newton boundary 
condition on all sides of mould had the environment temperature 
equal to 300 K and heat exchange coefficient was equal to 10 
W/(m K). Continuity condition assumed a value of 1000 W/(m K) 
for heat transfer through a separation layer. 

 

 
Fig. 1. View of the casting and mold with dimensions (in mm) 
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A summary of the material properties can be found below in 
Table 1 (for casting) and Table 2 (for mould). That properties 
correspond on a binary alloy Al-2%Cu. 

 
Table 1.  
Material properties for casting 

Quantity name Unit Value 
Density ρs kg/m3 2824 
Density ρl kg/m3 2498 
Specific heat cs J/(kg K) 1077 
Specific heat cl J/(kg K) 1275 
Thermal conductivity λs W/(m K) 262 
Thermal conductivity λl W/(m K) 104 
Solidus temperature Ts K 853 
Liquidus temperature Tl K 926 
Solidification temperature of 
pure component TM 

K 933 

Eutectic temperature TE K 821 
Heat of solidification L J/kg 390000 
Solute partition coefficient k - 0.125 
Viscosity μ kg/(m s) 0.004 
Expansion coefficient β 1/K 0.0001 
Secondary dendrite arm spacing 
K0 

m 1.4*10-11 

 
Table 2.  
Material properties for mould 

Quantity name Unit Value 
Density ρs kg/m3 7500 
Specific heat cs J/(kg K) 620 
Thermal conductivity λs W/(m K) 40 

 
 
The computational domain comprised 280344 nodes and 

570708 triangle finite elements. Time step used in time integration 
was equal to 0.025 s and time integration used a value of θ equal 
to 1 (Euler Backward). Total run time for our simulation was 25 s. 
The results of the computer simulation are presented for the first 8 
s  because after that time there was only occurred cooling 
phenomenon. 

Fig. 2 shows the results of the comparison. The effect of 
convection is not visible there, as curves for cases, with and 
without convection, overlap due to small volume of casting that 
prevented convection forces from achieving greater values. 

Plots of velocity vectors of liquid metal are shown in Figs. 3 
to 7. Figs. 6-7 show the movement of liquid metal almost stopped 
after 4 seconds. The maximum value of velocity was 0.003 m/s as 
shown in Fig. 5. The value of velocity appears not to be sufficient 
to make an impact on the temperature values. 

Corresponding temperature and solid fraction maps are 
presented in Fig. 8 to 12 and Figs. 13 to 17, respectively. They are 
shown solely for a case with convection, as differences would be 
hard to notice between cases with and without convection. The 
results show that this casting solidifies fast. There are no places in 
the casting that are in a fully liquid state after 4 seconds. The 
minimal amount of solid fraction is equal to 0.66 after 8 seconds. 
This shape of casting was chosen because the authors have access 

to some experimental data that describes the solidification process 
in this case. 

 

 
Fig. 2. Cooling curves of point that lies in centre of the casting. 

 

 
Fig. 3. Velocity vectors in time 0.5 s 

 

 
Fig. 4. Velocity vectors in time 1.0 s 

 

 
Fig. 5. Velocity vectors in time 2.0 s 

 

 
Fig. 6. Velocity vectors in time 4.0 s 
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Fig. 7. Velocity vectors in time 8.0 s 

 

 
Fig. 8. Temperature after 0.5 s 

 

 
Fig. 9. Temperature after 1.0 s 

 

 
Fig. 10. Temperature after 2.0 s 

 

 
Fig. 11. Temperature after 4.0 s 

 

 
Fig. 12. Temperature after 8.0 s 

 

 
Fig. 13. Solid fraction distribution after 0.5 s 

 
Fig. 14. Solid fraction distribution after 1.0 s 

 

 
Fig. 15. Solid fraction distribution after 2.0 s 

 

 
Fig. 16. Solid fraction distribution after 4.0 s 

 

 
Fig. 17. Solid fraction distribution after 8.0 s 

 
 

4. Summary 
 

The paper discusses the problem of convection in 
solidification simulations. It shows the stages of the development 
of model and problems connected with the occurrence of 
momentum and continuity equations. Included computations 
show, that although small convection in the casting can affect 
results concerning the temperature and solid fraction maps, it is 
difficult to observe such phenomenon in this case because the cast 
is too small. However, the authors assume that it could be found 
in bigger casts (that issue was discussed for only simple shape in 
[15]), which will be the subject of their further simulations. 
Moreover, on the basis of calculations, the authors noticed that 
using diagonal mass matrix is extremely effective in the linear 
formulation, because oscillations in obtained results disappear 
almost completely (what was discussed in [11]). The main aims in 
the development of the tools for numerical computing are to make 
them i) fast, ii) cheap (simulations on workstations), iii) flexible 
(general purpose solver), iv) accurate (adaptive error control) 
[16]. The authors’ software, which is still in development, 
satisfies all of these conditions. 

Future work plans include an experimental comparison of 
results as the presented model has so far been checked only 
against benchmark problems. 
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