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Abstract. The applicability of fractional calculus in system engineering outperforms classic identification techniques due to its ability to

depict physical phenomena with increased accuracy. The present study explores the increased accuracy and flexibility of a fractional order

model applied to an experimental smart beam depicting an airplane wing. The paper details the fractional order system identification of the

beam and explores the possibility of realization of the model.
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1. Introduction

The ability of a model to accurately describe the physical

properties and the behavior of a process is crucial for develop-

ing efficient control strategies. When compared to the classi-

cal, integer order system identification, a fractional order mod-

el of the process better describes the dynamics of the over-

all process. Fractional calculus based identification has been

studied intensely in the last years, especially for processes

that exhibit viscoelastic properties [1]. Accurate models have

been obtained for non-Newtonian fluids [2,3], lung pathology

in pulmonary diseases [4], HIV infection models [5], smart

beam [6] and many more.

Fractional order identification techniques have been pre-

viously explored through complex mathematics such as us-

ing the Riemann-Liouville fractional derivatives [7], least-

square method and instrumental variable [8], continuous

order-distributions [9] or optimization algorithms such as par-

ticle swarm optimization (PSO) [10].

In this paper, a fractional order transfer function is used to

describe the model of a smart beam equipped with piezoelec-

tric sensors and actuators. The beam is fixed at one end and it

is left to freely vibrate at the other end. The aluminum beam

has a viscoelastic characteristic that makes it fit for fractional

order modeling. An experimental fractional order identifica-

tion is presented based on the frequency domain magnitude

of the oscillations.

The main purpose of this paper is to present a method,

which will allow us to determine all possible realizations of

the smart beam system using digraph theory. As a result,

we have proposed the digraph-structure in the class K1. The

digraphs classes in [11] have been defined and presented in
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detail. It should be noted, that for the first time in the pa-

pers [12] and [13] the use of digraph theory to analyze dy-

namical systems was proposed. Since then, more and more

scientists try to use this theory in research, for example: elec-

trical circuits [14, 15], kinetic of compartmental system [16],

descriptor systems [17, 18].

This work has been organized as follows. Section 2

presents the identification process of the smart beam system.

Then, in Sec. 3 different fractional order models are intro-

duced. Elementary properties of the one- and two-dimensional

digraph theory used to determine realization of the different

fractional order models are presented in Sec. 4. In Sec. 5 the

method used to determine the variable fractional order model

and its realization has been presented in details. Finally, we

propose some concluding remarks and outline problems open

to further studies.

2. Fractional order identification

An integer order model of the smart beam has been deter-

mined experimentally by exciting the beam with a sinusoidal

input of frequency 14.45 Hz and amplitude 1 V. The model

obtained is given by

H(s) =
1

0.0128s2 + 0.0156s + 104.94
. (1)

The fit of the model (1) can be seen in Fig. 1. As can be seen,

the model accurately describes the dynamics of the beam, but

only at the frequency at which the identification was per-

formed. A simple second order integer order model is unable

to approximate the physical output at any given frequency;

thus a more reliable model is needed.

The viscoelastic characteristic of the smart beam makes it

suitable for a fractional order identification. The identification

is performed assuming the following model

HFO(s) =
1

a1s2 + a2sα + a3
, (2)
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Fig. 1. Experimental identification of an integer order model overlaid

on experimental data

where a1, a2 and a3 are real coefficients and α is the non-

integer power of the Laplace operator, s. The fractional model

is identified through the four parameters. Mapping the Laplace

to the frequency domain by replacing s = jω in (2) and ex-

panding the model further in its trigonometric form gives

HFO(jω)=
1

−a1ω2+a2ωα cos απ
2 +a3+ja2ωα sin απ

2

. (3)

Replacing in (3) the real part with R(ω) and the imaginary

one with I(ω)

R(ω) = −a1ω
2 + a2ω

α cos
απ

2
+ a3,

I(ω) = a2ω
α sin

απ

2
,

(4)

the magnitude and phase equations can be written as

|HFO(jω)| =
1√

R(ω)2 + I(ω)2
,

∠HFO(jω) = arctan
I(ω)

R(ω)
.

(5)

The equations from (5) are estimated to experimentally de-

termine the transfer function using the smart beam response

of sinusoidal inputs of amplitude 1 V and different frequen-

cies. The frequencies applied to the input are f = [13, 13.97,

14.15, 14.34, 14.52, 14.71, 14.9, 15.08, 15.27, 15.46, 15.83,

16, 16.95, 18.07] Hz. For every test, the amplitude and phase

are read experimentally and the system of equations from (5)

becomes a system of two equations with two unknown pa-

rameters. Solving the system with classical methods may not

lead to a solution and an optimization routine is recommended

to obtain the final result. The fmincon function from MAT-

LAB’s Optimization Toolbox can be used to minimize the

cost function, denoted by:

J = min(|HFO(jωr)| − Mωr
(jωr)) ⇒ ωr = 90.792rad/s

︸ ︷︷ ︸
fr=14.45 Hz

, (6)

where Mωr
(jωr) is the modulus of the smart beam at the

resonant frequency fr = 14.45 Hz as computed from experi-

mental data.

Optimization algorithms start searching for the optimal

solution from an initial point. The starting point is chosen

based on analyzing the plausible solutions that can be ob-

tained. Choosing different starting points may lead to different

solutions.

The obtained optimal fractional order transfer function is

HFO(s) =
1

0.0131s2 + 0.027s0.89 + 107.72
. (7)

The simulated results using the fractional model compared

to the experimental data is shown in Fig. 2. The resonant

frequency magnitude and the magnitudes enclosing it are ac-

curately approximated using the obtained fractional model.

Fig. 2. Frequency response of the fractional order model and exper-

imental data

A comparison between the fractional and integer order

models is realized through performance indices.

P =
n∑

i=1

(yexp(i) − ys(i))
2. (8)

The obtained results in terms of the performance measure-

ment is detailed in Table 1.

Table 1

Comparative performance results

f [Hz]
J as in (8)

FO model (1) IO model (7)

13.00 1.73 2.13

13.97 6.70 10.77

14.15 13.87 27.14

14.34 19.35 40.53

14.52 5.18 14.74

14.57 3.76 5.96

14.71 17.99 21.03

14.90 9.19 10.27

15.27 4.66 4.96

16.00 1.92 1.97

[12,. . . ,16] 6.57 10.3

Another experimental validation of the fractional and inte-

ger order models is realized for a sinusoidal input of variable
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frequencies between 12 Hz and 16 Hz in Fig. 3. The fit ob-

tained through the FO model better captures the dynamics of

smart beam when compared to the integer order one. Near

the resonant frequency, the fit obtained through the fractional

model outperforms the integer order one by 65%.

Fig. 3. Integer and fractional order validation of the obtained mod-

els on experimental data obtained through a swept sine between

[12, 16] Hz

3. Different fractional order models

Let us consider a fractional matrix linear system [19] de-

scribed by the equation:



C
0 D

α1

t x1(t)
...

C
0 D

αn

t xn(t)


=




A1,1 · · · A1,n

...
. . .

...

An,1 · · · An,n







x1(t)
...

xn(t)


+




B1

...

Bn


u(t),

y(t) =
[
C1 · · · Cn

]



x1(t)
...

xn(t)


,

(9)

where xk(t) ∈ Rnk for k = 1, 2, . . . , n are the state vec-

tors, Ak,j ∈ Rnk×nj , Bk ∈ Rnk×m, Ck ∈ Rp×nk for

k, j = 1, 2, . . . , n and u(t) ∈ Rm is the input vector.

In this paper the following Caputo definition of the frac-

tional derivative will be used:

C
a D

α
t =

dαf(t)

dtα
=

1

Γ(n − α)

t∫

a

f (n)(τ)

(t − τ)α+1−n
dτ, (10)

where α ∈ R is the order of a fractional derivative,

f (n)(τ) =
dnf(τ)

dτn
and Γ(x) =

∞∫

0

e−ttx−1dt

is the gamma function.

The Laplace transform of the derivative-integral (10) has

the form

L
[

C
0 Dα

t f(t)
]

= sαF (s) −

n∑

k=1

sα−kf (k−1)(0+), (11)

where F (s) = L [f(t)]. Using the Laplace transforms

Xk(s) = L [xk(t)] , k = 1, 2, . . . , n;

U(s) = L [u(t)]
(12)

and (11) we can write (9) in the following form



In1
sα1 − A1,1 −A1,2 · · · −A1,n

−A2,1 In2
sα2 − A2,2· · · −A2,n

...
...

. . .
...

−An,1 −An,2 · · ·Inn
sαn − An,n







X1(s)

X2(s)
...

Xn(s)




=




B1

B2

...

Bn




U(s) +




n1∑
j1=1

sα1−j1x
j1−1
1,0

n2∑
j2=1

sα2−j2x
j2−1
2,0

...
nn∑

jn=1

sαn−jnx
jn−1
n,0




. (13)

Equation (13) can be rewritten as




X1(s)

X2(s)
...

Xn(s)




=




In1
sα1 − A1,1 −A1,2 · · · −A1,n

−A2,1 In2
sα2 − A2,2· · · −A2,n

...
...

. . .
...

−An,1 −An,2 · · ·Inn
sαn − An,n




−1

×








B1

B2

...

Bn




U(s) +




n1∑
j1=1

sα1−j1x
j1−1
1,0

n2∑
j2=1

sα2−j2x
j2−1
2,0

...
nn∑

jn=1

sαn−jnx
jn−1
n,0








. (14)

After using (14) and

Y (s) = CX(s), U(s) = L[u(t)] (15)

we can determine the transfer matrix in the following form:

T(s) =
[
C1 . . . Cn

]

×




In1
sα1 − A11 . . . −A1,n

...
. . .

...

−An,1 . . . In1
sαn − An,n




−1 


B1

...

Bn


. (16)

4. Digraphs

A directed graph (called also digraph) D consists of a non-

empty finite set V(D) of elements called vertices and a finite

set A(D) of ordered pairs of distinct vertices called arcs. We

call V(D) the vertex set and A(D) the arc set of D. We will

often write D = (V, A) which means that V = {vi : i ∈ Z+}
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and A = {(vi, vj) : i ∈ Z+, j ∈ Z+} are the vertex set and

arc set of D, respectively.

A two-dimensional digraph D(2) is a directed graph with

two types of arcs and input flows. For the first time, this type

of digraph was presented in [12].

Definition 1. A two-dimensional digraph D(2) is sextu-

ple (s, V, A1, A2, B1, B2) where s is the source, V =
{v1, v2, . . . vn} is the set of vertices, A1 and A2 are subsets

of V × V whose elements are called A1-arcs and A2-arcs re-

spectively, meanwhile B1 and B2are subsets of s×V whose

elements are called B1-arcs and B2-arcs respectively.

There are two types of representations of the directed

graph: list and incidence matrix. In detail, they are presented

in books [20]. In this paper, an incidence matrix representa-

tion will be used. There exists an arc from vertex vj to vertex

vi if and only if (i, j)-th entry of the matrix is non-zero.

Remark 1. It should be noted that Ak-arcs and Bk-arcs

(k = 1, 2), are drawn by the other colour or line style.

Example 1. For the system described by the matrices

A1 =




vi
\vj v1 v2 v3

v1 1 0 0

v2 0 0 1

v3 1 0 0


,

A2 =




vi
\vj v1 v2 v3

v1 0 0 1

v2 1 0 0

v3 0 1 0




(17)

we can draw digraph D(2), presented in Fig. 4, consisting of

the set of vertices V = {v1, v2, v3} and set of arcs A =
{(v1, v1)A1

, (v1, v3)A1
, (v3, v2)A1

, (v1, v2)A2
, (v2, v3)A2

,

(v3, v1)A2
}.

Fig. 4. Two-dimensional digraph D
(2) corresponding to matrices (17)

Some basic definitions from digraph theory which are

used for further considerations will be presented below. A

walk in a digraph D is a finite sequence of arcs in which

every two vertices vi and vj are adjacent or identical. In

Fig. 4 there is the following walk: (v1, v2)A2
→ (v2, v3)A2

→ (v3, v2)A1
→ (v2, v3)A2

. A walk in which all of the arcs

are distinct is called a path. In Fig. 4 there is the following

path: (v1, v1)A1
→ (v1, v3)A1

. The path, that goes through

all vertices, is called a finite path. In Fig. 4 there is the fol-

lowing finite path: (v1, v3)A1
→ (v3, v2)A1

. If the initial and

the terminal vertices of the path are the same, then the path is

called a cycle. In Fig. 4 there is the following cycle: (v1, v1)A1

or (v1, v2)A2
→ (v2, v3)A2

→ (v3, v1)A2
. More information

about digraph theory is provided in [20] and [21].

5. Realization problem

Let transfer function be described by the equation (7), which

can be rewritten in its equivalent form:

HFO(s) =
76.3359

s2 + 2.0611s0.89 + 8222.9
. (18)

Taking into account that each power can be represented as

a sum of powers, therefore we can decompose s2 and s0.89

as:

s0.89 and s2 = s0.22 · s0.89 · s0.89. (19)

In this case we the have linear system consisting of two sub-

systems with different fractional orders equal to α1 = 0.22
and α2 = 0.89 in the following form:

[
C
0 D0.22

t x1(t)

C
0 D0.89

t x2(t)

]
=

[
A1,1A1,2

A2,1A2,2

][
x1(t)

x2(t)

]
+

[
B1

B2

]
u(t),

y(t) =
[
C1C2

] [
x1(t)

x2(t)

]
.

(20)

The transfer function of the system (20) is given by:

HFO(s) =
[
C1 C2

]

×

[
In1

s0.22 − A1,1 −A1,2

−A2,1 In2
s0.89 − A2,2

]−1 [
B1

B2

]
.

(21)

It should be noted that model (20) and its transfer function

(21) is similar to Roesser model, which is well known in two-

dimensional system theory [22]. Transfer function (21) can

be considered as a pseudo-rational function of the variables

λ1 = s0.22 and λ2 = s0.89 in the form:

HFO(λ1, λ2) =
n(λ1, λ2)

d(λ1, λ2)

=
[
C1C2

]
−1[

In1
λ1 − A1,1 −A1,2

−A2,1 In2
λ2 − A2,2

]

︸ ︷︷ ︸
F(λ1,λ2)

[
B1

B2

]

=

[
C1C2

]
AdjF(λ1, λ2)

[
B1

B2

]

detF(λ1, λ2)

=
76.3359

λ2
1λ1 + 2.0611λ1 + 8222.9

(22)

where the characteristic polynomial has the following form:

d(λ1, λ2)

= det [Iλ1λ2 − A2,2λ1 − A1,1λ2

− (A1,2A2,1 − A1,1A2,2)].

(23)

After multiplying transfer function (22) by λ−2
1 λ−1

2 we obtain

the characteristic polynomial in the equivalent form

d(λ1, λ2) = 1 + 2.0611λ−1
1 λ−1

2 + 8222.9λ−2
1 λ−1

2 . (24)

In the next step to determine the state matrices A1,1, A1,2,

A2,1 and A2,2 we can transform Roesser model to the second
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Fornasini-Marechesini model (IIF-M), which has the follow-

ing structure:

∂2x(t1, t2)

∂t1∂t2
= A1

∂x(t1, t2)

∂t1
+ A2

∂x(t1, t2)

∂t2

+B1
∂u(t1, t2)

∂t1
+ B2

∂u(t1, t2)

∂t2
,

y(t1, t2) = Cx(t1, t2).

(25)

The transfer function, consisting of two variables λ1 and λ2,
corresponding to (25) has the form:

T (λ1, λ2) =
n(λ1, λ2)

d(λ1, λ2)

= C [Iλ1λ2 − A1λ1 − A2λ2]
−1

(B1λ1 + B2λ2),

(26)

where

d̃(λ1, λ2) = det (Iλ1λ2 − A1λ1 − A2λ2) (27)

is the characteristic polynomial. Comparing (23) with (27) we

obtain the following relations:

A2,2 = A1, A1,1 = A2,

A1,2A2,1 − A1,1A2,2 = 0.
(28)

It should be noted that relation (28) results from structure of

the characteristic polynomial (27) of the second Fornasini-

Marchesini model and it is easy to determine. If conditions

(28) are satisfied then characteristic polynomials (23) and (27)

are equivalents and d(λ1, λ2) ≡ d̃(λ1, λ2).
After multiplying denominator of the transfer function

(26) by λ−1
1 λ−1

2 we can write characteristic polynomial (27)

in the following form

d̃(λ1, λ2) = det
(
I − A1λ

−1
2 − A2λ

−1
1

)
. (29)

Comparing (24) with (29) we obtain characteristic polyno-

mial:

d̃(λ1, λ2) = 1 + 2.0611λ−1
1 λ−1

2 + 8222.9λ−2
1 λ−1

2 . (30)

The equation (30) can be written as a sum of binomials in

the following form:

d̃(λ1, λ2) = (1+2.0611λ−1
1 λ−1

2 )︸ ︷︷ ︸
B11=1−d11λ

−1

1
λ
−1

2

∪ (1+8222.9λ−2
1 λ−1

2 )︸ ︷︷ ︸
B21=1−d21λ

−2

1
λ
−1

2

. (31)

For each binomial B11 and B21 from (31), we must create

all possible two-dimensional digraphs representations using

Proposition 1. We will assume further that: arcs correspond-

ing to matrix A1 are drawn by the solid line and we assign

the weight w(vi, vj)A1
λ−1

2 , i, j ∈ Z+; arcs corresponding to

matrix A2 are drawn by the dashed line and we assign the

weight w(vi, vj)A2
λ−1

1 , i, j ∈ Z+. It should be noted that in

arc weight A1 and A2 is label corresponding to state matrix

A1 and A2 respectively.

Proposition 1. The digraph corresponding to binomial Bk =
1 − ak,lλ

−k
1 λ−l

2 where k = 0, 1, . . . , n; l = 0, 1, . . . , n;

0 < k + l ≤ n consisting of one cycle contains (k + l)-
arcs where l corresponding to A1-arcs and k corresponding

to A2-arcs.

Proof. Suppose that the two-dimensional digraph D2 consists

of the following vertices: v1, v2, . . . , vn−1, vn. For each of

the arcs in the digraph we assigned weights w(vi, vj)A2
λ−1

1

or w(vi, vj)A1
λ−1

2 for i, j ∈ Z+ = {1, 2, . . . , n}. Let us con-

sider the boundary points in the set:

• Lower boundary: If k = 0 and l = 1, then the power of

the binomial is equal to a0,1λ
−1
2 . The cycle consist from

one arc and can be written as w(vi, vj)A1
λ−1

2 , for i = j.

The dual boundary point is for k = 1 and l = 0.

• Upper boundary: If k = 0 and l = n, then the power of

the binomial is equal to a0,nλ−n
2 . The cycle can be written

as w(v1, v2)A1
λ−1

2 , . . . , w(vi, vj)A1
λ−1

2 , w(vj , v1)A1
λ−1.

In this case the maximum weight in a digraph is equal

to [w(v1, v2)A1
· . . . · w(vi−1, vj)A1

· w(vj , v1)A1
]λ−n

2 =
a0,nλ−n

2 . The dual boundary point is for k = n and l = 0
• Upper boundary: If k = 1 and l = n − 1, then the power

of the binomial is equal to a1,n−1λ
−1
1 λ−n+1

2 . The cy-

cle can be written for example as w(v1, v2)A2
λ−1

1 , . . .,

w(vi, vj)A1
λ−1

2 , w(vj , v1)A1
λ−1. In this case the maxi-

mum weight in a digraph is equal to [w(v1, v2)A2
·

. . . ·w(vi−1, vj)A1
· w(vj , v1)A1

]λ−1
1 λ−n+1

2 =
a1,n−1λ

−1
1 λ−n+1

2 . In this case the sum of the power is

equal to n. It should be noted that weight w(vi, vj)A2
λ−1

1

can be at any position in the cycle. The dual boundary

point is for k = n − 1 and l = 1
�

From Proposition 1 we can determine binomial: B11 real-

ization presented in Fig. 5a and B21 realization presented in

Fig. 5b.

a) b)

Fig. 5. Digraph corresponding to binomial: a) B11; b) B21

Remark 2. It should be noted that all possible realizations

of the binomials B11 and B21 can be obtained the digraphs

presented in Fig. 5a and 5b respectively by:

• Renumbering vertices in the digraph. This operation is

similar to a circle rotation and is synonymous with swap-

ping columns/rows of a matrix that is used in the matrix

theory. The results of this operation for the digraph from

Fig. 5a are presented in Fig. 6a–b and for the digraph from

Fig. 5b are presented in Fig. 6c–d.

a) b)

c) d)

Fig. 6. Renumbering vertices in digraph

• Change of the direction of the arcs in the digraph. This

operation is similar to a transposition matrix used in the

matrix theory. The results of this operation for digraphs

from Figs. 5a, 6a–b are presented in Fig. 7a–c and for di-

graphs from Figs. 5b, 6c–d are presented in Fig. 7d–f.
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a) b) c)

d) e) f)

Fig. 7. Change of the direction of the arcs in the digraph

The following definition is introduced for the operation of

the composition relative to vertices on digraphs and will be

used in further considerations.

Definition 2. Let G1,G2, · · · ,Gn be a digraph with vertex

sets V(Gn) = {vi(n) : i ∈ Z+}. The composition relative

to vertices D[G1,G2, · · · ,Gn] is the two-dimensional digraph

L(2) = (V, A′) with vertex set V(G1)∪V(G2)∪· · ·∪V(Gn) =
{vj : j = 1, · · · , max{i(n)}, i ∈ Z+} and arc set A′(L) =
A(G1) ∪ A(G2) ∪ · · · ∪ A(Gn), where ′ denotes the operation

of deleting multiple arcs with this same label.

Example 2. Let be given two digraphs G1 (see Fig. 8a) corre-

sponding to binomial B03 = 1∓λ−3
2 and G2 (see Fig. 8b) cor-

responding to binomial B11 = 1∓λ−1
1 λ−1

2 with the set of ver-

tex V(G1) = {v1(1), v2(1), v3(1)} and V(G2) = {v1(2), v2(2)}.

The composition relative to vertices creates a new digraph

L, and it consists of a vertex set V(L) = V(G1) ∪ V(G2) =
{v1, v2, v3} and arc set A′(L). In Fig. 9, we have presented

all possible realizations of digraphs after using a composition

relative to vertices.

a) b)

Fig. 8. Two-dimensional digraph: a) G1; b) G2

Before operation A′
=⇒ After operation A′

a)

b)

c)

Fig. 9. Composition relative to vertices

Then using Proposition 1, Definition 2 and Theorem 2 pre-

sented in [23] and [24], we can create all possible digraphs

representations (in class K1 ) of the characteristic polyno-

mial (30). For considered polynomial we have 36 possible

realizations. Each digraph corresponding to a characteristic

polynomial must satisfy two conditions. The first condition

(C1) relates to the existence in the common part of the di-

graph (vertex in black), the second condition (C2) relates to

non-existence of additional cycles in the digraph. Finally, we

have 18 possible digraphs structures. In Fig. 10, three realiza-

tions are presented; the next six realizations are obtained by

renumbering vertices in digraphs; other nine realizations are

obtained by changing all arcs directions in digraphs.

a) b) c)

Fig. 10. Three digraph structures corresponding to polynomial (30)

From all the potential proper realizations, we choose the

realization presented in Fig. 11, to present in detail.

Fig. 11. Full digraph-structure corresponding to polynomial (30)

For considered digraph-structure we can write the follow-

ing set of the equations:





λ−1
1 λ−1

2 w(v1, v2)A2
· w(v2, v1)A1

= −2.0611

λ−2
1 λ−1

2 w(v1, v2)A2
· w(v2, v3)A2

·

·w(v3, v1)A1
= −8222.9 .

(32)

After solving (32), we obtain the following weights of digraph

arcs:

w(v2, v1)A1
=

−2.0611

w(v1, v2)A2

,

w(v3, v1)A1
=

−8222.9

w(v1, v2)A2
w(v2, v3)A2

.

(33)

Remark 3. It should be noted that the set of equations (32)

has many solutions (33) which depend on weights:

w(v1, v2)A2
∈R and w(v2, v3)A2

∈ R. The proposed solution

w(v1, v2)A2
= 1, w(v2, v1)A1

= −2.0611,

w(v2, v3)A2
= 1, w(v3, v1)A1

= −8222.9
(34)

is only one of the many possible. In addition, the solution

does not depend on the structure and properties of the di-

graph presented in Fig. 11. Now we can write state matrices

A1 and A2 in the following form:

A1=




0w(v2, v1)A1
w(v3, v1)A1

0 0 0

0 0 0


=




0−2.0611−8222.9

0 0 0

0 0 0


,

A2=




0 0 0

w(v1, v2)A2
0 0

0 w(v2, v3)A2
0


=




000

100

010


. (35)

Then, by the using condition (28), we can write state matrices

corresponding to the transfer function (22) in the following

form:
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A =




A2∈R
3×3

︷︸︸︷
A1,1

A2A1∈R
3×3

︷︸︸︷
A1,2

A2,1︸︷︷︸
I3∈R3×3

A2,2︸︷︷︸
A1∈R3×3




=




0 0 0 0 0 0

1 0 0 0 −2.0611 −8222.9

0 1 0 0 0 0

1 0 0 0 −2.0611 −8222.9

0 1 0 0 0 0

0 0 1 0 0 0




.

(36)

Remark 4. To determine state matrix A in the form (36):

• in the first stage we convert linear system consisting of

two subsystems with different fractional orders (20) to

two-dimensional linear second Fornasini-Marchesini model

(25) and determine matrices A1 and A2

• in the second stage using condition (28), we convert

two-dimensional linear second Fornasini-Marchesini mod-

el (25) to linear system consisting of two subsystems with

different fractional orders (20).

Because we used twice conversion between models then

to determine input matrix B and output matrix C we will

use the digraph corresponding to the matrix (36), presented

in Fig. 12. In the next step, we need to extend the obtained

digraph by adding source vertex s and output vertex y. Then

we connect source with output in such a way to obtain a path

with weight equal to polynomial

n(λ1, λ2) = 76.3359λ−2
1 λ−1

2 (37)

which we obtain by multiplying transfer function (22) by

λ−2
1 λ−1

2 . We have four possible cases in which we connect

source vertex s with vertex: v1; v2; v5; v6; and we connect

vertices v1, . . . , v6 with the output vertex y.

Fig. 12. Digraph corresponding to state matrix (36)

Below we will consider in detail Case 1 in which we con-

nect source vertex s with vertex v1 and vertices v1, . . . , v6

with the output vertex y. Then, we determine all paths from

the source s to output vertex y. This kind of connection was

presented in Fig. 13.

After using the composition relative to vertices (Defini-

tion 2) to digraphs presented in Figs. 13a–h, we obtain a di-

graph, presented in Fig. 14, corresponding to polynomial (37).

Then, using the created digraph, we can write the set of equa-

tions (38) and after solving them, we receive the following

weights of digraph:

w(v1, y) = 0, w(v2, y) = 0, w(v3, y) = 0,

w(v4, y) = 0, w(v5, y) =
76.3359

w(s, v1)
, w(v6, y) = 0,

for w(s, v1) ∈ R. Now we can write matrices in the following

form:

B =




w(s, v1)

0

0

0

0

0




,

C =

[
0 0 0 0

76.3359

w(s, v1)
0

]
.

(39)






w(s, v1)w(v1, y) = 0

λ−1
1 w(s, v1)w(v1, v2)w(v2, y) ⇒w(s, v1)w(v2, y) = 0

λ−2
1 w(s, v1)w(v1, v2)w(v2, v3)w(v3, y) ⇒w(s, v1)w(v3, y) = 0

λ−1
1 λ−1

2 w(s, v1)w(v1, v4)w(v4, y) ⇒w(s, v1)w(v4, y) = 0

λ−2
1 λ−1

2 w(s, v1)w(v1, v2)w(v2, v5)w(v5, y) ⇒w(s, v1)w(v5, y) = 76.3359

λ−2
1 λ−2

2 −2.0611 · w(s, v1)w(v1, v2)w(v2, v5)w(v5, v4)w(v4, y) ⇒−2.0611 · w(s, v1)w(v4, y) = 0

λ−3
1 λ−1

2 w(s, v1)w(v1, v2)w(v2, v3)w(v3, v6)w(v6, y) ⇒w(s, v1)w(v6, y) = 0

λ−3
1 λ−2

2 −8222.9 · w(s, v1)w(v1, v2)w(v2, v3)w(v3, v6)w(v6, v4)w(v4, y)⇒−8222.9 · w(s, v1)w(v4, y) = 0

(38)
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Fig. 13. All possible paths from source vertex s to output vertex y

Fig. 14. Digraph corresponding to polynomial (37)

The desired realization (A,B,C) of the smart beam sys-

tem described by the transfer function (18) is given by the

matrices (36) and (39) for w(s, v1) ∈ R.

Remark 5. It should be noted that the other cases we obtained

by extending digraph-structure presented in Fig. 12 by con-

nect v1, . . . , v6 with output vertex y and source vertex s with:

v2 (Case 2); v5 (Case 3); v6 (Case 4). Method of determining

the matrix B, and C is the same as in Case 1.

6. Concluding remarks

A method which allows us to determine all possible realiza-

tions using two-dimensional digraph theory to the smart beam

system has been described in this paper. It is shown in detail

that based on the experimental identification of a smart beam

system, it is possible to determine all possible realizations

in an easy and straightforward way. Accordingly, a physical

system can be described in state-space form. The considera-

tions were presented for system identification in the form of

fractional order (FO) model, under the assumption of a linear

system consisting of two subsystems with different fractional

orders. It should be noted that it is also possible to consid-

er a general system consisting of n-subsystems with different

fractional orders. In this case we can transform the model

to a n-dimensional system. When the number of subsystems

grows, the analysis of such a system becomes more complex.

Future work includes the extension of the method pre-

sented in this paper to obtain minimal realizations based on

digraph theory for the switch fractional order model of the

smart beam system.
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