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Abstract: The paper presents general solutions for fractional state-space equations. The
analysis of the fractional electrical circuit in the transient state is described by the equation
of the state and space equations. The results are presented for the voltage of a capacitor
and current in a coil, for different alpha values. The Caputo and conformable fractional
derivative definitions have been considered. At the end, the results have been obtained.
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1. Introduction

Fractional calculus has been used in the pure and applied branches of science and engineering
in the last century. Mathematicians such as Liouville, Grünwald, Letnikov and Riemann developed
the fundamentals of fractional calculus and they are mentioned in the papers [8, 10, 13–14].

This article uses fractional-order equations in application to modeling of electric circuits. One
of the most interesting issues of fractional order calculus applications is an analysis of electrical
circuits in the transient state [2–5, 7], where the Caputo fractional derivative definition is used.

The fractional circuit equations using the Caputo definition and a new definition of a con-
formable fractional derivative (CFD) are given in [1, 6].

The fractional order dynamical systems described by the state-space equations with fractional
order derivatives are analyzed in the monographs [8]. For the state-space description of the
fractional electrical circuit equipped with a supercapacitor we will consider the solutions in
a general case. Finally, the results obtained for a model electric circuit using the Caputo and CFD
definitions will be shown in graphs.
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2. Fractional order state-space equations

Consider a fractional linear system described by equations [10]:


Dα1
t x1(t)
...

Dαn
t xn(t)


=


A11 · · · A1n
...

. . .
...

An1 · · · Ann




x1(t)
...

xn(t)


+


B1
...

Bn


u(t),

0 < αk ≤ 1
k = 1, . . . , n , (1)

where xk (t) ∈ ℜnk , k = 1, . . . , n represent the state, u(t) ∈ ℜm is the input vector (extortion)
and Ak j ∈ ℜnk×nl , Bk ∈ ℜnk×m, j, k = 1, . . . , n are the matrices with constant coefficients,
0Dαk

t xk (t) is the fractional order derivative of the vector xk (t) described by the Caputo and CFD
definition.

Initial conditions for (1) have the form:

xk (0) = xk0 ∈ ℜn̄k , k = 1, . . . , n. (2)

3. The Caputo definition

The function defined by [10]

Cap
0 Dα

t f (t) =
1

Γ(n − α)

t∫
0

f (n) (τ)
(t − τ)a+1−n d τ (3)

is called the Caputo fractional derivative, where n − 1 < α < n, n = 1, n, . . . , Γ(x) is the Euler

gamma function and f (n) (t) =
d n f (t)

d tn
.

The solution of state-space Equation (1), using the Caputo definition, has the form [10]:

xCap(t) =Φ0(t) x0 +

t∫
0

[Φ1(t − τ)B10 + · · · +Φn(t − τ)Bn0] u(τ) d τ, (4)

where

xCap(t) =


x1(t)
...

xn(t)


∈ ℜN, N = n̄1 + · · · + n̄n , x0 =


x10
...

xn0


, (5a)

B10 =


B1
0
...

0


, Bn0 =


0
...

0
Bn


, (5b)
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Φ0(t) =
∞∑

k1=0
· · ·

∞∑
kn=0

Tk1...kn

tk1α1+· · ·+knαn

Γ (k1α1 + · · · + knαn + 1)
,

Φ1(t) =
∞∑

k1=0
· · ·

∞∑
kn=0

Tk1...kn

t (k1+1)α1+k2α2+· · ·+knαn−1

Γ [(k1 + 1)α1 + k2α2 + · · · + knαn]
,

...

Φn(t) =
∞∑

k1=0
· · ·

∞∑
kn=0

Tk1...kn

tk1α1+· · ·+kn−1αn−1+(kn+1)αn−1

Γ [k1α1 + · · · + kn−1αn−1 + (kn + 1)αn]

(5c)

and

Tk1,...,kn =



IN for k1 = · · · = kn = 0
A11 · · · A1n
0 · · · 0
...

. . .
...

0 · · · 0


for k1 = 1

k2 = · · · = kn = 0



0 · · · 0
...

. . .
...

0 · · · 0
Ai1 · · · Ain

0 · · · 0
...

. . .
...

0 · · · 0


for

k1 = · · · = ki−1 = 0
ki = 1
ki+1 = · · · = kn = 0


0 · · · 0
...

. . .
...

0 · · · 0
An1 · · · Ann


for k1 = · · · = kn−1 = 0

kn = 1

T10...0T01...1 + · · · + T0...01T1...10 for k1 = · · · = kn = 1
...

...

T10...0Tk1−1,k2,...,kn + · · · + T0...01Tk1,...,kn−1,kn−1 for k1 + · · · + kn > 0
0 if exsist ki < 0, i=1, . . . , n

. (5d)

4. The CFD definition

If n < α ≤ n+1, n ∈ N0, then the conformable fractional derivative (CFD) of n-differentiable
at t function f (where t > 0) is defined as [6]:

CFDDα
t ( f )(t) = lim

ε→0

f ([α]−1)
(
t + εt[α]−α

)
− f ([α]−1) (t)

ε
, (6)

where [α] is the ceiling of α – the smallest integer greater than or equal to α.
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Using the definition (6) we get a simple rule [6]:

CFDDα
t f (t) = t[α]−α f ([α]) (t), (7)

where f is the [α] differentiable function for t > 0.
Considering the continuous linear system described by state-space Equation (1) and using (7)

for CFDDαk
t xk (t) = t1−αk ẋk (t), where 0 < αk ≤ 1 we obtain:
t1−α1 ẋ1(t)

...

t1−αn ẋn(t)


=


A11 · · · A1n
...

. . .
...

An1 · · · Ann




x1(t)
...

xn(t)


+


B1
...

Bn


u(t),

0 < αk ≤ 1
k = 1, . . . , n

. (8)

Multiplying the k-th part of Equation (8) by tαk−1, where k = 1, . . . , n, we have:
ẋ1(t)
...

ẋn(t)

︸   ︷︷   ︸
x′(t)

=


A11(t) · · · A1n(t)
...

. . .
...

An1(t) · · · Ann(t)

︸                         ︷︷                         ︸
A(t)


x1(t)
...

xn(t)

︸   ︷︷   ︸
x(t)

+


B1(t)
...

Bn(t)

︸    ︷︷    ︸
B(t)

u(t),
0 < αk ≤ 1
k = 1, . . . , n

, (9)

where

Ai j (t) = Ai j tαi−1, i, j = 1, . . . , n or A(t) =


A11tα1−1 · · · A1ntα1−1

...
. . .

...

An1tαn−1 · · · Anntαn−1


, (10a)

Bi (t) = Bitαi−1, i = 1, . . . , n, or B(t) =


B1tα1−1

...

Bntαn−1


. (10b)

The solution to the state-space equation

ẋ(t) = A(t) x(t) + B(t) u(t) (11)

has the form [9]:

x(t) = e f (t) x0 +

t∫
0

e f (t)− f (τ) B(τ) u(τ) d τ, (12)

where

f (t) =

t∫
0

A(ζ ) d ζ =
t∫

0

[
Ai jζ

αi−1
]
i j

d ζ =

=

Ai j

t∫
0

ζαi−1 d ζ
 i j =

[
Ai j

ζαi

αi

�����
t

0

]
i j

=

[
Ai j

tαi

αi

]
i j

. (13)
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Matrix (13) can be written in the following form:

f (t) =



A11
tα1−1

α1
· · · A1n

tα1−1

α1
...

. . .
...

An1
tαn−1

αn
· · · Ann

tαn−1

αn


=

=


A11 · · · A1n
0 · · · 0
...

. . .
...

0 · · · 0

︸                 ︷︷                 ︸
T10.. .0

tα1

α1
+ · · · +


0 · · · 0
...

. . .
...

0 · · · 0
An1 · · · Ann

︸                  ︷︷                  ︸
T0.. .01

tαn

αn
. (14)

Using the Maclaurin series of the exponential matrix function of (14) we have:

F0(t) = e f (t) =

∞∑
k=0

[
f (t)

]k
k!

=

∞∑
k=0

(
T10...0

tα1

α1
+ · · · + T0...01

tαn

αn

)k
k!

=

=

∞∑
k1=0

. . .

∞∑
kn=0

Tk1...kn

tk1α1+...+knαn

αk1
1 . . . αkn

n (k1 + . . . + kn)!
, (15)

where Tk1...kn is given by the Formula (5d).
In a similar way we calculate the matrix e f (t)− f (τ) being included in formula (12).

e f (t)− f (τ) =

∞∑
k=0

[
f (t) − f (τ)

]k
k!

=

∞∑
k=0

(
T10...0

tα1 − τα1

α1
+ · · · + T0...01

tαn − ταn

αn

)k
k!

=

=

∞∑
k1=0

. . .

∞∑
kn=0

Tk1...kn

(tα1 − τα1 )k1 . . . (tαn − ταn )kn

αk1
1 . . . αkn

n (k1 + . . . + kn)!
. (16)

Substituting Formula (10b) in (12), yields
t∫

0

e f (t)− f (τ) B(τ)u(τ) d τ =
t∫

0

e f (t)− f (τ)


B1τ

α1−1
...

Bnτ
αn−1

 u(τ) d τ =

=

t∫
0

*...........,
e f (t)− f (τ)τα1−1︸            ︷︷            ︸

F1 (t,τ)


B1
0
...

0

︸︷︷︸
B10

+ · · · + e f (t)− f (τ)ταn−1︸             ︷︷             ︸
Fn (t,τ)


0
...

0
Bn

︸︷︷︸
Bn0

+///////////-
u(τ) d τ =

=

t∫
0

(F1(t, τ)B1 0 + · · · + Fn(t, τ)Bn 0) u(τ) d τ, (17)
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where

F1(t, τ) = e f (t)− f (τ)τα1−1 =

=

∞∑
k1=0

. . .

∞∑
kn=0

Tk1...kn

(tα1 − τα1 )k1 . . . (tαn − ταn )kn τα1−1

αk1
1 . . . αkn

n (k1 + . . . + kn)!
Tk1, k2 ,

...

Fn(t, τ) = e f (t)− f (τ)ταn−1 =

=

∞∑
k1=0

. . .

∞∑
kn=0

Tk1...kn

(tα1 − τα1 )k1 . . . (tαn − ταn )kn ταn−1

αk1
1 . . . αkn

n (k1 + . . . + kn)!
Tk1, k2 .

(18)

Finally, the solution (12) takes the form:

xCFD(t) = F0(t)x0 +

t∫
0

[F1(t, τ)B10 + · · · + Fn(t, τ)Bn0] u(τ) d τ . (19)

5. Electrical circuit and general description of the problem

Consider the electrical circuit shown in Figure 1 with given resistors R1, R2 and, fractional
coil L, supercapacitor C and source voltage e.

Fig. 1. Electrical circuit of R, L, C, e type [10]

The current iC (t) in the fractional capacitor is related to its voltage uC (t) by the formula:

iC (t) = Cα1 Dα1
t uC (t) = Cα1

d α1uC (t)
d tα1

for 0 < α1 < 1, (20)

where Cα1 is the pseudo-capacitance in units of F/sec1−α1 of the fractional capacitor. Similarly,
the voltage uL (t) on the coil (inductor) is related to its current iL (t) by the formula

uL (t) = Lα2 Dα2
t iL (t) = Lα2

d α2iL (t)
d tα2

for 0 < α2 < 1, (21)

where Lα2 is the pseudo-inductance in units H/sec1−α2 of the coil.
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Using Equations (20), (21) and Kirchhoff’s laws may describe the transient states in the
electrical circuit by the fractional differential equation:


Dα1
t x1(t)

0Dα2
t x2(t)

 =


A11 A12

A21 A22




x1(t)

x2(t)

 +


B1

B2

 u(t), (22)

where x1 = [uC] is the voltage across the supercapacitor, the component of x2 = [iL] is the
current in the coil, and the component of u(t) = [e] and matrices are defined by

A11 =

[
− 1

R2Cα1

]
, A12 =

[
1

Cα1

]
, A21 =

[
− 1

Lα2

]
, A22 =

[
− R1

Lα2

]
(23)

and

B1 = [0], B2 =

[
1

Lα2

]
. (24)

For further analysis we refer to Equations (4), (19) with α1 = 0.6, α2 = 0.9. Let resistance
R1 = 9.0 Ω, R2 = 21.0 Ω, fractional inductance Lα21 = 0.2 H/sec1−α2 , fractional capacitance
Cα1 = 11.0 F/sec1−α1 and the constant input e = 1.0 V. The initial conditions iL (0) = 0.0 A,
uC (0) = 0.0 V and the state vector is x(t) = [uC (t) iL (t)]T .

Solution 1 Using the Caputo definition of a fractional derivative we obtain the following
solution to Equation (4):

xCap(t) =
2∑

k=1

t∫
0

Φk (t − τ)Bk0u(τ) d τ =
2∑

k=1

t∫
0

Φk (t − τ)Bk0e d τ =

=

2∑
k=1


t∫

0

Φk (t − τ) d τ
 Bk0e =

2∑
k=1


t∫

0

Φk (τ) d τ
 Bk0e, (25)

whereΦ1(t) andΦ2(t) are given by formulas (5c).
Solution 2 Using the CFD definition of fractional derivative (6) we obtain the following

solution to Equation (19):

xCFD(t) =
2∑

k=1

t∫
0

Fk (t, τ)Bk0u(τ) d τ =

=

2∑
k=1

t∫
0

Fk (t, τ)Bk0e d τ =
2∑

k=1


t∫

0

Fk (t, τ) d τ
 Bk0e, (26)

where F1(t) and F2(t) are given by formulas (18).
The comparison of the solutions for Caputo and CFD definitions are presented in Figures 2

and 3.



636 E. Piotrowska Arch. Elect. Eng.

Fig. 2. Comparison of solutions using Caputo and CFD definitions for the capacitor for α1 = 0.6,
α2 = 0.9, and for α1 = 0.9, α2 = 0.6

Fig. 3. Comparison of solutions using Caputo and CFD definitions for the coil for α1 = 0.6,
α2 = 0.9, and for α1 = 0.9, α2 = 0.6

6. Conclusions

The paper presents the method of calculating the voltage and current on the elements of
the fractional electrical circuit. The fractional order state-space description of the circuit gives
a possibility for the analysis of different definitions of fractional order derivatives. In this paper,
solutions for a model electrical circuit were derived using Caputo and conformable fractional
derivative (CFD) definitions. The results obtained using the Caputo definition for the capacitor
voltage calculation under the same alpha conditions have lower values than when using the CFD
definition. The electric current with zero initial conditions in an electric circuit coil gets higher
values when the Caputo definition is used, than when the CFD definition is applied.
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Technical sciences aim, among others, to provide the simplest and most reliable solution to the
investigated question. Such a solution should be delivered in the most efficient way. In the reviewed
paper, quite complex theory has been used to solve a simple circuit theory task. The publication
needs another condition to be fulfilled in order to assess it as a correct one. Specifically, other
papers relevant to the discussed topic should be cited. Unfortunately, the reviewed paper does not
meet the mentioned condition, because a number of relevant works have not been cited. No work
of any theoretician has been cited, neither of famous ones as Prof. Prof. St. Fryze, T. Cholewicki,
S. Wegrzyn, E. Philippow, W. Cauer, R. Dorf, L. Nejman nor of other not less prominent. No
one from the younger generation, as to mention Prof. W. Mathis or Prof. S. Osowski has been
cited, as well. All of the mentioned above scientists have dealt with circuit theory. My critical
work titled “Fractional derivatives in electrical circuits theory – critical remarks” was published
in AEE 1/2017. It is surprising that the work that describes a similar topic as the reviewed one and
was published by the same journal, has not been cited. Additionally, my (or co-authored) other
works on the same topic were published on PE 10/2016, 4/2017 and 1/2018. Also the works of
Prof. P. Ostalczyk from PE 3/2017 and co-authored work of Prof. K.J. Latawiec “Fractional-order
modeling of electric circuits (978-1-5386-1528-7/17$31.00©2017 IEEE”, that is partially in line
with the reviewed paper, are concurrent with the topic of the reviewed paper.

The work: Kaczorek T. “Positivity and Reachability of Fractional Electrical Circuits, Acta
Mechanica et Automatica, Vol. 5, no. 2, pp. 42–51 (2011)”, which has been cited by the au-
thor of the reviewed paper, names as “fractional electrical circuits” regular circuits with fractional
derivatives, capacitances and inductivities in classic view, which do not meet the requirement of di-
mensional homogeneity. In the reviewed paper capacitance has been named “pseudo-capacitance”
and inductance “pseudo-inductance”. The author of the reviewed paper should elaborate on this.
This gains on importance as the cited and reviewed papers refer to the same topic.

Following the work “Fractional-order modeling of electric circuits”, the author of the reviewed
paper applied the unit of farad divided by second to the power of one minus alpha. This way, the
international system of units SI has been impacted, as it does not contain such a unit.
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There is no reference to fractional derivatives in the sales folders of available super capacitors.
The laws of physics should be followed.

The author of the reviewed paper does not notice that her work impacts the fundamentals of
electrical engineering, specifically the Maxwellian equations, whitch has been pointed out by me
in my publications mentioned earlier. This may lead to erroneous formulation of the Maxwellian
equations, as it happened in the work of M.D. Ortigueira, M. Rivero, J.J. Trujillo, “From a
generalized Helmholtz decomposition theorem to fractional Maxwell equations, Communications
in Nonlinear Science and Numerical Simulation”, 22 (2015), Issues 1–3, 1036–1049. I have
shared my opinion with Prof. M. Ortigueira that Equations (58) and (59) in the mentioned work
are formulated incorrectly.

My lecture from 30th November, 2016 at the Technical University of Warsaw (available at
“Sikora Ryszard prof. Referat”) touches similar questions as the reviewed paper.

I recommend to publish the reviewed paper simultaneously with the publication of all related
reviews. I am of opinion that the reviews should be overt and therefore I ask to share my name
together with my review. In the case I would wrong in my scientific views, I will admit it and
apologize. I think that we shall be open and transparent in communicating our scientific views.
I trust that the time of “one and the only one truth” in science is over. We all may both make
mistakes and correct them.

I ask once more the Chairman of Committee on Electrical Engineering of the Polish Academy
of Sciences to organize an open discussion on fractional derivatives’ application in electrical
engineering. Science does not profit from avoiding or limiting the discussion. Unfortunately,
my strong opponent (PE 3/2017) (the specialist in fractional derivatives from the Technical Uni-
versity of Lodz) was not present during my lecture at ISEF’17, although this event was organized
by His University.


