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Abstract. In the article, basic properties of traveling spatially nonhomogeneous auto-wave solutions in nonlinear fractional-order reaction-

diffusion systems are investigated. Such solutions, called autosolitons, arise in a stability region of the system and can coexist with the

spatially homogeneous states. By a linear stability analysis and computer simulation, it is shown that the order of the fractional derivative

can substantially change the properties of such auto-wave solutions and significantly enrich nonlinear system dynamics. The results of

the linear stability analysis are confirmed by computer simulations of the generalized fractional van der Pol-FitzHugh-Nagumo model.

A common picture of traveling auto-waves including series in time-fractional two-component activator-inhibitor systems is presented. The

results obtained in the article for the distributed system have also been of interest for nonlinear dynamical systems described by fractional

ordinary differential equations.
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1. Introduction

In recent years, the interest in studying dynamical mathemat-

ical models with fractional derivatives has been increasing.

This interest is mainly determined by the attempts to un-

derstand phenomena in fractal, irregular and hereditary me-

dia [1–8]. Among the fractional differential models, much

attention has been given to the fractional reaction-diffusion

systems (RDS) [9–14]. On the basis of mathematical model-

ing of the standard RDS, a lot of noteworthy nonlinear self-

organization phenomena in physical, biological and chemical

systems have been explained [15–18]. Moreover, the inves-

tigations of the spatio-temporal order in such nonlinear sys-

tems and mechanisms of pattern formation are a top-priority

theme of research studies in many modern technological ap-

plications [17–19]. Due to this fact, studying such systems

with fractional derivatives is important both from the scien-

tific perspective and from the point of view of its applications.

By now, for nonlinear time-fractional activator-inhibitor

RDS the spatially-temporal nonhomogeneous solutions, which

spontaneously arise in fractional RDS (FRDS) as a result of

instability of spatially homogeneous states of the system, were

investigated [20–23]. In this case, it was shown that the frac-

tional systems can demonstrate much more complex nonlinear

dynamics than the classical RDS and the fractional derivative

order is an additional bifurcation parameter which can qualita-

tively change the properties of spatially homogeneous [20,22]

as well as nonhomogeneous [21, 24] steady solutions.

It is also well known that in monostable nonequilibri-

um systems, stable localized spatially nonhomogeneous states,

∗e-mail: datskob@prz.edu.pl

Manuscript submitted 2017-11-26, initially accepted for publication

2018-01-18, published in August 2018.

called autosolitons, may arise [17, 18]. An autosoliton is

a steady solitary inhomogeneous state of the dissipative sys-

tems which can be excited by an external localized impulse

of sufficiently large amplitude in domain where homogeneous

state is stable. The characteristics of autosoliton (shape, am-

plitude, velocity, etc) depend entirely on the parameters of the

system, and do not depend on the properties of the initial per-

turbation gave rise to it. Similarly to periodic auto-oscillations,

which correspond to stable limit cycles in phase space of dy-

namic variables, autosolitons correspond to attractors in the

configuration space each point of it is associated with certain

function which describe distributions of the parameters of the

system with respect to coordinates.

The nature of autosolitons is extremely diverse [16–18]:

electric impulses running in a nerve fiber, solitary strata of

current density in gas discharge or semiconductor systems,

complex chemical concentration autowaves in self-catalyzed

chemical reactions, etc. These phenomena on the base of clas-

sical RDS have been studied for many years. For fractional

RDS, such investigations have only started [25].

In the present article, we investigate the traveling au-

towave solutions (signals in fractional distributed systems)

in a time-fractional RDS with positive and negative feed-

backs. As a base model, the generalized van der Pol-FitzHugh-

Nagumo (FHN) one with time-fractional derivatives is con-

sidered. The purpose of this paper is to study the properties of

travelling solitary auto-wave solutions in this basic mathemat-

ical model and to establish their main characteristic features

for fractional RDS of the general type.

2. Mathematical model

Let us consider the following FRDS called generalized van

der Pol-FitzHugh-Nagumo model with time-fractional deriv-
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atives expressed, for convenience, in a time non-dimensional

form [16–18]:

ε
∂αu

∂tα
= l2

∂2u

∂x2
+ W (u, v, A), (1)

∂αv

∂tα
= L2 ∂2v

∂x2
+ Q(u, v, A), (2)

where u = u(x, t) is a fast variable called the activator varia-

ble and v = v(x, t) is a slow variable called the inhibitor,

ε = τu/τv, τu, τv and l,L are characteristic times and diffu-

sion lengths of the system, 0 ≤ x ≤ Lx, Lx is the system

length, A is an external parameter. When the inhibitor variable

diffusion length is zero and α = 1, the system (1), (2) corre-

sponds to classical FitzHugh-Nagumo (FHN) model [16, 17].

In this case, the source term for the activator variable is

nonlinear and it is linear for the inhibitor [16, 17]:

W (u, v) = u−u3/3−v, Q(u, v, A) = −v+βu+A. (3)

The time derivatives ∂αu/∂tα, ∂αv/∂tα on the left-hand

side of equations (1) and (2) are the Caputo fractional deriv-

atives in time of the order 0 < α < 2 and are represented as

∂α

∂tα
f(t) =

1

Γ(m − α)

t
∫

0

f (m)(τ)

(t − τ)α+1−m
dτ, (4)

where m − 1 < α < m, m = 1, 2 [26, 27].

The system (1), (2) is subject to Neumann:

∂u/∂x|x=0,Lx
= ∂v/∂x|x=0,Lx

= 0, (5)

or periodic

u|x=0 = u|x=Lx
, ∂u/∂x|x=0 = ∂u/∂x|x=Lx

,

v|x=0 = v|x=Lx
, ∂v/∂x|x=0 = ∂v/∂x|x=Lx

,
(6)

boundary conditions. At these boundary conditions the system

is maximally autonomous and allows coexistence of spatial-

ly homogeneous and nonhomogeneous solutions [15,17]. The

initial conditions will be taken according to the purpose of

each particular simulation.

Due to properties of Caputo derivative, the fractional sys-

tem (1), (2) at boundary conditions (5), (6) has the same spa-

tially homogeneous stationary solutions as the standard one

(α = 1). They can be obtained from the algebraic system

W (u, v, A) = 0, Q(u, v, A) = 0 (7)

(intersection point of two null-clines, see Fig. 1). Neverthe-

less, the stability and dynamical properties of these solutions

strongly depend on the order of the fractional derivative.

3. Linear stability analysis

The system (1), (2) can be linearized with respect to these

spatially homogeneous and stationary solutions

τu
∂αδu(x, t)

∂tα
= l2

∂2δu(x, t)

∂x2
+W ′

uδu(x, t)+W ′

vδv(x, t), (8)

τv
∂αδv(x, t)

∂tα
=L2 ∂2δv(x, t)

∂x2
+Q ′

uδu(x, t)+Q ′

vδv(x, t). (9)

The linearized system (8), (9) allows to determine the spec-

trum of small perturbations δu(x, t), δv(x, t) and to estimate

the asymptotic behavior of the solution for great values of t .

Using the formula for the Fourier transform of fractional

derivative [3, 27]

∞
∫

0

e−st
0D

α
t f(t)dt = sαF (s) −

n−1
∑

k=0

sα−k−1f (m)(0) (10)

for small perturbations δu(x, t) ∼ exp(ikx), δv(x, t) ∼
exp(ikx) we obtain linear system of algebraic equations rel-

ative to Fourier transform of these perturbations, which has

nontrivial solution when its determinant is equal to zero. The

characteristic equation is quadratic polynomial relative to the

power α leading to the next two roots:

(iω)α
± = γ(k) ± iω0(k), (11)

where γ(k) = trF (k)/2, ω0(k) =
√

detF (k) − tr2F (k)/4).
Here the linearized right-hand side of the system (8), (9) is

given by the matrix

F (k) =

(

(a11(k)/τu) a12/τu

a21/τv a22(k)/τv

)

(12)

with

a11(k) = a11 − k2l2, a22(k) = a22 − k2L2,

a11 = W
′

u, a12 = W
′

v,

a21 = Q
′

u, a22 = Q
′

v.

(13)

All derivatives are taken at homogeneous equilibrium state

(u, v):

W (u, v) = Q(u, v) = 0, k = πj/Lx, j = 1, 2, ... .

In a standard RDS (α = 1) we obtain that for k = 0 at

conditions

trF (0) > 0, detF (0) > 0 (14)

the equilibrium point, which corresponds to the null-cline in-

tersection, is unstable and the system possesses spatially ho-

mogeneous oscillations due to Hopf bifurcation (a limit cycle

in the case of local system (l = L = 0)). For the fractional

one the situation is different [28, 29]. The instability condi-

tions for homogeneous state depend on fractional order of the

system and are determined by critical value [21]

α0 =























(

2

π

)

arctan

√

4 detF

tr2F
− 1, trF > 0,

2 −
(

2

π

)

arctan

√

4 detF

tr2F
− 1, trF < 0.

(15)

As a result, the stability region of the system is signifi-

cantly other from the one determined by conditions (14) (for

details, see [21]). It is defined for all values α0 ∈ (0, 2), and

having the value of α0, we can determine other system para-

meters, which together with the order of the fractional deriv-

ative define the region, where the homogeneous state (u, v)
is unstable.
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For conditions

trF (0) < 0, detF (0) > 0 (16)

the equilibrium point of the system is stable and corresponds

to a stable focus or a node. In this case at sufficiently small

ε < 1 and L = 0 (or l/L ≫ 1) in standard RDS we can

observe a traveling solitary wave solutions. Due the theorem

of uniqueness and existence [27] fractional systems remain

the properties their integer analogues in an appropriate range

of the system parameters, including the order of fractional

derivative. Therefore we can expect that such type solutions

can also exist in fractional RDS.

The basic properties of static auto-wave solutions in FRDS

are mainly determined by the spectrum of eigenvalues of the

linearized system [23]. The traveling auto-waves have an addi-

tional characteristic – velocity of propagation. For estimation

of it dependence on value of fractional order we will con-

sider a group velocity of small perturbations. In this case at

|trF (k)| ≪ 1, the linearized dynamical system for ampli-

tudes of the plane waves can be presented by the following

differential equation

ρ̈ − ρ̇ · trF (k) + ρ · detF (k) = 0, (17)

which describes a damping oscillator with damping factor

trF (k)/2 and oscillatory frequency of about ω0 =(detF )1/2.

In fact, the solution of this equation has the form

ρ = ρ+ exp(iω+ t) + ρ− exp(iω− t). (18)

So, any perturbation in the stable region trF (k) < 0 will de-

cay with time 2/|trF (k)| and oscillate with a frequency ω0

which in the case of classical FHN system (L = 0) can be

represented as

ω0 =

(

detF (0)− k2l2a22

τuτv
− 1

4

(

trF (0)− k2l2

τu

)2
)1/2

. (19)

Analyzing this term we can conclude that ω0 depends on k
and reaches the maximum value

ωmax
0 = [det F (0) − a11a22 / τuτv ]

1/2
, (20)

at

k2
0 =

τu

l2
(trF (0) − 2a22/τv). (21)

In this case, for a standard system with integer derivatives,

the group velocity of the small perturbations in the form of

plane waves is the following

Vg =
dω0(k)

dk
. (22)

Using the same considerations as for the standard system,

we can obtain the tendency of the group velocity of small

perturbations in the case of fractional system. Formally cal-

culating this velocity for noninteger α we will have following

relationship:

c±g = Re

[

ω1−α
± (k)

αiα−1

dω±(k)

dk

]

(23)

or

cg ≃ ω(k)

αω0(k)

dω0(k)

dk
=

ω(k)

αω0(k)
Vg, (24)

where ω(k) is determined by equation (11). Since the co-

efficient before the standard group velocity is inversely pro-

portional to α, we can expect that the group velocity cg will

increase with decreasing α. This means that order of fractional

derivative can change not only the stability and static prop-

erties of spatially-nonhomogeneous solutions but also their

dynamical properties.

The aim of next section is to demonstrate how the frac-

tional derivative order in a generalized van der Pol-FitzHugh-

Nagumo system changes the main characteristics and nonlin-

ear dynamics of the solitary traveling waves in comparison

with standard systems.

4. Traveling pulses: qualitative analysis

and computer simulation

First, we consider the standard van der Pol-FitzHugh-Nagumo

model (α = 1). Calculation of the coefficients aij of matrix

(12) for sources (3):

a11 = (1 − u2), a12 = −1, a21 = β, a22 = −1

makes it possible to qualitatively analyze the formation of

a traveling pulse in FHN model and to explicitly obtain the

main dependencies for this analysis. The linear analysis shows

that at τu/τv > 1 the steady state solution corresponding to

any intersections of null-clines is stable. Formally, the condi-

tion trF > 0 is reduced to the inequality

W ′

u > (τu/τv)Q
′

v,

which in this case has a very simple form

1 − u2 > τu/τv.

The smaller is the ratio of τu/τv, the wider is the in-

stability region. At τu/τv → 0, the instability region for

u coincides with the interval between the extremum points

(umin, vmin) = (−1,−2/3), (umax, vmax) = (1, 2/3) where

the null cline W (u, v) = 0 has its increasing part (Fig. 1).

Fig. 1. The null-clines positions for different values of bifurcation

parameter A. Results of computer simulation of the system (1), (2)

with sources (3) at β1 = 2.0 (solid line), β2 = 1.01 (dashed line)

The null-cline Q = 0 intersects these extremum points at

the values of the bifurcation parameter A1 = 2/3 − β and
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A2 = −2/3 + β correspondingly (Fig. 1). For the values

A > A1 and A < A2 stationary state (u, v) of the system is

stable. In other words, decreasing parts of null-cline P = 0
correspond to stability region of standard FHN system.

The simple view of nonlinearities (3) allows to determine

the intersection point of null-clines by the equation

u − u3/3 − βu + A = 0. (25)

In this case, the values of external parameters A, β determine

the value of u and this makes it possible to consider the vari-

able u as the main parameter for the system analysis and on

the basis of formula (15) to build the instability domain for

any relation between system parameters. The instability do-

mains for the considered fractional system, in the coordinates

(u, lg(τu/τv)) for different values α at a given value β are

presented in Fig. 2. For each particular value α in the region

between the corresponding curve the system is unstable for

homogeneous perturbation with the wave-number k = 0, and

on the outside – it is stable. The curve corresponding to α = 1
is denoted by a thicker line.

Fig. 2. Instability domains for the local system (l = L = 0) in co-

ordinates (u, lg(τu/τv)) for different values α. Results of computer

simulation of the system (1), (2) with sources (3) at α changing from

0.25 to 1.75 with step 0.25 for β = 1.01

The system (1), (2) with the source terms (3) and bound-

ary conditions (5) or (6) was investigated numerically [30–34].

The traveling pulses were initiated by disturbance of the lo-

cal region Lp ≪ Lx in initial conditions by certain values

v = v0 = v, u = u0 > u, (Fig. 1). In the rest of the simula-

tion space domain the initial state corresponds to equilibrium

point (u, v).

By computer simulation it was established that solitary

traveling auto-waves can be excited also in fractional RDS.

Moreover, the existence conditions of such solutions, as well

as their main characteristics strongly depend on the fractional

order of the system and are different than for the classical

FHN model.

The results of numerical investigation of the fractional

system for different values of system parameters and order of

fractional derivative α are presented in Figs. 3–7. The plots

on these figures demonstrate that the traveling pulse can exist

in a wide range of system parameters, including the order of

the fractional derivatives. We can also see that the fractional

derivative order qualitatively changes the pulse width and re-

lation between the activator and inhibitor variables. For α < 1
the traveling pulse is wider than for α > 1 (Figs. 3–5). This

trend is of a general nature.

a)

b)

Fig. 3. Distribution of activator variable u (red) and inhibitor vari-

able v (blue) in a traveling pulse. Evolution of pulse shape on depen-

dence from value of bifurcation parameter A (A1 = 0.4, A2 = 0.5,

A = 0.6) in classical FHN model (α = 1.0) – (a). Evolution of

pulse shape in fractional FHN system on dependence from order of

fractional derivative α (α1 = 0.95, α2 = 1.05, α3 = 1.25) at the

same value of bifurcation parameter A = 0.6 – (b). The results of

computer simulation of the system (1), (2) at boundary condition

(5) for the parameters: ε = τ1/τ2 = 0.05, l2 = 0.0125, β = 1.01,

L = 0

a)

b)

Fig. 4. Evolution of pulse shape on dependence from order of

fractional derivative α (α1 = 0.75, α2 = 1.0, α3 = 1.25) for

ε = τ1/τ2 = 0.05 – (a) and for ε = τ1/τ2 = 0.025 – (b). The

results of computer simulation of the system (1), (2) at boundary

condition (5) for the parameters: A = 0.6, l2 = 0.025, β = 1.01,

L = 0
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a)

b)

Fig. 5. Disposition of traveling pulses (activator variable) at the same

moment of time (t = 3) for different values of fractional order α
from α1 = 0.7 to α7 = 1.3 with step 0.1 and l2 = 0.025 – (a).

Location of the traveling pulses for different values α (α1 = 0.75,

α2 = 1.0, α3 = 1.25) and characteristic length l (l2 = 0.05 (solid

lines), l2 = 0.0125 (dashed lines) – (b)). The results of computer

simulation of the system (1), (2) at boundary condition (5) for the

parameters: ε = τ1/τ2 = 0.05, A = 0.6, β = 1.01

For any value ε = τu/τv the interval, on which a trav-

eling pulse exists, increases as the fractional derivative order

α becomes smaller. It is worth noting that the stable solitary

wave solutions in FRDS can exist even in the region where

null-clines intersect on the increasing part of W = 0. It is

not surprising since in contrast to the standard systems the

fractional ones for α < 1 become stable in the region where

dv/du = −W ′
u/W ′

v > 0 [21]. For α > 1 the region of ex-

istence of solitary traveling waves also changes but becomes

smaller. There are two main explanations of this fact. First

of all, the instability region for α > 1 becomes more ex-

tended and the homogeneous state can be unstable even for

|u| > 1 [20, 21]. This means that the traveling pulse exists

only for |u|, which at a certain ratio between α and ε can be

significantly greater than unity (Figs. 1, 2). On the other hand,

increasing α or A makes the pulse narrower (Fig. 3) and at

certain ratio between these parameters it completely vanishes.

In common, the domain of existing stable travelling pulses

monotonously changes with the fractional derivative order at

given parameters A and ε: for α < 1 this domain is the great-

est, the standard system (α = 1) occupies the intermediate

position, and for α > 1 this domain is the smallest.

The plots presented in Figs. 3–7 demonstrate that the

shape of the traveling pulse varies depending on all the system

parameters τu, τv, β, A, l, as well as the order of fractional

derivative. The competition between these system parameters

determines the form of the traveling pulse and its velocity.

a)

b)

c)

d)

Fig. 6. The traveling pulse solution at (α = 0.75) – (a) and

(α = 1.25) – (b); generation of leading center solution as a re-

sult of breakdown in the traveling pulse tail at the increasing frac-

tional derivative order from α = 1.25 to α = 1.3 – (c); traveling

pulse bouncing from the boundaries – (d). The results of computer

simulation of the system (1), (2) at boundary condition (5) for the

parameters: ε = 0.05, l2 = 0.0125, A = 0.6, L2 = 0.0, β = 1.01
– (a)–(c); α = 1.175, ε = 0.04, l2 = 0.025, L2 = 0.6, β = 0.85,

A = 0.3 – (d)

The conclusion which can be drawn from computer simula-

tion is that the fractional order is dominant and for bigger

values α the pulse has more contrast walls and is narrow-

er. The smaller is value α the wider is the traveling pulse
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and with smoother walls. The standard system has parameters

which are intermediate among the pulses with α < 1 and

α > 1 (Figs. 3–5).

a)

b)

c)

d)

Fig. 7. Leading center solution as a result of a small inhomogeneity

at x = 0 for α = 1.3 – (a)–(b) and for α = 1.7 – (c). Complex

dynamics as a result of interplay two traveling pulses stimulated by

local inhomogenities – (d). The results of computer simulation of

the system (1), (2) at boundary condition (5) for the parameters:

ε = 0.05, l2 = 0.02, L2 = 0.0, β = 1.01, A = 0.4 – (a)–(c);

ε = 0.05, l2 = 0.0125, L2 = 0.0, β = 1.01, A = 0.4 – (d)

In Fig. 5 the positions of the sequence of pulses generated

for different α for the same moment of time are presented.

We can see that the speed of the pulse with the smallest order

α is the highest and for the greatest α it is the smallest. This

plot also demonstrates the change of the shape of the pulse by

each value of α. The variation in the speed with the fractional

order α can be explained by analyzing the group velocity of

the traveling pulse. The matter is that these pulses exist in the

stable region and the dispersion relation of the stable pertur-

bation can be obtained from (22). In our case for any α for

trF (k) ∼ 0 we have the following dependence

c±g ∼ Re







(

i
√

detF (k)
)1−α

α

dω±

dk







≃ Re

[

(

i
√

β + u − 1
)1−α

(τuτv)(1−α)/2α
V ±

g

]

.

In other words, the group velocity is a function of the frac-

tional order α. As a result, with decreasing α pulses increase

and with increasing α pulses decrease their speed, that is what

we see in the computer simulation experiments (Fig. 5a). By

this formula we can also estimate the influence of other sys-

tem parameters on pulse velocity. Figure 5b makes it possible

to understand the system dynamics depending on the diffusion

length l, which mainly determines the curvature of the front

for travelling pulse. Numerical results presented in Fig. 5b

demonstrate that the change of fractional order has more sig-

nificant impact on the speed of pulse in comparison with the

variation of the diffusion length.

The discussed above trends in the shape and velocity de-

pendence are of a general nature and are typical for other

basis FRDS of activator-inhibitor type. By compute experi-

ments it was established that in fractional activator-inhibitor

systems the stability domain of the traveling pulses is adjacent

to the instability region of spatially homogeneous states and

solitary wave solutions can be easier to generate very close to

the bifurcation point of the system. This is true for α < 1. In

this case the tail of the pulse is monotonic and it reaches the

equilibrium point (u, v) without oscillation (Figs. 3 and 4).

The more stable is the system with respect to instability con-

dition (A < Acr, where Acr is the critical value of bifurcation

parameter A for instability of stationary homogeneous state)

the narrower the pulse becomes. At α < 1 the traveling pulse

exists also at an intersection of null-clines on increasing part

of the null-cline W = 0 and can lead to more complex system

dynamics.

Now we consider a traveling pulse shape when the acti-

vator variable is in a refractor domain. In classical RDS the

maximum in the traveling pulse tail appears only for a com-

plete RDS with L not equal to zero (L ≫ l) and it increases

by approaching the Turing bifurcation point. In FRDS the tail

arises even for an FHN model. At a given bifurcation parame-

ter A the trend of tail behavior is presented in Figs. 3 and 4.

The higher is fractional derivative order the narrower is the

pulse, and it generates a substantial maximum in the tail. At

the same time, the homogeneous state is the same since the

main bifurcation parameter A is the same (null-clines intersect

at the same point).
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This nontrivial phenomenon has a substantial effect for

the system dynamics. It was shown that in a standard sys-

tem it can lead to the formation of a leading center solution

(or pacemaker) when the system is close to the instability

point (see [35] for details). If the tail maximum amplitude is

small enough we have a solitary traveling waves as report-

ed above. In opposite case we can have a variety of pattern

formation phenomena. The matter is that the tail part of trav-

eling pulse contains maxima of a fast variable distribution

(Figs. 3b, and 4a). As a result, when two pulses are generated

at some place, they start to propagate in a different directions

and there is a moment when two tail maxima coincide and

their total maximum becomes greater than is needed for it

to be stable. In this local domain there are two new pulses

generated that start running in the opposite directions.

The same idea of a leading center (LC) formation is real-

ized in FRDS. With an new additional parameter – fractional

derivative order – we can design a leading center with suffi-

ciently wide system parameters. A local excitation of a stable

homogeneous system produces traveling pulses (Fig. 6a,b).

When A is close to Acr, the oscillatory distributions in a tail

at some moment can lead to LC appearing (Fig. 6b,c). The re-

sulting tail oscillatory distribution at some time moment may

raise the value of u above the stability domain value, and the

effect of a local breakdown will cause a further abrupt increase

in an activator. This can lead to a spontaneous generation of

two new pulses in the tail. One of them continues traveling

at the same direction while the second one starts running in

opposite direction to the opposite boundary (Fig. 6b,c). Two

receding traveling pulses give rise to a pair of new receding

pulses, and so the process continues. In other words, the point

of initial local disturbance becomes a self-contained source

of receding pulses. In two and three-dimensional systems this

can be a source of diverging radially-symmetric autowaves.

It is a common understanding that the wave reaching the

boundary vanishes at the neutral boundary condition (5). For

periodic (a cyclic) boundary condition the wave is generat-

ed at the opposite boundary and runs in the same direction.

It has also been known for many years that when two au-

towaves collide then, as a rule, they vanish. For FRDS, we

establish that autowaves can have a more complex dynamics.

The matter is that due to a fractional nature of the system it

memorizes some previous system dynamics and tries to re-

produce it with a greater success than the standard system.

A phenomenon of bouncing autowaves from the boundary

is presented in Fig. 6d. When an unique pulse reaches the

end of the simulated domain it vanishes at the boundary at

a Neumann boundary conditions. At the same time, when the

bifurcation parameter is close to the instability point, the pulse

vanishes, but its tail generates another pulse which can run in

the opposite direction (Fig. 6d). This process will be contin-

uous and can lead to a set of train patterns depending on the

fractional derivative order.

The generation of the traveling nonlinear waves presented

in Fig. 6 was done by the initial condition or external pulse in

some moment of time t = t0. Since we study the system prop-

erties close to bifurcation point, the spatial inhomogeneity of

the distributed parameters also may play an essential role and

the nonlinear regime may emerge spontaneously. Small inho-

mogeneity may lead the system parameters into an instabil-

ity domain and, as a result, we can expect a generation of

the auto-waves of a large amplitude despite the fact that the

system steady state solution is presented inside the stability

domain. These properties of activator-inhibitor systems were

recognized from standard RDS when a local inhomogeneity

can generate traveling or stationary auto-wave solutions [35].

Similar scenarios can take place also in fractional RDS. In

Fig. 7a-d a formation of leading center solution in a fraction-

al system, as a result of a small inhomogeneity, is presented

(local additional source of a different size and amplitude in

the equation (1) was considered).

At the same time, a fractional derivative order can cause

a much more complicated dynamics than we meet in stan-

dard RDS. Increasing α leads to an enlargement of instability

domain for the given values of the system parameters (see

Fig. 2) and as a consequence, in fractional RDS a much more

complicated nonlinear dynamics appears. In this case, we can

have a variety of shape or velocity of traveling pulses dur-

ing periodic pulse generation (Fig. 7c). Real systems may

contain many inhomogeneities and each of it can generate

traveling or stationary auto-waves. In this case, an interaction

between such solitary autowaves can be also very complex

and sometimes it reminds of chaotic dynamics. The result of

such interplay of two traveling pulses stimulated by local in-

homogeneities which demonstrates the processes of appearing

and disappearing of solitary autowave solutions is presented

in Fig. 7d. It shows that small local inhomogeneities in two-

component fractional activator-inhibitor systems can lead to

very complex dynamics which was earlier observed only in a

system of bigger dimensionality.

5. Conclusions

In this article we studied nonlinear traveling auto-wave solu-

tions, which appear in the stability region of the time frac-

tional reaction-diffusion systems and can coexist with spa-

tially homogeneous system states. By linear analysis and nu-

merical simulations, it was shown that in FRDS, especially

in fractional van der Pol-FitzHugh-Nagumo system, solitary

auto-wave solutions can exist in a wide range of system pa-

rameters, including the order of the fractional derivatives. It

was established that the system dynamics is very sensitive to

fractional derivative order α, parameters of the inhomogene-

ity, bifurcation parameter etc. In many cases the effect of a

local breakdown depends on the order of fractional derivative

and leads to more complex auto-wave solutions in comparison

to classical RDS.
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