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Abstract The work deals with the heat analysis of generalized Burg-
ers nanofluid over a stretching sheet. The Rosseland approximation is used
to model the non-linear thermal radiation and incorporated non-uniform
heat source/sink effect. The governing equations reduced to a set of non-
linear ordinary differential equations under considering the suitable similar-
ity transformations. The obtained ordinary differential equations equations
are solved numerically by Runge-Kutta-Fehlberg order method. The effect
of important parameters on velocity, temperature and concentration dis-
tributions are analyzed and discussed through the graphs. It reveals that
temperature increases with the increase of radiation and heat source/sink
parameter.
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Nomenclature

A1 – rate of strain tensor
A, B – heat generation or absorption
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b – constants
B0 – magnetic field
C – nanoparticle volume fraction, kg/m3

Cw – concentration at the wall
C∞ – ambient nanofluid volume fraction, kg/m3

cp – specific heat coefficient, J/kg K
DB – Brownian diffusion coefficient
DT – thermophoretic diffusion coefficient
k – thermal conductivity, W/m K
k∗ – mean absorption coefficient, m−1

L – velocity gradient
Le – Lewis number
M – magnetic parameter
Nb – Brownian motion parameter
Nt – thermophoresis parameter
Nux – local Nusselt number
q′′′ – non-uniform heat source/sink
qw – surface shear stress
qm – surface heat flux
Pr – Prandtl number
qr – radiation heat flux, Wm−2

R – radiation parameter
Rex – local Reynolds number
S – extra stress tensor
Shx – local Sherwood number q′′′

T – fluid temperature, K
Tw – surface temperature, K
T∞ – ambient surface temperature, K
t – time
u, v – velocity components, m/s−1

Uw – stretching sheet
x, y – coordinates, m

Greek symbols

α – thermal diffusivity
β1, β2 – Deborah numbers in terms of relaxation time
β3 – Deborah number in terms of retardation time
η – similarity independent variable
θ – dimensionless temperature
θw – temperature ratio parameter
λ1, λ2 – relaxation time
λ3 – retardation time
µ1 – dynamic viscosity, Ns/m2

ν – kinematic viscosity of the fluid, m2 s−1 K
ρ – density of fluid
σ – electrical conductivity
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τ – ratio of the effective heat capacity of the nanoparticle to that of an
ordinary fluid

φ – dimensionless nanoparticle volume fraction
ψ – stream function

1 Introduction

In recent years the study of heat and mass transfer on magnetohydrodynam-
ics (MHD) flows has a variety of applications in engineering and industry es-
pecially in meteorology, solar physics, cosmic fluid dynamics, astrophysics,
geophysics and in the motion of earth’s core, nuclear reactors, polymer pro-
duction and food processing, liquid metal heat exchangers, geophysics and
astrophysics. In view of these applications, Gupta and Gupta [1] discussed
the heat and mass transfer on a stretching sheet with suction and blowing.
Chan and Char [2] analyzed the heat and mass transfer on a continuous
stretching sheet with suction and blowing. Makinde et al. [3] studied the
buoyancy effect on a stagnation point MHD flow of nanofluid with con-
vective condition. Rashidi et al. [4] examined the radiation and buoyancy
effects on a Newtonian fluid past a vertical surface. Das et al. [5] presents
the heat and mass effects on a second order fluid with convective boundary
condition. Ramesh et al. [6–8] reported the two-phase dusty liquid flow
over a permeably moving sheet under various aspects and conditions.

The study of nanofluids is gaining a lot of attention due to its vast ap-
plications in nuclear energy, medicine, space exploration, ethylene glycol,
engine oil in high technological areas and heat transfer in high technolog-
ical industries etc. Accordingly, Choi [9] was the first who introduced the
term nanofluid indicating engineered colloids composed of nanoparticles
dispersed in a base fluid. Comprehensive survey of convective transport
in nanofluid has been investigated by Buongiorno [10]. Flow of nanofluid
past a stretching sheet was first analyzed by Khan and Pop [11]. Alsaedi et

al. [12] discussed the effect of heat generation/absorption on the stagnation
point flow of nanofluid towards an impermeable stretching surface. Using
high-level language and interactive environment Rahman et al. [13] elabo-
rate convection flow of water based nanofluid past a wedge and studied the
effects of magnetic field and heat source/sink. Nandy and Mahapatra [14]
obtained the solutions of stagnation point flow over a stretching/shrinking
sheet via shooting technique. Some recent investigations on nanofluid with
different geometries are consulted in [15–19].

Presently, non-Newtonian fluids have a numerous applications in indus-
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try and technology, e.g., food, chemical, biological and pharmaceutical in-
dustries, drilling muds, apple sauce, paper pulp, paints, polymer solutions,
certain oils, and clay coating, etc. The behavior of non-Newtonian liquids
the foremost equations become more complex to handle as extra nonlinear
terms appear in the equation of motion. Predominantly, reaction of nu-
merous viscoelastic fluids can be caught sensibly well by the rate type fluid
models. The fluid model under thought is a subclass of the rate-type fluid
that is known as the generalized Burgers fluid. Consequently, a thermo-
dynamic framework has been put into place to develop a one-dimensional
model due to Burgers [20] to the frame indifferent of three dimensional
forms by Rajagopal and Srinivasa [21]. The Burgers model has been suc-
cessfully used to describe the response of asphalt and asphalt concrete [22]
as well as used to model the geological structures like Olivine rocks [23].
In spite of diverse applications, the Burgers model has not been given due
attention. Khan and Khan applied the homotopy analysis method (HAM)
to obtain the generalized Burgers fluid in the presence of nanoparticles [24].
Hayat et al. studied the heat and mass transfer effect on inclined surface
of Burgers fluid [25]. This model has been inspected by a few researchers
[26–31]. Another important aspect of heat transport phenomenon which
attained the special focus is called thermal radiation. The suitable knowl-
edge of heat transfer via radiation is essential for the achievement of best
quality products in industry. Several engineering processes include space
vehicles, hypersonic fights, gas turbines, nuclear power plants, etc. involve
the phenomenon of radiation. Nowadays, radiative heat transport has also
role in the techniques of renewable energy. Various researches have been
done to describe the mechanism of radiation [32–37].

Based on the above studies, here our plan is to elaborate the features
of radiation and non-uniform heat source/sink in Burgers nanoliquid flow
generated by stretched surface. We also utilized the concept of non-linear
radiation phenomenon. Numerical computation is made to find the solution
of non-linear governed expressions. The results of dimensionless quantities
have been visualized for various values of emerging physical constraints.

2 Mathematical formulation

The fundamental equations of mass, momentum, energy and nanoparticles
of the flow yield, Khan and Khan [24]

∇ · V = 0 , (1)
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ρ(V · ∇) = −∇p+ ∇ · S , (2)

(V · ∇)T = α∇2T + τ

(

DB∇C · ∇T +
DT

T∞

∇T · ∇T
)

, (3)

(V · ∇)C = DB∇2C +
DT

T∞

∇2T , (4)

where V is the velocity vector, p is the pressure, T is the temperature, S
is the stress field, ρ is the density, DT ,DB denote thermophoresis diffusion
coefficient, Brownian diffusion coefficient, respectively. The extra stress
tensor for incompressible generalized Burgers fluid is related to the motion
of fluid satisfies the constitutive equation as (see Hayt et al. [25])

S + λ1
DS

Dt
+ λ2

D2S

Dt2
= µ1

[

A1 + λ3
DA1

Dt

]

, (5)

where µ1 is the dynamic viscosity, A1 is the rate of strain tensor, λ1 and
λ2 are the relaxation time, and λ3 is the retardation time, D

Dt denotes the
upper convected derivative defined as (see Khan and Khan [24])

Dai

Dt
=
∂ai

∂t
+ urai,r − ui,rar , (6)

in which d
dt is the material time derivative, t is the time, ai,r, ar, ui,r, ur

denote tensor property of a small parcel of fluid.

Stress fields are of the form

V =
[

u(x, y), v(x, y), 0
]

, T = T (x, y), C = C(x, y), S = S(x, y) . (7)

Noted that Burgers’ fluid model reduces to the special cases of the Oldroyd-
B model, Maxwell model and the Newtonian fluid model when λ2 = 0,
λ2 = λ3 = 0 and λ1 = λ2 = λ3 = 0, respectively.

In the present work, following assumptions have been made:

1. The two-dimensional steady, incompressible flow of generalized Burg-
ers nanofluid over a stretching sheet is considered.

2. The x-axis is assumed to be along the stretching sheet and y-axis is
assumed to be normal to it (see Fig. 1).
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3. The flow is induced due to the linear stretching of sheet varying with
distance x, i.e., Uw = bx here b is a real positive number and x is
the coordinate measured from the location where the sheet velocity
is zero.

4. Thermophoresis and Brownian motion effects are also taken into ac-
count.

5. Magnetic field of strength B0 is applied in transverse direction to the
flow.

6. Tw is the surface temperature at the wall, Cw is the solutal concen-
tration. At large distance from the sheet, temperature, nanoparticle
concentrations are represented by T∞ and C∞, respectively.

Figure 1: Physical model of the problem.

Making use of (7) into (1) to (4), Under the boundary layer approxima-
tion, the velocity, temperature and concentration fields are governed by the
following equations, Hayat et al. [25]:

∂u

∂x
+
∂v

∂y
= 0 , (8)
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u∂u
∂x + v ∂u

∂y + λ1

(

u2 ∂2u
∂x2 + v2 ∂2v

∂y2 + 2uv ∂2u
∂x∂y

)

+λ2











u3 ∂3u
∂x3 + v3 ∂3u

∂y3 + u2
(

∂u
∂x

∂2u
∂x2 − ∂u

∂y
∂2v
∂y2 + 2∂v

∂x
∂2u

∂x∂y

)

+3v2
(

∂v
∂y

∂2u
∂y2 + ∂u

∂y
∂2u

∂x∂y

)

+ 3uv
(

u ∂2u
∂x2∂y + v ∂2u

∂x∂y2

)

+2uv
(

2∂u
∂y

∂2u
∂x2 + ∂v

∂x
∂2u
∂y2 + ∂v

∂y
∂2u

∂x∂y

)











= υ ∂2u
∂y2 + υλ3

(

u ∂2u
∂y2∂x

+ v ∂3u
∂y3 − ∂u

∂x
∂2u
∂y2 − ∂u

∂y
∂2v
∂y2

)

− σB0

ρ u ,

(9)

u
∂T

∂x
+
∂T

∂y
= α

∂2T

∂y2
+ τ

(

DB
∂C

∂y

∂T

∂y
+
DT

T∞

(

∂T

∂y

)2
)

− ∂qr

∂y
+ q′′′ , (10)

u
∂C

∂x
+
∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
, (11)

with the relevant boundary conditions

u = Uw(x), v = 0, T = Tw, C = Cw at y = 0 ,

u → 0, T → T∞, C → C∞ at y → ∞ (12)

where u and v represent the velocity components in the x and y directions,
respectively, α – the thermal diffusivity, υ = µ

ρ is kinematic viscosity, ρ is
density of fluid, σ is the electrical conductivity, whereas τ denotes the ratio
of effective heat capacity of the nanoparticle material to the heat capacity of
the fluid, DB the Brownian diffusion coefficient and DT the thermophoresis
diffusion coefficient, qr is the radiative heat flux, q′′′ is the non-uniform
heat source/sink, where q′′′ is the space and temperature dependent heat
generation/absorption which can be expressed as

q′′′ =
kUw

xυ

[

A(Tw − T∞) +B(T − T∞)
]

, (13)

where A and B are parameters of space and temperature dependent heat
generation or absorption. Here, if A > 0 and B > 0 corresponds to internal
heat generation, whereas A < 0 and B < 0 corresponds to internal heat
absorption.

Using the Rosseland approximation for radiation, radiation heat flux is
simplified as

qr = −4σ∗

3k∗

∂T 4

∂y
= −16σ∗

3k∗
T 3∂T

∂y
, (14)
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where σ∗ is the Stefan–Boltzmann constant and k∗ is the mean absorption
coefficient.

Now after simplification Eq. (10) takes the form

u
∂T

∂x
+
∂T

∂y
=

∂

∂y

[

α+
16σ∗T 3

∞

3k∗

]

∂T

∂y
+ τ

[

DB
∂C

∂y

∂T

∂y
+
DT

T∞

(

∂T

∂y

)2
]

+ q′′′ .

(15)
We introduce the change of variables as follows:

ϕ =
(

υxuw(x)
)

1

2

f(η), T = T∞

(

1 + (θw − 1)θ
)

,

φ(η) =
C − C∞

Cw − C∞

, η =

(

uw(x)

υx

)

, (16)

where θw = Tw

T∞

, θw > 1 being the temperature ratio parameter. Where ϕ
the stream function is defined as

u =
∂ϕ

∂y
and v = −∂ϕ

∂x
(17)

Now using Eqs. (16) and (17), Eq. (8) is identically satisfied and Eqs. (9),
(11) and (15) yield

f ′′′′ + ff ′′ − f ′2 + β1

(

2ff ′f ′′ − f2f ′′′)+
)

β2(f3f ′′′ − 2ff ′2f ′′ − 3f2f ′′2)

+β3(f ′′2 − ff ′′′) −Mf ′ = 0 , (18)

[

1+
4

3
R
d

dη

(

1+(θw−1)θ
)3
]

θ′′+Pr fθ′+Nbθ′φ′+Ntθ′2+Af ′+Bθ = 0 , (19)

φ′′ + Le fφ′ +
Nt

Nb
θ′′ = 0 , (20)

with the boundary condition:

f = 0, f ′ = 1, θ = 1, φ = 1 as η = 0 ,

f ′ = 0, θ → 0, φ → 0 as η → ∞ , (21)

where β1 = λ1b and β2 = λ2b
2 are the Deborah numbers in terms of

relaxation time respectively, β3 = λ3b is the Deborah number in terms

of retardation time, R = 4σ∗T 3
∞

kk∗ is the radiation parameter. Pr = υ
α is

the Prandtl number, Le = α
DB

is the Lewis number, Nb = τDB(Cw−C∞)
υ is
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the Brownian motion parameter, Nt = τDT (Tw−T∞)
T∞υ is the thermophoresis

parameter. The symbols: prime, double prime, etc. denote first order
derivative, second order derivative, respectively.

The local Nusselt number (Nux) and local Sherwood number (Shx) are

Nux =
Uwqw

kb(Tw − T∞)
and Shx =

Uwqm

Dmb(Cw − C∞)

where the surface shear stress qw and the surface heat flux qm are given by

qw = −k
(

∂T

∂y
+ qr

)

y=0

and jw = −Dm

(

∂C

∂y

)

y=0

.

Using similarity transformations we get

Nux
(

Rex
)−

1

2 =

[

1 +
4

3
Rθ3

w

]

θ′(0) and Shx (Rex)
1

2 = −φ′(0) ,

where the local Reynolds number has been defined as Rex = x Uw(x)
v (see

Khan and Khan [24]).

3 Numerical method

Equations (18)–(20) are highly non-linear in nature, hence the exact solu-
tion does not seem to be feasible. Therefore, these equations with subject to
boundary conditions (21) are solved numerically by Runge-Kutta-Fehlberg
fourth-fifth order method (denoted RKF45) using a high-level language
and interactive environment. In this package, two submethods are avail-
able, namely trapezoidal and midpoint method. To solve this kind of two
point boundary value problem the trapezoidal method is generally efficient,
but it is incapable to handle harmless end point singularities, but this can
able in midpoint method. Thus, the midpoint method with the Richardson
extrapolation enhancement scheme is chosen as a sub-method. Here first we
reduced the given equations into system of seven first order simultaneous
equations having seven unknowns as:

f
′

= y, f
′′

= y1, f
′′′

= y2, f
′′′′

= y3 ,

y3 = −(fy1 + y2 + β1(2fyy1 − f2y2) + β2(f3y2 − 2fy2y2 − 3f2y2
1)

+β3(y2
1 − fy2) −My) ,
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θ
′

= z, θ
′′

= z1 ,

z1 = −









1

1 +
4

3
R
d

dη
(1 + (θw − 1)θ









(Pr fz +Nb zq +Nt z2 +Ay +Bθ) ,

φ
′

= q, φ
′′

= q1 ,

q = −
(

Le fq +
Nt

Nb
q1

)

,

with the corresponding conditions as

f = 0 , y1 = 1 , θ = 1 , φ = 1, as η = 0 ,

y1 → 0 , θ → 0 , φ → 0 at η → ∞ .

The asymptotic boundary conditions at η∞, were replaced by those at
η∞ = 6 in accordance with standard practice in the boundary layer analy-
sis. Additionally, the relative error tolerance for convergence is considered
to be 10−6 throughout our numerical computation. Further it is important
to mention that as finding the solutions of velocity, temperature and con-
centration, the CPU time to estimate the values of velocity (1.58 s) is much
less than the CPU time to evaluate the values of temperature (2.65 s) and
the CPU (central processing unit) time (or processing time) for concen-
tration is 2.90 s. To assess the accuracy of the aforementioned numerical
method, comparison of skin friction coefficient and local Nusselt number
values between the present results and existing results for various values
presented in Tab. 1.

4 Results and discussion

To get a clear insight into the physical situation of the present problem, nu-
merical values for velocity, temperature and concentration profile are com-
puted for different values of dimensionless parameters using the method
described in the previous section. The numerical results are tabulated and
displayed with the graphical illustrations. Figures 2a and 2b demonstrate
the effects of Deborah number, β1, on the velocity profile. It is observed
from this plot that the thickness of the momentum boundary layer is found
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Table 1: Comparison results for the function −f ′′(0) for several values of M in the case
β1 = β2 = β3 = 0, where M is the magnetic parameter.

M
−f ′′(0)

Cortell [38] Ramesh et al [8] Present result

0 1.000 1.000 1.00006

0.2 1.095 1.095 1.09546

0.5 1.224 1.224 1.22475

1 1.414 1.414 1.41421

1.2 1.483 1.483 1.48324

1.5 1.581 1.581 1.58114

2 1.732 1.732 1.73205

to decrease as Deborah number increases, which results in thicker bound-
ary layer thickness. Physically, Deborah number is the ratio of relaxation
to observation time. So with the enhancement in Deborah number the
relaxation time also increases which provides more resistance to the fluid
motion. Therefore, velocity profile diminishes. Figure 2b is the represen-
tation of velocity profile for various values of the Deborah number, β2. It
is evident that the large values of Deborah number results in thickening
of thermal boundary layer. Figure 2c explores the effect of the Deborah
number, β3, on velocity profile. This figure reveals an increasing behavior
of the velocity profile for larger values of the Deborah number. Physically,
it is due to fact that Deborah number is dependent on the retardation
time. Therefore the larger value of Deborah number increases the retarda-
tion time. Consequently, the fluid flow is accelerated.

Figures 3a and 3b are depicted for the variation of the non-uniform heat
source/sink parameters, A, and, B, on temperature profiles. Apparently,
these figures show increasing behavior of temperature profile with the larger
values of the non-uniform heat source/sink parameters. It is also observed
that the heat is generated for increasing values of A > 0 and B > 0 and this
causes an increase in the heat transfer rate in both cases. The behaviors of
magnetic parameter, M , on velocity, temperature and concentration distri-
bution are sketched in Figs. 4a, 4b and 4c. From Fig. 4a it is found that
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(a)

(b)

(c)

Figure 2: Influence of β1 – (a) , β2 – (b), β3 – (c) on velocity profile.
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Table 2: Variation of skin friction coefficient, Nusselt number , Nux, and Sherwood num-
ber, Shx, for different physical parameters.

velocity and momentum boundary layer thickness increase with increase
in magnetic parameter. This is due to the fact that the applied transverse
magnetic field produces a force called the Lorentz force, which opposes the
flow. This resistive force tends to slow down the flow, so the effect of M
decreases the velocity and also causes increase in its temperature and con-
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(a)

(b)

Figure 3: Influence of A – (a), B – (b) on temperature profile.

centration profile as shown in Figs. 4b and 4c. Furthermore, these figures
lead to the conclusion that the thermal and solutal boundary layer thick-
nesses are increasing functions of the magnetic parameter.

The impact of Brownian motion parameter, Nb, on the temperature
and concentration distributions is depicted through Figs. 5a and 5b. It is
anticipated by the Fig. 5a that the temperature distribution increases as
the Brownian motion parameter increases. As Brownian motion param-
eter increases, random motion of fluid particles increase which results in
more heat production. Thus temperature profiles show increasing behavior
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(a)

(b)

(c)

Figure 4: Influence of M on: a – velocity profile, b – temperature profile, c – concentra-
tion c.
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(a)

(b)

Figure 5: Influence of Nb on: a – temperature profile, b – concentration profile.

whereas the concentration profiles show opposite behavior. Figures 6a and
6b are plotted to see the effects of thermophoresis parameter, Nt, on the
temperature and nanoparticle concentration profiles. It is clear that the
larger value of thermophoresis parameter is to increase the temperature
and nanoparticle concentration profiles. It is also found that the effect of
thermophoresis parameter is also to intensify the heat transfer. Impact
of temperature ratio parameter, θw, on the temperature profile is given
in Fig. 7a, and it indicates that increase in temperature ratio parameter
increases the temperature profile and corresponding boundary layer thick-
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(a)

(b)

Figure 6: Influence of Nt on: a – temperature profile, b – concentration profile.

ness. Figure 7b describes the influences of radiation parameter, R, on the
dimensionless temperature profile. The results are presented for four dif-
ferent values of radiation parameter. It is clear that the thermal boundary
layer thickness increases for increasing values of radiation parameter. This
is due to the fact that the increase in radiation parameter provides more
heat to fluid that causes an enhancement in the temperature and thermal
boundary layer thickness.

Figure 7c demonstrates the effect of Prandtl number, Pr, on temper-
ature profile. It is noticed that, the temperature profile and correspond-
ing thermal boundary layer depresses rapidly with increasing values of Pr.
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(a)

(b)

(c)

Figure 7: Influence of R on temperature profile – a, influence of θ on temperature profile
– b, influence of Pr on temperature profile – c.
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(a)

(b)

Figure 8: Influence of Le on temperature profile – a, concentration profile – b.

Physically, the Prandtl number is the ratio of momentum diffusivity to
thermal diffusivity. In fact, the larger the value pf Prandtl number renders
lower thermal diffusivity. A reduction in the thermal diffusivity leads to
the decrease in temperature and its associated boundary layer thickness,
which as can be shown in Fig. 7c. Figures 8a and 8b depicts the effect
the Lewis number, Le, on temperature and concentration profiles, respec-
tively. It is evidently observed that, the thermal and solutal boundary layer
thickness decrease as Lewis number increases. The physical reason behind
this is the increase in Lewis number implies decrease in solute diffusivity or
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(a)

(b)

Figure 9: Influence of Pr and θw on Nusselt number – a, influence of θw and R on Nusselt
number – b.

less Brownian diffusion and eventually less penetration depth for both rate
of heat transfer and mass transfer rate. Figure 9a and 9b shows that the
influence of θw and R versus Pr and θw parameters respectively on Nusselt
number. It is noticed that the Nusselt number increases rapidly with in-
creasing values of θw and R versus Pr and θw, respectively. Figure 10a and
10b are plotted to illustrate the effects of A and Nb versus B and Nt pa-
rameters respectively on local Nusselt number. The local Nusselt number
decreases by increasing of A and Nb verses B and Nt parameters respec-
tively. Figure 11a shows that the influence of R and Le parameter on the
local Sherwood number. It is clear that the Sherwood number increases for
increasing values of R and Le. Figure 11b and 11c depicts the variation of
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(a)

(b)

Figure 10: Influence of B and A on Nusselt number – a, influence of Nt and Nb on
Nusselt number –b.

local Sherwood number in response to a change in Nb and Le versus Nt
respectively. The graph shows that the local Sherwood number decreases
as Nb and Le versus Nt respectively increase.

5 Conclusion

An analysis has been developed to investigate the boundary layer flow and
heat transfer of generalized Burgers’ nanofluid over the stretching sheet
in the presence of non-linear radiation and non-uniform heat source sink.
A comparison between the present numerical solutions with previously pub-
lished results has been included, and the results are found to be in excellent
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(a)

(b)

(c)

Figure 11: Influence of Le against R on Sherwood number – a, influence of Nt against
Nb on Sherwood number – b, influence of Nt against Le on Sherwood number
– c.
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agreement. The effects of various parameters on the flow and heat transfer
are observed from the graphs and are summarized as follows:

1. Temperature and boundary layer thickness are decreasing functions
of the non-uniform heat source sink parameter (A and B).

2. Influence of Brownian motion parameter is to increase the heat trans-
fer rate at the surface and decreases the mass transfer rates.

3. The higher value of Lewis number decreases dimensionless mass trans-
fer rates.

4. A rise in thermophoresis parameter increases temperature and con-
centration in the boundary layer region

5. Momentum boundary layer thickness reduces due to the influence of
Lorenz force.

6. For increasing values of β1 the momentum boundary layer thickness
decreases.

7. The velocity and boundary layer thickness are increasing functions
of β2 and β2.

8. An increasing the radiation and temperature ratio parameter in-
creases the temperature profile.

9. Thermal boundary layer thickness decreases by increasing the Prandtl
number.

Received 7 April 2017
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