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FRACTIONAL SYSTEMS

Fractional-order discrete model of an independent wheel electrical

drive of the autonomous platform

M. BĄKAŁA∗, J. NOWAKOWSKI, and P. OSTALCZYK

Institute of Applied Compute Science, Department of Electrical Engineering, Lodz University of Technology,

18/22 Stefanowskiego St., 90-924 Lodz, Poland

Abstract. In the paper the linear time-invariant fractional-order models of the separated wheel closed-loop electrical drive of the autonomous

platform are considered. As a reference model one considers the classical model described by the second-order linear difference equation.

Two discrete-time fractional-order models are considered: non-commensurate and commensurate. According to the sum of the squared

error criterion (SSE) one compares two-parameter integer-order model with the four-parameter non-commensurate and three-parameter

commensurate fractional-order ones. Three mathematical models are built and simulated. The computer simulation results are compared

with measured velocity of the real autonomous platform separate wheel closed-loop electrical drive.
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1. Introduction

The identification of real dynamical systems based on the

fractional calculus mathematical tools [1–4] leads to better

mathematical models [5–9] in the sense of a better match-

ing of the data measured. Allowing any real orders in dif-

ferential or difference equations provides a better fit due to

the assumed criterion. On the other hand there is an in-

creasing number of parameters to evaluate. In this paper

non-commensurate vs. commensurate fractional-orders (FO)

models are analyzed in terms of their effectiveness in model-

ing. The commensurate models are characterized by a smaller

number of parameters. This is due to FOs set νp, νp−1, · · · , ν1

in the non-commensurate system and pν, (p − 1)ν, · · · , ν in

the commensurate one. In both cases there is the same num-

ber of FODE coefficients. The paper contains a short intro-

duction to the non-commensurate and commensurate systems

described by linear FO difference equations and their state-

space forms [10]. Then the closed-loop DC motor electrical

drive of a separate wheel of an autonomous platform is de-

scribed. Two simple linear models based on the FODEs are

also proposed. The simulation results are compared with the

measured data. The main conclusion of the analysis is the

ability to achieve similar results in the identification with the

two considered models. However, commensurate models have

only one multiple order.

2. Non-commensurate and commensurate

difference equation

Real dynamical systems modeling leads to mathematical mo-

dels being differential equations
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[
dpy(t)

dtp
,
dp−1y(t)
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, · · · ,

y(t)

dt
, y(t),

dqu(t)

dtq
,
dq−1u(t)

dtq−1
, · · · ,

u(t)

dt
, u(t), t

]
= 0,

(1)

where y(t) and u(t) denote the output and the input signals,

respectively. Function F is in general non-linear. One can also

admit fractional-order derivatives

F
[
GL
t0

D
νp

t y(t),GL
t0

D
νp−1

t y(t), · · · ,GL
t0

Dν1

t y(t), y(t),

GL
t0

D
µq

t u(t), · · · ,GL
t0

D
µ1

t u(t), u(t), t
]

= 0,
(2)

where GL
t0

Dν
t y(t) denotes the Grünwald-Letnikov fractional –

order derivative

GL
t0

D
(ν)
t f(t) = lim

h→0+

GL
k0

∆
(ν)
k f(kh)

hν
(3)

and all orders are arranged to satisfy inequalities νp > νp−1 >

· · · > ν1 > ν0 = 0, µq > µq−1 > · · · > µ1 > µ0 = 0 ,

ν0 6= µ0 and all are rational numbers

νi =
ei

di

for i = 1, 2, · · · , p, and ei, di ∈ N

µj =
gj

fj

for j = 1, 2, · · · , q, and gj , fj ∈ N

(4)

and a finite sum for ν ∈ R+

GL
k0

∆
(ν)
k f(k) =

k∑

i=k0

a(ν)(i − k0)f(k + k0 − i)

=

k−k0∑

i=0

a(ν)(i)f(k − i),

(5)

denotes the Grüwald-Letnikov fractional-order backward dif-

ference (GL-FOBD). Moreover,
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a(ν)(k)=






0 for k < 0

1 for k = 0

(−1)k ν(ν−1)···(ν−k+1)
k! for k = 1, 2, 3, · · ·

(6)

The GL-FOBD divided by a finite sampling time h (which

should be relatively small) in (2) approximates the derivatives

GL
t0

D
(νi)
t y(t) ≈

GL
k0h∆

(νi)
kh y(kh)

hνi
,

GL
t0

D
(µj)
t u(t) ≈

GL
k0h∆

(µj)
kh u(kh)

hµj
.

(7)

Hence, for i = 1, 2, · · · , p, j = 1, 2, · · · , q from (2) one ob-

tains the FO difference equation (FODE)

F
[

GL
k0h∆

(νp)
kh y(kh), · · · ,GL

k0h ∆
(ν1)
kh y(kh), y(kh),

GL
k0h∆

(µq)
kh u(kh), · · · ,GL

k0h ∆
(µ1)
kh u(kh), u(kh), kh

]
= 0.

(8)

Let d be the least common denominator of fractions (4). Then,

the orders take the forms

νi = niν for i = 1, 2, · · · , p, and ni, d ∈ N (9)

µj = mjν for j = 1, 2, · · · , q, and mj , d ∈ N (10)

where

ν =
1

d
. (11)

Then, introducing the notation given above, the considered

FOBDs can be expressed in a form

GL
k0h∆

(νi)
kh y(kh) =GL

k0h ∆
(niν)
kh y(kh)

=



GL
k0h∆

(ν)
kh

GL
k0h∆

(ν)
kh · · ·GL

k0h∆
(ν)
kh︸ ︷︷ ︸

ni



 y(kh)
(12)

and
GL
k0h∆

(µi)
kh u(kh) =GL

k0h ∆
(miµ)
kh u(kh)

=



GL
k0h∆

(µ)
kh

GL
k0h∆

(µ)
kh · · ·GL

k0h∆
(µ)
kh︸ ︷︷ ︸

mi



u(kh)
(13)

Under the above forms the FODE (8) takes the form

F
[

GL
k0h∆

(npν)
kh y(kh), · · · ,GL

k0h ∆
(n1ν)
kh y(kh), y(kh),

GL
k0h∆

(mqν)
kh u(kh), · · · ,GL

k0h ∆
(m1ν)
kh u(kh), u(kh), kh

]
=0.

(14)

for p > q ∈ N and np > mq.

Assuming that for an input signal having the property

lim
k→+∞

u(kh) = us = const (15)

there exists a steady-state solution of (8) and (14)

lim
k→+∞

y(kh) = ys = const. (16)

It means that the algebraic equation

F [0, · · · , 0, ys, 0, 0, · · · , 0, us, 0] = 0 (17)

is satisfied. The linearization procedure is described in details

in [10].

2.1. Non-commensurate and commensurate linear time-

invariant FODE. A special but very important class of

the FOBDs is a class of stable linear time-invariant FOBD

[11, 12]. For the non-linear FODEs one can apply the lin-

earization procedure around the steady-state conditions and

under the assumption of a relatively small change of the in-

put signal. This is the first approach in the system modeling.

To simplify a notation further on we transform a discrete-

time scale to assume h = 1. The linear time invariant non-

commensurate FODE is of the form

p∑

i=0

ai
GL
k0

∆
(νi)
k y(k) =

q∑

j=0

bj
GL
k0

∆
(νj)
k u(k) = û(k), (18)

where the FOs are ordered in the same way as in (2). The

linear time-invariant commensurate FODE is as follows

p∑

i=0

ai
GL
k0

∆
(niν)
k y(k) =

q∑

j=0

bj
GL
k0

∆
(mjν)
k u(k) = û(k), (19)

with ai, bj and ap = 1 are constant coefficients, p ≥ q and

u(k) is a known input signal. For d = 1 in (19) i.e. ν = 1
the considered FOBD represents the classical integer – order

difference equations (IOBD).

Proposition 1. Every rational-order non-commensurate sys-

tem can be transformed to the commensurate one.

The proof and transformation procedure is described in [10].

2.2. State-space equations of the non-commensurate and

commensurate systems. The FOBD has a concatenation

property

GL
k0

∆
(ν)
k

[
GL
k0

∆
(µ)
k y(k)

]
=GL

k0
∆

(ν+µ)
k y(k), (20)

for ν, µ ≥ 0.

Now we present a splitting algorithm transforming given

real numbers set νi, i = 1, 2, · · · , p and µj , j = 1, 2, · · · , q

into a set of sums of lower numbers. Denote s = p + q and

S = {νp, νp−1, · · · , ν1, µq, µq−1, · · · , µ1}. (21)

The set’s (21) elements are inserted in Table 1.

Table 1

Step 0

· · · {ρ0,4} {ρ0,3} {ρ0,2} {ρ0,1}

In the Step 1 all elements but the last one are represented

as a sum

ρ0,i = ρ1,i + ρ0,1 for i = p + q, p + q − 1, · · · , 2. (22)

Hence, every elementent is represented by two numbers

{ρ1,i{ρ0,1}} for i = p + q, p + q − 1, · · · , 2. These two com-

ponents represent an element in the same column and above

row. Both Steps are represented in Table 2.
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Table 2

Step 1

· · · {ρ0,4} {ρ0,3} {ρ0,2} {ρ0,1}

· · · {ρ1,4, {ρ0,1}} {ρ1,3, {ρ0,1}} {ρ1,2, {ρ0,1}} {ρ0,1}

In the Step 2 all elements but the two last are represented as

a sum

ρ0,i = ρ2,i + ρ1,2 + ρ0,1 for i = p, p − 1, · · · , 3 (23)

After this operation we get a Table 3.

Table 3

Step 2

· · · {ρ0,4} {ρ0,3} {ρ0,2} {ρ0,1}

· · · {ρ1,4, {ρ0,1}} {ρ1,3, {ρ0,1}} {ρ1,2, {ρ0,1}} {ρ0,1}

· · · {ρ2,4, {ρ2,2, ρ0,1}} {ρ2,3, {ρ2,2, ρ0,1}} {ρ2,2, {ρ0,1}} {ρ0,1}

· · ·
.
.
.

.

.

.
.
.
.

.

.

.

The Algorithm will be illustrated in a numerical example.

2.2.1. Numerical example. For a set of orders

S = {0.8, 0.5, 0.3, 0.1} (24)

we get the following Table 4.

Table 4

Table of numerical example

{0.8} {0.5} {0.3} {0.1}

{ 0.7, {0.1}} { 0.4, {0.1}} { 0.2, {0.1}} { 0.1 }

{ 0.5, {0.2,0.1}} { 0.2, {0.2,0.1}} { 0.2,{0.1}} {0.1 }

{0.3,{ 0.2,0.2,0.1}} { 0.2, {0.2,0.1}} { 0.2,{0.1}} {0.1 }

Remark 1. One should realize that elements representing the

sum of cells in a chosen column are equal

ρ0,k =

k∑

i=2

ρl,i + ρ0,1 for l = 1, 2, · · · , lmax, (25)

where lmax denotes the last row when the elements cannot be

splitted further.

Remark 2. One should reassign elements ρ0,i to appropriate

orders νj and µk.

Then, in view of equality (25) appropriate FOBD are rep-

resented as products of FOBDs

GL
k0

∆
(νi)
k y(k) =

i∏

j=2

GL
k0

∆
(ρlmax,i)
k

GL
k0

∆
(ρ0,1)
k y(k). (26)

Applying (26), FODE may be expressed in a form

p∑

i=0

ai

i∏

j=2

GL
k0

∆
(ρlmax,i)
k

GL
k0

∆
(ρ0,1)
k y(k)

=

q∑

i=0

bi

i∏

j=2

GL
k0

∆
(ρlmax,i)
k

GL
k0

∆
(ρ0,1)
k u(k).

(27)

Remark 3. To avoid too many indices in (27) an equivalent

notation is introduced

νi =

i∑

s=1

ν̂s, µj =

j∑

t=1

ν̂t. (28)

Then, equation (27) takes a form

p∑

i=0

ai
GL
k0

∆(bνi) · · ·GL
k0

∆
(bνi)
k y(k)

=

q∑

i=0

ai
GL
k0

∆(bνi) · · ·GL
k0

∆
(bνi)
k u(k).

(29)

Now, we define new variables called further state-variables

y(k) = x1(k)

GL
k0

∆
(bν1)
k y(k) =GL

k0
∆

(bν1)
k x1(k) = x2(k)

GL
k0

∆
(bν2)
k

[
GL
k0

∆
(bν1)
k y(k)

]
=GL

k0
∆

(bν2)
k x2(k) = x3(k)

...

GL
k0

∆
(bνp−1)
k xp−1(k) = xp(k)

(30)

A substitution of the elements of the above set of state-

variables into (30) gives

GL
k0

∆
(bνp)
k xp(k) = −

p−1∑

i=1

aixi(k) + u(k). (31)

Equations (30) and (31) can be expressed in the matrix-vector

form
GL
k0

∆
(ν)
k x(k) = Ax(k) + bu(k), (32)

y(k) = cx(k) + bu(k), (33)

where

GL
k0

∆
(ν)
k x(k) =





GL
k0

∆
(bν1)
k x1(k)

GL
k0

∆
(bν2)
k x2(k)

...
GL
k0

∆
(bνp−1)
k xp−1(k)

GL
k0

∆
(bνp)
k xp(k)





, (34)

ν =





ν̂1

ν̂2

...

ν̂p−1

ν̂p




, x(k) =





x1(k)

x2(k)
...

xp−1(k)

xp(k)




, (35)

A =





0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1

−a0 −a1 −a2 · · · −ap−2 −ap−1




, b =





0

0
...

0

1




, (36)

c =
[
b0 b1 · · · bq 0 · · · 0

]
, d = [1] . (37)
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In the case of the commensurate system ν̂i = iν for

i = 1, 2, · · · , p. Hence, the left-hand side vector (35) sim-

plifies essentially

GL
k0

∆
(ν)
k x(k)=





GL
k0

∆
(ν)
k x1(k)

GL
k0

∆
(ν)
k x2(k)

...
GL
k0

∆
(ν)
k xp−1(k)

GL
k0

∆
(ν)
k xp(k)





=GL
k0

∆
(ν)
k





x1(k)

x2(k)

x3(k)
...

xp−1(k)

xp(k)





. (38)

Classical ARX [13] models are described by linear differ-

ence equation

p∑

i=0

cp−iy(kh − ih) =

q∑

i=0

dq−iu(kh − ih) + n(kh) (39)

with cp = 1 and n(kh) denoting a white-noise signal. The fol-

lowing Proposition shows that the ARX model can be equiv-

alently described by a linear difference equation.

Proposition 2. The ARX model described by equation (41)

has an equivalent representation

p∑

i=0

Cp−i
GL
p−i∆

(i)
k y(kh)=

q∑

i=0

Di
GL
k−i∆

(i)
k u(kh)+n(kh). (40)

Proof. Equation (41) can be equivalently described in a vector

form

[
1 cp−1 cp−2 · · · c1 c0

]





y(k)

y(k − 1)
...

y(k − p + 1)

y(k − p)





=
[
dq dq−1 dq−2 · · · d1 d0

]





u(k)

u(k − 1)
...

u(k − q + 1)

u(k − q)




+ n(k)

(41)

Now we define a matrix

Tp+1

=





a(p)(0) a(p)(1) · · · a(p)(p − 1) a(p)(p)

a(p−1)(0) a(p−1)(1) · · · a(p−1)(p − 1) 0
...

...
...

...

a(1)(0) a(1)(1) · · · 0 0

a(0)(0) 0 · · · 0 0




.

(42)

Its inverse can be easily calculated

T
−1
p+1

=





0 0 · · · 0 a(0)(0)

0 0 · · · a(1)(1) a(1)(0)
...

...
...

...

0 a(p−1)(p − 1) · · · a(p−1)(1) a(p−1)(0)

a(p)(p) a(p)(p − 1) · · · a(p)(1) a(p)(0)




.

(43)

Next we express equation (43) as

[
1 cp−1 · · · c1 c0

]
T

−1
p+1Tp+1





y(k)

y(k − 1)
...

y(k − p + 1)

y(k − p)





=
[
1 dq−1 · · · d1 d0

]
T

−1
q+1Tq+1





u(k)

u(k − 1)
...

u(k − q + 1)

u(k − q)




+n(k).

(44)

Then, we get

[
Cp Cp−1 · · · C1 C0

]





GL
k−p∆

(p)
k y(k)

GL
k−p−1∆

(p−1)
k y(k)
...

GL
k−1∆

(1)
k y(k)

y(k)





=
[
Dp · · · D1 D0

]





GL
k−q∆

(q)
k u(k)

GL
k−q−1∆

(q−1)
k u(k − 1)

GL
k−q−2∆

(q−2)
k y(k)u(k − 2)

...
GL
k−1∆

(1)
k y(k)u(1)

u(k)





+n(k),

(45)

where

Cj =

p−j∑

i=0

cia
(p−i)(j) for j = 0, 1, · · · , p,

Dj =

q−j∑

i=0

dia
(q−i)(j) for j = 0, 1, · · · , q.

(46)

�

3. Separated-wheel closed-loop DC motor

electrical drive description

The 6-wheeled autonomous platform with 6 independent

closed-loop DC motor drives with 6 identical PI controllers is

considered. It is presented in Fig. 1. Figure 4 presents a new
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measuring stand, which was designed and manufactured. It

consists of the extortion plate (1), sensors of displacement (2)

and the holder of the aluminum frame (3). The measurement

is based on determining with certain frequency and ampli-

tude the movement of the swing arm excited by a force plate.

After obtaining a fixed plate movement, it was switched off.

The movement of the swing arm was measured by displace-

ment sensors. The results from the experiments carried out

for different settings were recorded in real time.

Fig. 1. Photo of the 6-wheel autonomous platform

The block diagram of a closed-loop system [14, 15] of

one separated DC drive block diagram [16, 17] electrical

drive [18] is given in Fig. 2.

where the Z-Transforms [19] denote:

– R(z) – the Z-Transform of a reference signal,

– E(z) – the Z-Transform of an error signal,

– U(z) – the Z-Transform of an controlling signal,

– Y (z) – the Z-Transform of the angular velocity of a motor

wheel,

– Md(z) – the Z-Transform of an external disturbance moment

representing resistive moment due to rolling resistance,

– Rt – the motor’s armature resistance,

– Tt = Lt

Rt
– a time constant, where Lt denotes the armature’s

inductance,

– cΦ – the motor constant,

– Jo – combined mass moment of inertia of the flywheel and

shaft and armature,

– KP – the PI controller proportional part gain,

– KI – the PI controller integration part gain,

– KS – the sensor gain,

– KA – the amplifier gain.

Fig. 2. Block diagram of the closed-loop DC motor drive of the

separated platform wheel

The DC motor and the PI controller are described by dif-

ference equations

GL
k−2∆

(2)
k u(kh) + a1

GL
k−1∆

(1)
k u(kh) + a0u(kh)

= b1u(kh − h),

u(kh) = KP e(kh) + KI
GL
0 ∆

(−1)
k e(kh).

(47)

Combining equations presented above with an adder e(kh) =
r(kh) − KSω(kh) we get the difference equation describing

the ARX model [13] transformed according to (40). The PI

controller parameters are tuned to get a quick start preserving

bounded signal values (maximal current and control voltage).

Two models are evaluated: an integer and a fractional one.

The model parameters are given in Table 5.

Table 5

6-wheel autonomous platform measured and simulated models responses

Model a3 a2 a1 b2 b1 b0 ν µ

(18) 0.9127 8.49e-2 2.1e-3 3e-4 1.21 -3.6317 3,2,1,0 2,1,0

(19) – – 1 24.28 24.28 – 1.16 0

The velocity of the platform on a flat and hard surface is pre-

sented in Fig. 3. The sum of squared errors (SSE) criteria are

equal. The integer model has 6 parameters whereas fractional

one only 3. This is an advantage of a fractional model.

Fig. 3. Normalized step response of a 6-wheel autonomous platform

(black) and integer (blue) and fractional (red) models responses

3.1. DC motor-drive of a separated wheel. When the plat-

form corps is suspended, the main wheel rolling resistance is

almost zero. Then, the step response of the separated wheel is

characterized by a huge overshoot. The settings of regulator

parameters are the same. The separated wheel photo, its mod-

el and a measured angular velocity are presented in Figs. 4–6,

respectively.
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Fig. 4. Autonomous platform wheel photo

Fig. 5. Autonomous platform wheel model 2D view-3

Fig. 6. Step response of a separated wheel with simulated responses

To simplify the identification of the electrical DC drive

notation we perform a time-scale transformation to get h = 1.

Further on, the numerical step h = 1 will be omitted. It is

a bijection transformation to original time scale.

Table 6

Model parameters

Model a1 a0 ν1 ν2 SSE

(48) 0.1447 0.01447 1 2 0.1588

(50) 0.145 0.01460 1.1 1.9 0.070511

(52) 0.144 0.01456 0.8 1.6 0.071735

3.1.1. Measured transient characteristics. In the experi-

ment there was assumed a reference signal d(k) = 0 and an

external disturbance moment md(k) = const < 0 in a shape

of the discrete-step function. Presented in Fig. 7 discrete step

response suggests the second order damped oscillation mod-

els. Evidently, in the “black box” measured data there are

hidden non-linear frictions and external disturbance moments

which the non-commensurate and commensurate FODE mod-

els should describe.

Fig. 7. Measured wheel-drive system step response

3.2. Classical two-parameter linear integer-orders differ-

ence equation model of the wheel-drive. As the mentioned

classical oscillation model one takes (18) with p = 2, q = 0,

ν2 = 2, ν1 = 1. The assumption means that the stable mod-

el [20, 21] is described by the IODE of the form

GL
k0

∆
(2)
k y1,2(k) + a1

GL
k0

∆
(1)
k y1,2(k) + a0y1,2(k)

= a0md(k),
(48)

where y1,2 is an angle of classical integer model. Without

prejudice to the generality of considerations one can assume

b0 = a0. Hence, one gets the two-parameter model a1, a0.

The integer orders are 2 and 1. The related state-space form

is as follows

GL
k0

∆
(1)
k

[
x1(k)

x2(k)

]
=

[
0 1

−a0 −a1

]
+

[
0

1

]
md(k),

y1,2(k) =
[
1 0

] [
x1(k)

x2(k)

]
+ [a0] md(k).

(49)

3.3. Non-commensurate three-parameter linear fractio-

nal-order difference equation model of the wheel-drive. As

a special case of (18) one assumes the four-parameter model
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GL
k0

∆
(ν2)
k yν1,ν2

(k) + a1
GL
k0

∆
(ν1)
k yν1,ν2

(k)

+ a0yν1,ν2
(k) = a0md(k). (50)

Related state-space equations are
[

GL
k0

∆
(ν1)
k x1(k)

GL
k0

∆
(ν2−ν1)
k x2(k)

]
=

[
0 1

−a0 −a1

]
+

[
0

1

]
md(k),

yν1,ν2
(k) =

[
1 0

] [
x1(k)

x2(k)

]
+ [a0] md(k)

(51)

with unknown four parameters a1, a0, ν2, ν1.

3.4. Commensurate linear fractional-order state-space

model of the wheel-drive. The FODE has three parameters:

a1, a0 and ν ∈ R+

GL
k0

∆
(2ν)
k yν,2ν(k) + a1

GL
k0

∆
(ν)
k yν,2ν(k) + a0yν,2ν(k)

= a0md(k),
(52)

GL
k0

∆
(ν)
k

[
x1(k)

x2(k)

]
=

[
0 1

−a0 −a1

]
+

[
0

1

]
r(k),

yν,2ν(k) =
[
1 0

] [
x1(k)

x2(k)

]
+ [a0] md(k).

(53)

4. Comparison of models

An optimal choice of parameters related to three linear struc-

tures described by formulas (48), (50) and (52) is based on

the minimization of a performance index SSE. Denoting the

measured output signal as ym(k) one defines three error func-

tions

e1,2(k) = ym(k) − y1,2(k), (54)

eν1,2ν1
(k) = ym(k) − yν1,2ν1

(k) (55)

eν1,ν2
(k) = ym(k) − yν1,ν2

(k) (56)

then the criteria are the functions as follows

SSE(a0, a1) =

kmax∑

k=0

e2
1,2(k), (57)

SSE(a0, a1, ν1, ν2) =

kmax∑

k=0

e2
ν1,ν2

(k), (58)

SSE(a0, a1, ν1) =

kmax∑

k=0

e2
ν1,2ν1

(k). (59)

Numerically found minimal values of coefficients and FOs are

collected in Table 7.

Table 7

Identification effects comparison

Model a1 a0 ν1 ν2 SSE

(48) 0.1447 0.01447 1 2 0.0360

(50) 0.145 0.01460 0.993 1.931 0.0175

(52) 0.144 0.01456 0.983 1.966 0.0249

The plots of measured output signal ym(kh) and simulated

responses y2,1, yν1,ν2
, yν1,2ν1

are presented in Fig. 8. Figure 9

shows enlarged fragment of Fig. 8.

Fig. 8. Plots of measured ym(k) (black), simulated IO respon-

se y1,2(k) (blue) and FO models responses: non-commensurate

yν1,ν2(k) (red) and commensurate yν,2ν(k) (green)

Fig. 9. Enlarged fragment of Fig. 8

5. Conclusions

Numerical analysis shows that the application of the FO mod-

els leads to more than a 50% improvement of the SSE per-

formance index. The commensurate model is worse that the

non-commensurate one. This is caused by the evident relation

min[SSE(a0, a1)] ≥ min[SSE(a0, a1, ν1)]

≥ min[SSE(a0, a1, ν1, ν2)].
(60)

The proposed lowering of the total order is of particular im-

portance in the closed-loop systems with multiple inputs and

multiple outputs with the same sub-plants.
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applications, Hermès, Paris 1995.

[3] I. Podlubny, Fractional Differential Equations, Academic

Press, London 1999.

[4] S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Inte-

grals and Derivatives, Gordon and Breach Science Publishers,

London 1993.

[5] R. Caponetto, G. Dongola, L. Fortuna, and I. Petras, Fraction-

al Order Systems: Modeling and Control Applications, 175

World Scientific Series on Nonlinear Science: Series, vol. 72,

Singapore, 2010.

[6] S. Das, Functional Fractional Calculus for System Identifi-

cation and Controls, 239 Springer-Verlag, Berlin-Heidelberg,

2009.

[7] S. Guermah, S. Djennoune, and M. Bettayeb, “Discrete-Time

Fractional-Order Systems: Modeling and Stability Issues”, Ad-

vances in Discrete Time Systems, pp. 183–212, 2010.

[8] M.D. Ortigueira, Fractional Calculus for Scientists and Engi-

neers, 239. Springer Science + Business Media B.V., Dodrecht

Heidelberg London New York 2011.

[9] J. Sabatier, O.P. Agrawal, and T.A. Machado, Advances in

Fractional Calculus. Theoretical Developments and Applica-

tions in Physics and Engineering, Springer Verlag, Dordrecht

2007.

[10] P. Ostalczyk, Discrete Fractional-Calculus, World-Scientific,

Singapore 2016.

[11] C.A. Vinagre, T.A. Monje, and A.J. Caldero, Fractional order

systems and fractional order actions, Tutorial Workshop#2:

Fractional Calculus Applications in Automatic Control and Ro-

botics. 41st IEEE CDC 2002, pp. 2550–2554.

[12] M. Wyrwas and D. Mozyrska, On Mittag–Leffler STABIlity of

Fractional Order Difference Systems, Lecture Notes in Electri-

cal Engineering: Advances in the Theory and Applications of

Non-integer Order Systems, Ed. Latawiec K.J. and Łukaniszyn

M. and Stanisławski R., Springer, 2014, pp. 191-197.

[13] L. Ljung, System Identification. Theory for the User, Prentice

Hall Ptr, Upper Saddle River 1999.

[14] M. Axtell and E.M. Bise, “Fractional calculus applications

in control systems”, Proc. of the IEEE 1990 International

Aerospace and Electronics Conference 2, 563–566 (1990).

[15] R.S. Bressan and B. Piccoli, “Introduction to the Mathematical

Theory of Control”, AIMS Series on Applied Mathematics 2,

p. 312 (2007).

[16] C.A. Monje, Y. Chen, B.M. Vinagre, D. Xue, and V. Fe-

liu, Fractional-order Systems and Controls. Fundamentals and

Applications (Advances in Industrial Control), 415, Springer-

Verlag, London 2010.
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