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Summary. It is shown that heat energy transfer from the 

source to the medium is accompanied by rheological 

transitions. Physical parameters of the medium change in 

the rheological transition zone due to heat energy flow 

transfer at a certain speed. It is shown that use of linear 

gradient laws during description of heat energy transfer 

processes leads to great differences between theoretical 

and experimental results, as well as the paradox of 

infinite spreading speed of disturbances of temperature 

fields. For mathematical description of heat energy 

transfer processes in mediums, it is proposed to use the 

method of irreversible rheological transitions and zero 

gradient, thus providing solutions of nonlinear 

differential equations in analytical form. 

Key words: rheological transition; multiphase 

environment; heat transfer; modeling. 

 

INTRODUCTION 

 

All the physical and chemical processes run at a 

certain temperature which exceeds thermodynamic zero 

minus 273.15 K. A temperature of 293.15 K or 20°C is 

accepted as normal. Temperature has significant impact 

on almost all the processes of human life. Transfer of 

mass and momentum are also closely connected with the 

heat energy transfer process. At a temperature above 

absolute zero, heat energy flow transfer in the medium 

takes place due to heat conductivity and convection. 

Molecular diffusion corresponds to heat transfer by 

molecular heat conductivity; convection diffusion 

corresponds to heat transfer by convection heat 

conductivity. Experimental study of heat energy flow 

transfer is complicated by the need to make 

measurements in the medium with variable temperatures. 

Thus, the results are affected by dependence of physical 

constants on temperature. So, one has to use values of 

these constants mediated by temperature, and the results 

of experimental data processing depend on the mediation 

way. The most accurate data to calculate convection heat 

exchange processes are obtained by the method of 

analogy with diffusion. For stationary medium, the 

fundamental law of heat energy flow transfer is Fourier’s 

law, according to which the heat flow is proportional to 

the temperature gradient [1]: 

dy

dT
Tq   grad ,                      (1) 

where: q is the heat energy flow transferred through 

surface unit per time unit, Tgrad  is the gradient of 

temperature T change throughout linear coordinates 

directed along the normal to the surface, through which 

heat energy transfer takes place,  is the heat 

conductivity coefficient. 

The minus sign indicates that heat energy transfer 

takes place in the direction, in which temperature 

decreases, i.e. in the direction of the negative temperature 

gradient. Fourier’s law in form (1) describes heat energy 

flow transfer in the homogeneous chemical composition 

medium. Research of heat energy transfer processes is 

generally based on the fact that isothermal distribution of 

heat energy takes place in some volume. For non-

isothermal diffusion in the gaseous medium, the gradient 

is replaced by the partial pressure gradient RTCp  , and 

the diffusion coefficient – by the value RTD/ , where R 

is the gas constant, T is absolute temperature. Describing 

heat energy transfer processes to the medium 

characterized by convective properties, Fourier’s law is 

supplemented by the components, reflecting convective 

transfer of the heat energy flow. If the linear speed of this 

flow is marked by v , Fourier’s law takes the form of: 

vTcT-q P  grad ,                      (2) 

where: Pc  is heat capacity at constant pressure,  is 

thickness (or density). 

For heat energy flow transfer processes, there is used 

the so-called heat conductivity coefficient a , which is 

connected with the conventional heat conductivity 

coefficient by the ratio  Pca / . 

 

LITERATURE DATA ANALYSIS  

AND PROBLEM DEFINITION 

 

In recent years, the issue of heat energy transfer 

processes concerned only applied nature. Basically, there 

were researched the problems of impact of heat on 

substances’ conversion processes in chemical 

technologies [2], work of dimensional control means [3-

7], work of machines and mechanisms [8]. Papers 

generally consider unilateral processes of heat energy 

transfer, during which it is assumed that heat energy 

sources has infinite power and transfer speed. Such 

processes are described by quite complex integral-

differential equations, based on the known Fourier’s law 

of heat energy transfer. Typically, such equations are 

nonlinear, and they have no analytical solution, so they 

are reduced to simpler forms that can be taken as linear. 
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Basically, there were studied processes of heat energy 

transfer from the source to the medium without 

considering the peculiarities of transfer on the interface. 

For the first time this fault was highlighted by professors 

Weisberg M.A. [9], Taganov I.M. [10] and Gorazdovs'kij 

T. Ja. [11]. In his works, Prof. Gorazdovs'kij T. Ja. firstly 

discovered thermorheological effect, the essence of which 

is that on the interface of two fluid (liquid, gaseous or 

viscoplastic phases), there are phenomena of wall-

adjacent thermophysical nature, affecting not only 

technological processes but also metrological 

incorrectness at experimental researches of rheological 

properties of substances and materials, as well as wrong 

measurement results of different technological processes. 

In addition, wrong theoretical generalization leads to 

wrong recommendations in technologies, large losses of 

material and energy resources. As indicated in [9], in the 

thermally isolated medium, a source of heat can be 

dissipative energy, which is released within fluid (gas, 

liquid, solid body, etc.) due to viscous friction or 

destruction of the inner frame of the substance exposed to 

force-torque (rheological) voltages of different levels 

relative to values of critical voltages of phase rheological 

transitions peculiar to the given fluid. Such effects, which 

are caused by energy dissipation in the rheological 

transition zone (wall-adjacent zone) of substances with 

different rheological and thermophysical properties, are 

important and urgent for the thermodynamics theory [12] 

as well as metrology and practice. 

Temperature is usually associated with transfer of the 

heat energy flow from its source to the medium. As a 

result of this transfer, its conversion into other forms of 

energy takes place, e.g. into molecular motion during 

friction, in liquid and gaseous mediums. In many cases, 

heat energy transfer is accompanied by chemical 

conversions that create new sources of heat energy [13, 

14]. In many cases, there are used differential equations 

that describe heat transfer processes. The heat 

conductivity equation in the stationary medium is: 

qT
T

cP 



graddiv 


 ,               (3) 

where: q  is the heat energy flow of the source, which 

appears, e.g., as a result of a chemical reaction. 

Equation (3) is true in the case of considering the 

process of heat energy transfer in the medium determined 

by appearance of the flow q . On the other hand, 

appearance of such a flow requires disturbance in this 

medium with infinite volume speed. Considering the heat 

balance equation for certain enclosed volume of the 

single-dimensional temperature field, it can be assumed 

that the amount of heat energy transferred to the medium 

per time   equals to the amount of heat energy xq

transferred throughout the linear coordinate x. That is: 

x

qT
c x

P










 .                          (4) 

Since the amount of heat energy is: 












 x

Px

q

x

T
q ,                        (5)  

where: P  is the time constant of the heat transfer 

process, then applying (5) to equation (4), we get: 

2

2

2

2

x

T
a

TT
P
















 ,                       (6) 

where: 
2/ vаP   is the time constant of the process 

of heat energy transfer from the internal source, 

 Pca /  is the temperature conductivity coefficient. 

Since, according to the problem condition, heat 

transfer is limited by some enclosed volume, beyond 

which heat energy does not spread, then the temperature 

of this medium may vary from the initial Tп to the final 

Tк, which is created by the heat source хq . However, in 

this case, the source cannot be of infinite power. Such 

boundary conditions lead to the fact that descript-ion of 

processes of heat energy transfer is approximate. Among 

a large number of problems there are usually considered 

only major classical problems, for which it is 

characteristic that corresponding boundary conditions 

(initial and final) are set that allow finding solutions in 

the simplest analytic form. Under boundary conditions of 

the first kind, the surface temperature is set as a function 

of time. The literature given below considers the simplest 

cases, when the surface temperature of the body remains 

constant throughout the heat transfer process. It 

corresponds to the case, when the heat source power is 

infinite, and all its heat transfers to the heating medium. 

This case corresponds to the problem when the transient 

process of heat exchange is defined when the heated 

object is exposed to the single step signal (the heat 

amount). Boundary conditions of the second and the third 

kinds are supplemented by additional conditions that are 

imposed upon the differential equation of heat energy 

transfer. Typically, the heat conductivity research is 

limited by geometrical and physical parameters of the 

studied object. In many cases, it is assumed that the speed 

of heat energy distribution is infinitely great. In this case, 

the time constant 0P and equation (6) are presented 

as: 

   
2

2 ,,

x

xT
a

xT








 




.                      (7) 

While solving this equation, the following conditions 

are imposed: time 0t ; direction change  x ; at 

the initial time 0t  temperature distribution is given, 

that is    xfxT 0, ; as the body size is unlimited, then

   
0

,,











x

T

x

T 
. The problem solution can 

be obtained by Fourier’s method, but, at the same time, 

certain limitations associated with the possibility of 

representing the function  xf  as a Fourier’s integral 

will be imposed upon the function  xf . For this 

purpose, it is enough to have the integral   dxxf




2
. 



RESEARCH OF HEAT ENERGY TRANSFER PROCESSES …                              23 

 
Therefore, the solution by the method of sources, 

which does not require limitations for the function  xf , 

is given. In [15-17] it is indicated that partial solution of 

equation (7) is the following one: 

 
 











 









a

x

a

C
хT

4
exp

4
,

2

,          (8) 

where: C is a constant,  is the current constant of the 

direction x . 

If temperature is   constTT C ,0 , where: TC is 

the temperature of the medium, then by introducing a 

new variable   CTхT   , , the equation of heat energy 

transfer in the direction x will be: 

 


















a

x

TT

TxT

C

C

2
erf

,

0

.                (9), 

where: T0 is the temperature of the heat energy source. 

The problem of research of a semibounded body 

without thermal insulation of the lateral surface belongs 

to one of classic. Between the lateral surface of the body 

and the medium, heat exchange takes place by Newton’s 

law. Temperature of the medium that limits the lateral 

surface of the body is taken as constant and equal to its 

initial temperature. If the height and the width of the body 

are quite small compared with the length and the heat 

conductivity coefficient is significant, it can be 

considered that the temperature drop throughout the 

height and the width of the body is constant. That is, 

temperature change derivatives throughout other linear 

coordinates, for example, y i z are zero. Thus, this 

problem is reduced to one-dimensional when the 

temperature drop is only in one direction x. Heat transfer 

from the lateral surface of the body to the medium is 

taken into account only in the differential equation itself 

as the negative heat source. Thus, the differential 

equation of heat conductivity is written as follows: 

    w
P q

x

xTxT
c 









2

2 ,, 





 .         (10) 

where: 
wq  is the heat amount given by the body volume 

unit per time unit to the medium. 

The following conditions are taken as boundary: 

when 0 and  x0      0,/ TxThqw   , 

where  is the heat exchange coefficient;  /Sh ; S is 

cross-sectional area of the rod; P is perimeter of the body. 

Then equation (10) is reduced to the following form: 

   
  02

2

,
,,

TxT
hcx

xT
a

xT

P



















.   (11) 

Since solution of equation (11) is complex, then it is 

taken for simplification that the ratio of the end of the 

body is  / . This means that the temperature of the 

end of the rod becomes constant and equal to the 

temperature of the medium CT  at once. Then for 

boundary conditions it can be written:   00, TxT  , 

  CTtT ,0 ,   0, TtT   and 
 

0
,






x

tT
. With such a 

simplification, the solution of equation (11) takes the 

following form: 

 

            (12) 

where: h is the length of the body. 

As it is seen from the above, the problems of heat 

energy transfer from its source to the medium are quite 

complex. Analysis of the literature given below shows 

that there are generally considered unilateral simplest 

equations of linear type with different initial and 

boundary conditions. The basic is Fourier’s equation (1) 

of heat energy transfer by heat conductivity. There are 

considered various options for heat flow transfer, but in 

almost all the cases it is assumed that this transfer is 

carried out along the linear coordinate that varies from 0 

to , the source of heat energy is infinite, as its 

temperature on the transfer boundary (at x = 0) is 

constant, and boundary conditions should be as follows: 

  00, TxT  ,   CTT ,0 ,   0, TT    and 

  0/,  хT  . Such boundary conditions that allow 

finding solutions of differential equations of heat energy 

transfer, as pointed out by Prof. Weinberg A.M. in [9], 

lead to the paradox, since they specify that the transfer 

speed should be infinite. On the other hand, the problems 

of heat energy transfer are unilateral, as energy is 

transferred from the source of infinite power throughout 

certain coordinates into infinity, violating the physical 

nature, as all the physical bodies are limited in their size 

and characterized by the corresponding variable volume. 

If the volume is infinite, then infinite amount of heat 

energy can be transferred into it. Analytical equation (8) 

for a perfectly isolated body and equation (11) for a body 

with a bare butt are quite complex, especially for their 

practical use in modern computer-integrated systems of 

control and industrial processes management. Moreover, 

energy conservation law is not provided for heat energy 

transfer in volumes of real mediums under above 

conditions. All the transfer processes of energy, mass and 

momentum in physical mediums involve irreversible 

rheological transitions. These processes have appropriate 

boundaries (rheological transitions zones), which can be 

both infinitely small and infinitely large. In these zones 

conversion of heat energy takes place (molecules, atoms, 

ions, etc. begin moving to the medium into which heat is 

transferred). Almost all the processes in chemical 

technology involving heating or cooling of substances, as 

well as temperature errors of dimensional control in 

information control systems take place due to heat energy 

transfer. Accordingly, the problems of mathematical 

description of heat energy transfer processes in different 

mediums ensuring adequacy of calculations to 

experimental results is relevant. 
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PURPOSE AND OBJECTIVES OF RESEARCH 

 

The purpose is to research heat energy transfer 

processes based on the theory of irreversible rheological 

transitions and principles for development of 

mathematical models for bounded and semibounded 

mediums. 

To achieve this purpose it is necessary to solve the 

following problems: 

- to develop physical models of irreversible 

rheological transitions (IRT) for heat energy transfer 

processes; 

- to describe IRT with the help of nonlinear 

differential equations of heat energy transfer with 

dissipative function of the flow speed; 

- to find the analytic solution of nonlinear differential 

equations of the heat energy transfer speed based on the 

zero gradient method. 

 

GENERAL FORMULATION OF RESEARCH  

OF HEAT ENERGY TRANSFER BY RHEOLOGICAL 

TRANSITIONS METHOD 

 

Mathematical description of nonlinear processes of 

heat energy transfer is highlighted in a significant number 

of scientific papers below. They firstly describe heat and 

mass transfer processes, when there are deviations from 

linear Fourier’s and Fick’s laws. Nonlinear generalization 

of Newton’s law in the theory of momentum impulse 

transfer led to development of the theory of rheological 

transitions and conversions that gave rise to present 

Fourier’s law of heat conductivity in the more 

generalized ratio of the following type: 

     dgkq TT  


0

,                 (13) 

where: Tq is the heat energy flow;  k  is a function 

describing rheological transition; Tg is the temperature 

gradient,   is time of rheological conversion of heat 

energy;   is time of transfer of the heat energy flow to 

the other medium. 

If we compare equation (13) with the description of 

integrated impulse Dirac delta function [15]: 

   
 

 








2

11 0 2011

2110

0

,0t

t f
df




 ,  (14) 

where:   is a variable,  f  is the function describing 

the heat energy transfer process with heredity,     

is the core of linear integral conversion, 0  is average 

time of phase transfer, 1 , 2  timeframes of integrated 

impulse Dirac delta function, then one can note their 

similarities. 

Firstly, if in equation (13) integration limits vary 

from zero to infinity, then in (14) they vary within some 

real limits: from 1  to 2 . Secondly, a function is a 

particular function describing the heat energy transfer 

process with heredity. Thirdly, the temperature gradient 

    Tg is the core of linear integral 

conversion if time is   . Since this process is 

characterized by speed of heat energy transfer, equation 

(14) can be written in the following form: 

   
 

 








2

11 0 2011

2110

0

,0x

x xxxxf

xxxx
dxf  ,  (15) 

where:   is a linear coordinate variable,  f  is the 

function describing the heat energy transfer process with 

heredity to distance  ,  0х  is the core of linear 

integral conversion,  0х  is average time of phase transfer, 

1х , 2х  are linear limits of  integrated impulse Dirac 

delta function. 

According to equations (14) and (15), the process of 

heat energy transfer can be considered both regarding 

time and a geometrical coordinate corresponding to 

Fourier’s law. Fig. 1, 2 show a physical model of 

irreversible rheological transition of the heat energy flow 

from the source to the medium (Fig. 1) and a diagram of 

integrated impulse Dirac delta function (Fig. 2) in the 

form of a rectangle, within which there are diagrams of 

heat energy (temperature) transfer from the source to the 

medium (curve 1), and the curve of this energy storage in 

the medium (curve 2). The diagram of integrated impulse 

Dirac delta function is limited on the left by the straight 

a-b, and on the right – by the straight c-d. Thus, at the 

border a-b (point 1  (x1)) and c-d (point 2  (х2)), 

gradients of temperature change are 0


 


baT

 and 

0


 


dcT

. The zone, bounded by the rectangle a-b-c-d, 

in which the process of heat energy conversion takes 

place, is called as the irreversible rheological transition 

(IRT) zone. 

 

 
Fig. 1. Physical model of the process of heat energy impulse 

transfer 

 

 
 

Fig. 2. IRT diagrams and integrated impulse Dirac delta 

function 

 

Since within the integrated impulse Dirac delta 

function there are normally two IRT curves – the curve of 

change in energy transfer  ,11 хfТ   and the curve of 
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the conversion process flow  tfТ 22 , then the heat 

energy balance is always executed, i.e.: 

       tfхvххТ   ,,, ,         (25) 

where:   ,х  is the potential transfer vector, х  is the 

vector of transfer motion direction,  ,хv  is the vector 

of the transfer speed, t is the transfer time of the result of 

the heat energy flow conversion from the IRT zone to the 

other volume, where it accumulates. 

Since in the IRT zone, the temperature  ,11 хТ

ranges from 00Т  tо 10Т according to Fourier’s law, then 

according to [3, 4] equation (9) is written as follows: 

 




















а

х

ТТ

ТхТ

2
erf

,

1000

1011 ,               (26) 

where: а  is thermal conductivity, T00 is the temperature 

of the heat flow, which is transferred from the source to 

the IRT zone. 

Equation (26) is correct when the heat energy 

transfer time is limited to a certain value 10 at which the 

body changes its temperature from the initial Т00 to Т10. 

But it is necessary to terminate exposure of the body to 

the source. If heat transfer takes place from 0  to 

 , then equation (26) takes the following form: 

  














а

х
ТхТ

2
erf, 0011 .                   (27) 

As it is shown in physical model of Fig 1, a, in the 

simplest case the physical model of the process of heat 

energy transfer consists of three stages. At the first stage, 

the impulse of heat energy Q moving to the other medium 

creates an impulse for rheological transition. Such an 

impulse can be thickness of the laminar layer near the 

heating wall, phases’ interface, friction place between 

two bodies, chemical reactor, etc. This impulse is formed 

in a certain area (rheological transition zone), in which 

the heat impulse from the source is converted either into 

heat energy of the other medium or mechanical 

movement, or substance mass transfer, or chemical 

reaction. During this conversion of heat energy of the 

source, new energy (e.g., thermal, mechanical, chemical 

or other) appears, which always comes from the IRT zone 

(flows) at a certain speed and accumulates (integrates) in 

this medium. If the newly created energy does not come 

from the IRT zone, it will accumulate there until it fills 

the entire volume of the zone. Having reached such a 

state, the heat energy transfer process stops. An example 

of such transfer is the heating process of the body with 

the perfectly insulated outer surface. When the 

temperature of the heating body reaches the temperature 

of the incoming heat energy flow, then the heat transfer 

process eliminates. On the other hand, when it is assumed 

that power of the heat energy source is infinite, it leads, 

for example, to change of the phase state of the isolated 

medium (conversion of the solid medium into liquid or 

gaseous), at which the heat energy transfer process stops. 

These processes run in accordance with relevant laws 

(Fourier’s law for heat energy impulse transfer, Fick’s 

law for substance mass impulse transfer, Newton’s law 

for momentum impulse transfer), which are combined by 

the efficient transfer coefficient –thermal conductivity, 

mass conductivity and kinematic viscosity 

correspondingly. All these factors have the same 

dimension (m
2
/s). For the process of heat energy 

(temperature) flow transfer in the body with the perfectly 

insulated surface, as mentioned above, Fourier’s law in 

the following form is used: 

   
2

2 ,,

x

xT
a

xT
v
















.               (27) 

Accumulation of heat energy in the IRT zone takes 

place according to formula (26). Equation (27) describes 

speed v of accumulation of heat energy in the body, 

which is also the IRT zone. If 
222  vx then equation 

(27) is reduced to the following: 

 
   xT

T

v

a








 




















2

.           (28) 

Analysis of equation (28) shows that when
222  vx , then the heat energy transfer process is 

described by the linear differential equation of the first 

order: 

 
  LkT

T
 




 




,                  (29) 

where: 
2/ va  is the constant of heat energy transfer 

time from the source to the IRT zone, k is the transfer 

coefficient, L is the total distance of the direction of the 

heat energy flow distribution. 

By analogy with (26) solution of equation (29) 

during transferring of heat energy from 0  to 10  , 

we get: 

     /e  xpLkТ ,                (30) 

If the result of conversion of the heat energy flow is 

being continuously deduced from the IRT zone (e.g. a 

semibounded body) to the different medium, the latter is 

cumulative. Accumulation takes place at a certain speed, 

which is described by the dissipative function  tf , 

where: t is the flow time of the conversion result. The 

conversion result can be both heat energy (e.g., heating of 

the medium by electric current) and substance weight 

(e.g., substance dissolving, evaporation, etc.) or new 

substances generated in the result of chemical reactions. 

Theoretical and experimental studies show that the flow 

speed of the determining parameter R, which may be the 

temperature of the heat flow or solution concentration, or 

momentum, can be described by the following linear 

differential equations: 

- Integrating dynamic element:  
dt

dR
tf  ; 

- Aperiodic dynamic element of the first order: 

 
dt

dR

dt

Rd
tf 

2

2

1 ;
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- Aperiodic (or oscillation) dynamic element of the 

second order:   ,
2

2

3

3
2

22
dt

dR

dt

Rd

dt

Rd
tf   

where: 22211 ,,   are time constants. 

As shown in [20], the flow speed can be described by 

differential equations of higher order when rheological 

conversions are multistage. 

 

PHYSICAL AND MATHEMATICAL MODELS  

OF HEAT ENERGY TRANSFER IN AN ISOLATED 

BODY 

 

Let us assume that there is a solid body the surface of 

which is perfectly isolated, and its length is DL 
where D is diameter (Fig. 3). The bare butt of the body 

momentary joins the source with infinitely large heat 

capacity. Let us divide the length of the body by n 

conventional areas with thickness 0x . Let us assume 

that to each additional area ix heat energy is transferred 

only when the previous one takes the source temperature. 

 

 

Fig. 3. Diagram of heat energy transfer in the rod with the 

isolated surface 

 

Fig. 4. IRT diagram and integrated impulse Dirac delta function 

for the isolated rod 

 

In each element of the body there takes place the 

process of rheological conversion (e.g. heating), which 

can be described by the following equation: 

   
)0,0(

,,
2

2

Lx
x

xT
a

xT ii 















,    (31) 

In the first part dxx  there is rheological heat 

energy transfer from the source to the first part of the 

body (Fig. 4, curve 1). Due to this fact the body part 

accumulates heat and is heated to temperature 0TTxi  . 

The heating process of part 11 dxx   is shown in Fig. 4, 

curve 2. Integrated impulse Dirac delta function is a 

rectangle with 1x width. Since according to the 

condition of the problem, the heat energy flow through 

the lateral surface is absent, then for each part ix  the 

problem of heat energy transfer and heating will be 

symmetrical. 

Thus, the transfer process of the heat energy amount 

from the source to the rod part 1 will be described by the 

following differential equation: 

   
,

,,
2

2

x

xT
a

xT dd








 




 0 , 10 xx  ,    (29) 

  0,0 dd TT  ,   01 0, xd TxT  , 

where: 0dT  is the source temperature, dT  is the current 

temperature in part x , corresponding to transferred heat 

energy. 

The heating process of part іx by the transferred 

heat energy will be described by such an equation: 

   
,

,,
2

2

x

xT
a

xT xx








 




 0 , ііі xxх   12 ,  (30) 

  0,0 xx TT  ,   01, dx TxT  . 

In this case, the process of heat energy transfer along 

the rod may have the following variants: 

1. The speed of heat energy transfer along the body 

is linear: 

 
 

dt

tdT
t  .                            (31) 

2. The speed of heat energy transfer along the body 

is aperiodic of the first order: 

 
   

dt

tdT

dt

tTd
t 

2

2

1 ,                  (32) 

where: 1 is the time constant of the speed of the heat 

energy flow. 

3. The speed of heat energy transfer along the body 

is aperiodic of the second order: 

 
     

dt

tdT

dt

tTd

dt

tTd
t 

2

2

213

3
2
22  , 2/ 2221  , (33) 

where: 2221,  are time constants of the heat energy 

transfer speed. 

4. The speed of heat energy transfer along the body 

is oscillatory: 

 
     

dt

tdT

dt

tTd

dt

tTd
t 

2

2

213

3
2
22  , 2/ 2221  , (33) 

If the speed of the heat energy flow is described by 

equation (31), then (30) takes the form: 

 
     

dt

tdT

x

xT
a

xT xxx 








2

2 ,, 




.         (34) 

Equation (34) is non-linear, since it contains such 

variables as: time  of rheological heat energy transfer; 

time t  of heat energy transfer along the body; the linear 

coordinate x, in which heat energy transfer takes place; 

each additional area ix heat energy is transferred only when the previous one takes the source temperature. 

 

 

Fig. 3. Diagram of heat energy transfer in the rod with 

the isolated surface 

 

Fig. 4. IRT diagram and integrated impulse Dirac 

delta function for the isolated rod 

In each element of the body there takes place the process of rheological conversion (e.g. heating), which 

can be described by the following equation: 
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each additional area ix heat energy is transferred only when the previous one takes the source temperature. 

 

 

Fig. 3. Diagram of heat energy transfer in the rod with 

the isolated surface 

 

Fig. 4. IRT diagram and integrated impulse Dirac 

delta function for the isolated rod 

In each element of the body there takes place the process of rheological conversion (e.g. heating), which 

can be described by the following equation: 
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the IRT temperature  ,xTx  and the temperature  tTx

of heat energy transfer along the rod. For analytical 

solution of equation (34) we use the method of zero 

gradient. Under this method, if the temperature derivative 

regarding time is zero to the right and to the left of part

1x , then equation (34) is divided into the following 

system: 

   
0

,,
2

2











x

xT
a

xT xx 




;             (35) 

 
 ,xT

dt

tdT
х .                     (36) 

The system of equations (35) and (36) is 

interconnected by the temperature  ,xTx . The solution 

of this system depends on conditions that apply to the 

process of heat energy transfer. If t , then firstly the 

temperature  ,xTx is determined in equation (35), and 

then it is applied to equation (36). As mentioned above, 

the solution of equation (35) will be: 

    ахerfTхT іx 2/, 0  ,               (37) 

where: 0T is the temperature of the heat energy source, L

is the body length. 

Solution of equation (36) will be: 

   ,xTttT x .                        (38) 

Applying (37) to equation (38), we get: 

    ахerftTtT і 2/0  .             (39) 

Provided that 222  vx , equation (35) is driven to 

such a linear form: 

 
  0,

,
TxT

хT
x

x 








 ,              (40) 

where 
2/ vа  is the time constant of rheological 

transition of the heat energy flow from the source to the 

IRT zone. 

The solution of equation (40) will be: 

    /exp, 0 TxTx ,                (41) 

Applying (41) to equation (38), we have: 

    /exp0  tTtT .                 (42) 

Curves of transition processes of the body heating, 

calculated by formula (42) for values of heat energy 
transfer time, equal respectively: 0.5, 1.0, 1.5, 2.0 and 

2.5, are shown in Fig. 5 (curves 1, 2, 3, 4 and 5). 

 

 

Fig. 5. Dynamic characteristics of the heat energy transfer 

process at its linear distribution 
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Fig. 6. Curves of models’ adequacy at linear distribution of heat 

energy : 1 – change of function  ахerf і 2/ , 2 – change 

of function   /exp   

 

Fig. 6 shows the curves of models’ adequacy at 

linear distribution of heat energy. Figure 6 shows that the 

difference between curves 1 and 2 is low, which suggests 

the adequacy of mathematical models. Equations (39) and 

(42) are mathematical models of the heat energy transfer 

process in the body at their linear speed. If t , then 

  0/exp   , according to L'Hôpital’s rule at t

  0ТTx  , that is, the body heats up to the temperature 

of the heat energy flow. Let us consider transfer of the 

heat energy flow, when the flow speed is described by 

equation (32). Then (30) in view of equation (32) leads to 

the following nonlinear differential equation: 

       
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tdT
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tTd
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2 ,,
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




.  (43) 

According to the method of zero gradient, equation 

(43) is divided into the following system: 
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x

xT
a

xT xx 
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,                (44) 

 
    ,

21 хТtT
dt

tdT
 .                     (45) 

where: aS /1   is the time constant of the transfer 

process of the heat energy flow, S is the surface of heat 

energy transfer in the body during the flow. 

At the initial conditions, equation (44) has the 

following solution: 

    ахerfTхTx 2/, 0 ,                   (46) 

and equation (45): 
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      1/exp1,  txTtT x  ,                (47) 

Applying (46) to equation (47), we obtain the 

mathematical model of such a process of the heat energy 

transfer flow in the following way: 

      10 /exp12/  tахerfTtT  .     (48) 

The obtained mathematical model of the considered 

process is not very convenient for practical use, because 

it contains the function  zerf  that needs to be expanded 

to series and limited by the number of its members, 

which, firstly, leads to long-lasting calculations, and 

secondly – accuracy of members becomes lower due to 

reduce in their amount. If condition 222  vx is 

executed, then we come to the following mathematical 

model: 

      10 /exp1/exp   tTtT  .        (49) 

As shown by Acad. Lykov V.V., in the rod of great 

length there can be observed oscillatory processes of heat 

energy flow transfer. For this process, the nonlinear 

differential equation is: 
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









,                                            

(50) 

where: aS /21  , kS /22  are time constants, S is 

cross-sectional area of the body, k is the heat conductivity 

coefficient. 

The process of transferring of the heat energy flow 

will be oscillating when 2// 2
2221  aSk . For the 

rod of round shape we have 2// 2
2221  akR  . As 

for the given rod material the ratio is constak 2/ , then 

the ratio of time constants is completely determined by 

the rod radius. According to the method of zero gradient, 

equation (50) is divided into the following system: 

   
0

,,
2

2





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



x

xT
a

xT xx 


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,             (51) 

   
    ,212

2
2
22 хТtT

dt

tdT

dt

tTd
х .     (52) 

Under initial conditions the solution of equation (52) 

will be: 

             tttхТtT х 000 sin/cosexp1,   ,                                     

(53) 

where: 
2
2221 2/    is the degree of oscillations 

damping,  22

2212

2

220 2//1   is natural 

frequency of oscillations. 

 

 
 

Fig. 7. Aperiodic dynamic characteristics of the heat energy 

transfer process 

 

If the condition 222  vx  is executed, then we 

obtain the following mathematical model of the 

considered process: 

             tttTtT 0000 sin/cosexp1/exp    .  

                              (54) 

Curves of transient processes of the body heating, 

calculated by formula (54) for time values of heat energy 

 transfer, equal, respectively: 0.5, 1.0, 1.5, 2.0 and 2.5 

are shown in Fig. 8 (curves 1, 2, 3, 4 and 5). 

 

 
Fig. 8. Oscillation dynamic characteristics of the heat energy 

transfer process 

 

 

CONCLUSIONS 

 

1. It is shown that in the wall-adjacent layer, called 

the rheological transition zone, there are rheological 

conversions of heat energy transferred from the source. 

From the rheological conversion zone to the other fluid 

medium, there deduces (or flows) the result of this 

process, which may be heat energy, momentum or 

substance weight. 

2. It is shown that in the rheological transition zone 

the process of heat energy transfer takes place under 

Fourier’s or Newton’s laws, and in the fluid medium 

there is the process of accumulation of energy, mass or 

momentum. 

3. It is proposed to present the rheological process of 

heat energy transfer as impulse integral Dirac delta 

function with the core in the form of the temperature 

change, which is described by the nonlinear differential 

equation deduced based on the heat balance of the heat 

energy amount given by the source which deduces 
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(flows) to some fluid medium which may be liquid, 

gaseous, solid or other, such as viscoplastic. 

4. If to present the rheological transition zone of heat 

energy transfer as integrated impulse Dirac delta 

function, on the border of which the derivative of the 

thermophysical parameter according to the time of heat 

energy transfer or according to distance is zero, the 

nonlinear differential equation is divided into the system 

of two interconnected linear differential equations, 

allowing to get analytical description of the considered 

non-linear process. 

5. Based on the theory of rheological heat transfer 

(thermorheological effect), there have been considered 

the process of the body (fluid) heating according to the 

linear, periodic and oscillating accumulation of heat 

energy. 
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ИССЛЕДОВАНИЕ ПРОЦЕССОВ ПЕРЕНОСА 

ТЕПЛОВОЙ ЭНЕРГИИ НА ОСНОВЕ ТЕОРИИ 

РЕОЛОГИЧНЫХ ПЕРЕХОДОВ И МЕТОДА 

НУЛЕВОГО ГРАДИЕНТА 

 

Й. Стенцель, О. Поркуян,  

К. Литвинов, О. Шаповалов 
 

Аннотация. Показано, что перенос тепловой энергии от 

источника до среды сопровождается реологическими 

переходами. За счет переноса потока тепловой энергии с 

соответствующей скоростью в зоне реологического 

перехода происходит изменение физических параметров 

среды. Показано, что использование линейных 

градиентных законов при описании процессов переноса 

тепловой энергии приводит к большим расхождениям 

между теоретическими и экспериментальными 

результатами, а также к парадокса неограниченой скорости 

распространения возмущений температурных полей. Для 

математического описания процессов переноса тепловой 

энергии в средах предлагается использовать метод 

необратимых реологических переходов и нулевого 

градиента, что позволяет получать решения нелинейных 

дифференциальных уравнений в аналитической форме. 

Ключевые слова: реологический переход; многофазная 

среда; теплопередача; моделирование. 

 

 



 

 


