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FRACTIONAL SYSTEMS

The Caputo vs. Caputo-Fabrizio operators in modeling

of heat transfer process
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Abstract. In the paper two non-integer order, state space models of heat transfer process are compared. The first uses a known Caputo

operator and the second – a new operator proposed by Caputo and Fabrizio in 2015. Both discussed models are modifications of a known,

integer order, state space, semigroup model of heat transfer process. Parameters of both models were identified by means of optimization

of MSE cost function with the use of simplex method, available in MATLAB. Both proposed models have been compared in the aspect of

accuracy and convergence. Analytical and numerical results show that the Caputo-Fabrizio model is faster convergent and easier to implement

than the Caputo model. However, its accuracy in the sense of MSE cost function is worse.
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1. Introduction

The non-integer order calculus is often employed in model-

ing of processes and phenomena hard to describe using other

approaches. For many physical problems non-integer models

have been presented by many authors, for example [1–6]. The

analysis of anomalous diffusion problem with the use of frac-

tional order approach and semigroup theory was presented for

example in [7].

Heat transfer is also possible to describe with the use

of non-integer order models. These models can take different

forms, they can be both transfer functions and state equations.

It has been discussed for example in [8] or [9]. The use of

biologically inspired optimization methods in fractional order

(FO) modeling has been presented for example in [10, 11].

This is one of the interesting directions in the analysis of

fractional order systems.

This paper is intented to compare two fractional order

models of heat transfer process. The first uses Caputo opera-

tor (it will be called the C model). It was already presented

in papers [12–14]. The second applies Caputo-Fabrizio op-

erator, it is described in paper [15] and it will be called CF

model. Both models have been compared in the sense of ac-

curacy and the rate of convergence. Analytical results are il-

lustrated by simulations done with the use of MATLAB and

experimental results. A similar problem: the comparison of

Atangana-Baleanu and Caputo-Fabrizio operators employed

in partial differential equation has been presented in [16], the

use of CF operator in partial differential equations is discussed

in [17], the use of CF operator in modeling of heat transfer

processes is given in [18].
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The paper is organized as follows: at the beginning any

elementary ideas from non-integer order calculus are recalled,

both fractional order operators: Caputo (C) and Caputo-

Fabrizio (CF) are presented as well. Next, the considered ex-

perimental heat plant and its FO state space models employing

C and CF operators are recalled. Furthermore, analysis of the

rate of convergence and the accuracy for both models is giv-

en. Finally, the numerical comparison of the CF vs C model

is presented and discussed.

2. Preliminaries

At the beginning an idea of a non-integer order, integro-

differential operator needs to be presented. This operator can

be defined as follows (see for example [19]):

Definition 1. (The non-integer order integro-differential oper-

ator)

aDα
t f(t) =






dαf(t)

dtα
α > 0,

1 α = 0,
t∫

a

f(τ)(dτ)−α α < 0,

(1)

where a and t denote time limits to operator calculation,

α ∈ R denotes the non-integer order of the operation.

An idea of Mittag-Leffler function should be given next.

It is a non-integer order generalization of the exponential

function eλt and it plays a crucial role in the solution of

FO state equation. One parameter Mittag-Leffler function is

defined as underneath:

Definition 2. One parameter Mittag-Leffler function

Eα(x) =

∞∑

k=0

xk

Γ(kα + 1)
. (2)
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The fractional-order, integro-differential operator (1) can

be described by different definitions, given by Grünvald and

Letnikov (GL definition), Riemann and Liouville (RL defini-

tion) and Caputo (C definition). In this paper the Caputo and

Caputo-Fabrizio definitions will be applied.

Definition 3. (The Caputo definition of the FO operator)

C
0 Dα

t f(t) =
1

Γ(M − α)

∞∫

0

f (M)(τ)

(t − τ)α+1−M
dτ. (3)

In (3) M is a limiter of the non-integer order: M − 1 ≤
α < M . If M = 1 then consequently 0 ≤ α < 1 is considered

and the definition (3) takes the form:

C
0 Dα

t f(t) =
1

Γ(1 − α)

∞∫

0

ḟ(τ)

(t − τ)α
dτ. (4)

The Laplace transform for the above definition is a general-

ization of Laplace transform for integer order case (see for

example [19]). It takes the form as underneath:

Definition 4. (Laplace transform for Caputo operator)

L (C
0 Dα

t f(t)) = sαF (s), α < 0,

L (C
0 Dα

t f(t)) = sαF (s) −
n−1∑

k=0

sα−k−1
0D

k
t f(0),

α > 0, n − 1 < α ≤ n ∈ N.

(5)

Consequently an inverse Laplace transform can be given as

follows (see for example [20], p. 29):

L
−1[sαF (s)] = 0D

α
t f(t) +

n−1∑

k=0

tk−1

Γ(k − α + 1)
f (k)(0+)

n − 1 < α < n, n ∈ Z.

(6)

Next, the Caputo-Fabrizio derivative needs to be presented.

It was given firstly in [21], it is also discussed in [22]. It

derives from (3). After replacing the kernel (t− τ)−α by the

exponential function in the form exp
(

−α
1−α

t
)

we obtain [21]:

Definition 5. (The Caputo-Fabrizio definition of the FO op-

erator)

CF
0 Dα

t f(t) =
Mn(α)

(1 − α)

∞∫

0

ḟ(τ) exp

(
α(t − τ)

1 − α

)
dτ, (7)

where Mn(0) = Mn(1) = 1 is a normalization function.

For the operator defined by (7) the Laplace transform is also

defined (see [21]). For 0 ≤ α < 1 it takes the following form:

Definition 6. (The Laplace transform of Caputo-Fabrizio op-

erator)

L (CF
0 Dα

t f(t)) =
sL (f(t) − f(0))

s + α(1 − s)
. (8)

The Laplace transform of CF operator (8) also allows to

define a transfer function. It takes the following form:

G(s) =
s

(1 − α)s + α
. (9)

Notice, that the above transfer function does not require to

use any approximation in MATLAB. On the other hand, it

has the form of a transfer function for a real derivative plant.

The CF operator can also be employed to define a FO state

equation (see for example [22]):

Definition 7. (FO state equation using CF operator)






CF
0 Dα

t x(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(10)

where x(t), u(t) and y(t) are state, control and output of the

system, A, B and C are the state, control and output matrices

respectively. The solution of the state equation (10) takes the

form as underneath:

x̂(t) = e
bAt

(
x̂(0) + B̂u(0)

)

+

t∫

0

e
bA(t−τ)B [γu(τ) + u̇(τ)] dτ.

(11)

where

Â = α [I − (1 − α)A]−1
A,

B̂ = (1 − α) [I − (1 − α)A]
−1

B,

x̂0 = [I − (1 − α)A]
−1

x0,

e
bAt = L

−1

{[
sI − Â

]
−1

}
,

γ =
α

1 − α
.

(12)

3. The considered heat plant and its non-integer

order, state space models

3.1. The experimental system. Let us consider the experi-

mental heat plant shown in Fig. 1. It has the form of a thin

copper rod heated with an electric heater of length ∆xu local-

ized at one end of the rod. The output temperature is measured

with the use of three RTD sensors ∆x long, located at points

0.3, 0.5 and 0.7 of the rod length. For further considerations

it will be assumed, that the length of a rod is equal 1.0. The

construction of the plant is given with details in papers [13]

and [15]. The temperature distribution with respect to time

and length is presented in Fig. 2. This distribution will be

applied as a standard during convergence and accuracy esti-

mating for both compared models.
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Fig. 1. The experimental system

Fig. 2. The spatial-time temperature distribution in the plant

The fundamental mathematical model describing the heat

conduction in the plant is the partial differential equation of

the parabolic type with the homogeneous Neumann bound-

ary conditions at the ends, the homogeneous initial condition,

the heat exchange along the length of a rod and distributed

control and observation. This equation with integer orders of

both differentiations was presented in [12–14].

3.2. The non-integer order model of the heat plant using

the Caputo operator. The non-integer order model presented

in this section, with respect to both time and space coordinates

has been discussed in [13], the non-integer order model with

respect to time has been given in [14]. Its form is motivated

by the fact that the non-integer order differentiation is expect-

ed to better describe the heat processes than the integer order

model. Let us assume that non-integer order difference with

respect to time is described by Caputo definition and non-

integer order difference with respect to length is described by

the Riesz definition. Then the non-integer order, state space

heat transfer equation takes the following form:






C
0 Dα

t Q(t) = AQ(t) + Bu(t),

Q(0) = 0,

y(t) = CQ(t),

(13)

where Q(t) is the temperature in time moment t and point x,

0 < α < 1 is the non-integer order of the model with respect

to time






AQ = a
∂βQ(x)

∂xβ
− RaQ,

D(A) =
{
Q ∈ H2(0, 1) : Q′(0) = 0, Q′(1) = 0

}
,

a, Ra > 0,

H2(0, 1) =
{
u ∈ L2(0, 1) : u′, u′′ ∈ L2(0, 1)

}
,

CQ(t) = 〈c(x), Q(t)〉, Bu(t) = b(x)u(t).

(14)

In (14) β > 1.0 is the non-integer order of spatial derivative,

Ra and a denote coefficients of heat conduction and heat ex-

change, b(x) denotes the heater (control) function, expressed

by (19), c(x) is the sensor (observation) function, described

by (22), < .. > is the scalar product.

The following set of the eigenvectors for the state operator

A creates the orthonormal basis of the state space:

hi =





0, i = 0,

√
2 cos(iπx), i = 1, 2, ...

(15)

Eigenvalues of the state operator are expressed as under-

neath:

λi = −aπβiβ − Ra, i = 0, 1, 2, ... (16)

and consequently the state operator has the form:

A = diag{λ0, λ1, λ2, ...}. (17)

The input operator B has the following form:

B = [b0, b1, b2, ...]
T , (18)

where bi = 〈b, hi〉, b(x) denotes the control function:

b(x) =





1, x ∈ [0, x0],

0, x 6∈ [0, x0].
(19)

The output operator C is defined as underneath:

C =




C1

C2

C3


. (20)

Each row of output operator C1,2,3 is associated to one RTD

sensor and it has the following form:

Cj = [cj0, cj1, cj2, ...] j = 1, 2, 3, (21)

where cji = 〈c, hi〉, c(x) denotes the sensor function:

c(x) =

{
1, x ∈ [x1, x2],

0, x 6∈ [x1, x2].
(22)

Coordinates x1 and x2 depend on sensor location on the rod

and they are equal to:





j = 1 : x = 0.29 : x1 = 0.26, x2 = 0.32,

j = 2 : x = 0.50 : x1 = 0.47, x2 = 0.53,

j = 3 : x = 0.73 : x1 = 0.70, x2 = 0.76.

According to (19) and (22) the control function b(x) and

output function c(x) are the interval constant functions.
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The solution of state equation (13) can be calculated with

the use of Laplace transform for Caputo operator with assump-

tions that the initial condition is equal to zero: Q(x, 0) = 0,

0 ≤ x ≤ 1 and state and control operators are described by

(17)–(19). If we assume that the control signal has the form

of the Heaviside’a function u(t) = 1(t) and consider the fi-

nite number of modes for infinite dimensional equation (24),

then we obtain the solution for j-th output, j = 1, 2, 3 as the

following finite sum:

yj(t) =

N∑

i=0

(Eα(λit
α) − 1(t))

λi

cjibi. (23)

In (23) Eα(..) is the Mittag Leffler function (2), λi, cji and bi

are described by (16), (22) and (19) respectively, N denotes

the order of finite approximation. Correctness of estimation

N is a crucial problem during the use of the presented mo-

del. Numerical analysis of accuracy and convergence for this

model is given in [13].

3.3. The non-integer order model of the heat plant using

the Caputo-Fabrizio operator. The CF model is a natural

consequence of the finite dimensional model using Caputo

operator presented above. It takes the following form:






CF
0 Dα

t Q(t) = AQ(t) + Bu(t),

Q(0) = 0,

y(t) = CQ(t),

. (24)

with all operators defined by (17)–(21) and solution in the

form (11). The operators (12) are as follows:

Â = diag

{
αλ0

1 + (α − 1)λ0
, ...,

αλN

1 + (α − 1)λN

}
,

B̂ =

[
(1 − α)b1

1 + (α − 1)λ0
, ...,

(1 − α)bN

1 + (α − 1)λN

]T

,

Ĉ = C,

x̂0 = diag

{
1

1 + (α − 1)λ0
, ...,

1

1 + (α − 1)λN

, ...

}
x0,

e
bAt = L

−1

{[
sI − Â

]
−1

}
,

γ =
α

1 − α
.

(25)

Consequently the step response of the system with respect to

(11) and (25) takes the form as underneath:

y(t)=L
−1






Ĉ
[
sI − Â

]
−1

B̂

s





+L

−1

{
Ĉ

[
sI−Â

]
−1

B̂

}
.

(26)

Using (25) in (26) we obtain the analytical step response for

j-th output (j = 1, 2, 3):

yj(t) =

N∑

i=0

(
1 − α

αλi

(
e

αλi

1+(α−1)λi
t − 1(t)

)

+
1 − α

1 + (α − 1)λi

e
αλi

1+(α−1)λi
t

)
cjibi.

(27)

The step response (26) can be calculated using MATLAB

functions step and impulse, but the direct use of formula (27)

is also possible.

4. Convergence and accuracy comparison

4.1. Convergence analysis. The convergence analysis for se-

ries of Mittag-Leffler functions was considered in [23], the

convergence of FO operator described by Laguerre polynomi-

als was discussed in [24], the convergence of approximations

of CF operator is presented in [17]. The Rate of Convergence

(ROC) as a function of time and order N for each considered

model can be defined as underneath:

ROCC,CF (t, N) =
|yC,CF

j,N+1(t) − yej(t)|
|yC,CF

j,N (t) − yej(t)|
, (28)

where yej(t) is the experimental step response at the j-th

ouput, y
C,CF
j,N+1(t), y

C,CF
j,N (t) are the step responses of the each

model of order N + 1 or N respectively.

Dependence between yj,N+1(t) and yj,N (t) for each mod-

el takes the following form:

y
C,CF
j,N+1(t) = y

C,CF
j,N (t) + ∆y

C,CF
j,N+1(t), (29)

where increment ∆y
C,CF
j,N+1 is defined for C model as follows:

∆yC
j,N+1(t) =

(Eα(λN+1t
α) − 1(t))

λN+1
cj,N+1bN+1 (30)

and for CF model analogically:

∆yCF
j,N+1(t) =

(
1 − α

αλN+1

(
e

αλN+1
1+(α−1)λN+1

t − 1(t)

)

+
1 − α

1 + (α − 1)λN+1
e

αλN+1
1+(α−1)λN+1

t
)

cj,N+1bN+1.

(31)

The ROC (28) can be estimated using triagle inequality. This

yields:

ROCC,CF (t, N) ≤ 1 +
|∆y

C,CF
j,N+1(t)|

|yC,CF
j,N+1(t) − ye,j(t)|

. (32)

From (30) and (31) it can be noted that increment ∆yC
N+1(t)

as a function of time decreases with Mittag-Leffler function

and increment ∆yCF
N+1(t) decreases with exponential func-

tion. It is worth remembering that a stable exponential func-

tion with a certain, negative damping coefficient goes to zero

faster than Mittag-Leffler function with the same, negative

damping coefficient. In other words, the Mittag-Leffler func-

tion cannot be limited by exponential function at infinite time

interval.
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Next, the step response of the CF model is a sum of expo-

nential modes in contrast to C model, where the step response

is a sum of modes described by Mittag-Leffler function. For

increasing order N and the same damping coefficient con-

secutive exponential modes of solution go to zero faster than

modes expressed by Mittag-Leffler function. This will be also

observed for the steady state.

The above consideration allows us to notice that the step

response of CF model faster converges to its steady-state value

than C model with the same spectrum.

The analogical reasoning can be run for the steady-state

too. Then the value of ROC (28) can be calculated using the

known final value theorem (FVT). It is equal to:

ROCC,CF
ss (N) =

|yC,CF
ss,j (N + 1) − ysse,j |
|yC,CF

ss,j (N) − ysse,j |
, (33)

where y
C,CF
ss,j is the steady-state value of step response for

each model and j-th output, ysse,j is the steady-state value of

experimental response at j-th output. The increments ∆C,CF
N+1

can be also given for steady state analogically as (30) and

(31). They are equal to:

∆yC
ss,j,N+1 =

cj,N+1bN+1

λN+1
, (34)

∆yCF
ss,j,N+1 =

1 − α

α

cj,N+1bN+1

λN+1
. (35)

From (34) and (35) it can be noted that for 0.5 < α < 1.0
and the same order of model N the increment of solution

using CF operator, described by (35) is 1−α
α

times smaller

than analogical increment of solution employing C operator,

expressed by (34).

From the whole above discussion it can be concluded that

the CF model is faster convergent than the model employing

C operator.

4.2. Accuracy analysis. The accuracy of both models can be

estimated using their steady-state errors as a function of order

N . Let us denote steady-state errors by ǫC(N) and ǫCF (N)
for both considered models respectively. They are equal to:

ǫC
j (N) = |yej(Ks) − CsjA

−1B|, (36)

ǫCF
j (N) = |yej(Ks) −

1 − α

α
CsjA

−1B|. (37)

In (36) and (37) yej(Ks) denotes the steady-state value of

experimental step response at j output, A, B and Csj are

described by (17), (18) and (21) respectively. It can be not-

ed at once that for 0.5 < α < 1.0 and the same order N

ǫC
j (N) < ǫCF

j (N). This allows to expect that the accuracy of

the CF model will be worse than the accuracy of C model.

The lower accuracy of CF model in contrast to C model

can also be explained by the fact that the CF operator gives

only an “approximation” of the fractional order behaviour. Si-

multaneously, if the FO model of a particular dynamic system

is more accurate than analogical integer order model, then it

can be expected that the use of an approximation of FO op-

erator will give worse results.

5. Experimental results

Experiments were done with the use of the system present-

ed above. Both compared models were examined using the

typical MSE cost function (see for example [25]):

MSE =
1

3Ks

3∑

j=1

Ks∑

k=1

e+
j (k). (38)

In (38) e+(k) is the difference between experimental step re-

sponse y+
e (k) measured in time moments k = 1, ..., Ks and

step response of model y+(k), calculated with the use of (26)

and MATLAB function step along the same time grid.

The goal of the experiments was to verify results dis-

cussed in the previous section. Additionally, the order of each

model N assuring the sensible accuracy can be estimated. It

has been done via optimization of cost function (38) with re-

spect to models parameters for different values of N with the

use of simplex method available at MATLAB as fminsearch

function. Results are given in Tables 1, 2 and illustrated by

Table 1

Cost function MSE (38) for different N and all tested models using Caputo

operator

Order α = 1, α = 1, α ∈ ℜ, α ∈ ℜ,

N β = 2 β ∈ ℜ β = 2 β ∈ ℜ

6 0.296082 0.210358 0.296048 0.210324

8 0.175856 0.112488 0.143381 0.061347

10 0.140216 0.120017 0.080125 0.078878

12 0.153525 0.138439 0.131474 0.125623

14 0.138942 0.115968 0.074268 0.060765

16 0.134770 0.119325 0.064554 0.063440

18 0.144883 0.116270 0.074788 0.044133

20 0.140243 0.116270 0.050416 0.041390

22 0.139945 0.117205 0.024154 0.007108

24 0.140586 0.117074 0.034738 0.010223

26 0.138594 0.117506 0.038179 0.012364

28 0.139619 0.117264 0.026374 0.007762

30 0.139486 0.117294 0.028256 0.008315

Table 2

Cost function MSE (38) for different N and all tested models using

Caputo-Fabrizio operator

Order α = 1, α = 1, α ∈ ℜ, α ∈ ℜ,

N β = 2 β ∈ ℜ β = 2 β ∈ ℜ

6 0.296082 0.210358 0.265889 0.191813

8 0.175855 0.112488 0.160844 0.110222

10 0.140216 0.1200177 0.136683 0.116831

12 0.153525 0.138439 0.135442 0.122844

14 0.138942 0.115968 0.128992 0.109914

16 0.134770 0.119325 0.127976 0.113607

18 0.144883 0.116270 0.137764 0.112482

20 0.140243 0.116270 0.135584 0.113344

22 0.139945 0.117205 0.136006 0.114582

24 0.140586 0.1170742 0.137140 0.114870

26 0.138594 0.117506 0.135797 0.115564

28 0.139619 0.117264 0.137108 0.115616

30 0.139486 0.117294 0.137309 0.115875
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Figs. 3, 4. The same results given in the first two columns of

both tables represent the integer order α = 1, when both tested

CF and C operators are equivalent. The non pure monotonic

form of diagrams presented in Figs. 3 and 4 can be explained

by the existence of non observable modes in state equation,

which decrease the accuracy. The loss of observability can

be detected by the fact that some elements of C matrix are

approaching to zero or close to zero. This implies that in-

creasing the order N not always increases the accuracy of the

presented model. This problem has been also observed for

integer order model of the considered heat plant.

Fig. 3. The dependence of the MSE of the order N for model using

Caputo operator

Fig. 4. The dependence of the MSE of the order N for model using

Caputo-Fabrizio operator

From Tables 1, 2 and Figs. 3, 4 it can be concluded that the

model using CF operator is faster convergent: its size assur-

ing satisfying accuracy, equals NCF = 15, but its accuracy is

worse than the accuracy of the model employing C operator.

This confirms analytical results given in the previous section.

6. Final conclusions

Final conclusions of the paper are the following:

• The convergence of the model using CF operator is faster,

but its accuracy in the sense of MSE cost function is worse

than model applying C operator.

• The model employing CF operator is much easier to im-

plement in MATLAB with the use of typical functions,

because it does not employ Mittag-Leffler function or any

approximation necessary to use during the application of

Caputo operator.

• The use of CF model facilitates the analysis of the expo-

nential stability due to the fact that state trajectories of CF

system are limited by exponential function. This problem

is being further analysed by the authors.
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