
621Bull.  Pol.  Ac.:  Tech.  66(5)  2018

BULLETIN OF THE POLISH ACADEMY OF SCIENCES 
TECHNICAL SCIENCES, Vol. 66, No. 5, 2018
DOI: 10.24425/124278

Abstract. Visual homing enables mobile robots to move towards a previously visited location solely based on panoramic vision sensors. In 
this paper, a SIFT-based visual homing approach incorporating machine learning is presented. The proposed approach can reduce the impact 
of inaccurate landmarks on the performance, and generate more precise home direction with simple model. The effectiveness of the proposed 
approach is verified on both panoramic image databases and actual mobile robot, experimental results reveal that compared to some traditional 
visual homing methods, the proposed approach exhibits better homing performance and adaptability in both static and dynamic environments.
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The remainder of the paper is structured as follows: in 
Section 2, we consider the related work on visual homing. We 
introduce in detail the proposed MLBH method in Section 3. 
Then in Section 4, we carry out a series of experiments on both 
panoramic image databases and actual mobile robot along with 
an exhaustive analysis. Finally, we draw conclusions and put 
forward the future work in Section 5.

2.	 Related work

The fundamental visual homing model is illustrated in Fig. 1. 
All the landmarks L1, L2, …, Ln can be visible from both the 
robot’s current location C and the desired home location H. 
The objective of the visual homing task is to guide the robot 
to move from C to H only using the information provided by 
these landmarks.

During the past decades, many categories of visual homing 
algorithms were proposed, such as warping [13], ALV [14], 
DID [15], HiSS [16], etc. Among them, the most representative 

1.	 Introduction

Autonomous mobile robot navigation has been extensively 
studied during the past few decades, including path planning, 
self localization, trajectory tracking, etc [1‒3]. Visual homing 
is an attractive technology in this field, which provides node-
to-node navigation solutions for a mobile robot to return from 
the current location to the reference home location. The robot 
compares the currently viewed image with the pre-stored goal 
image to generate the home vector, which describes the moving 
course of the robot and guides the robot to move towards the 
home location [4‒6].

The robot visual navigation methods can be broadly parti-
tioned into quantitative and qualitative methods, represented 
by on-line visual SLAM [7‒9] and visual homing, respectively. 
The inspiration of visual homing comes from biological navi-
gation, known as the snapshot model [10]. Compared with on-
line visual SLAM, an outstanding advantage of visual homing 
is that it does not need any localization and mapping, but only 
the direction from the current location towards the destination 
[11, 12]. The sources of the hardware and software required for 
visual homing can be significantly simplified, benefitting to the 
effectiveness in the practical application.

In this paper, we present a novel SIFT-based visual homing 
approach incorporating machine learning, called machine learn-
ing-based homing (MLBH). MLBH uses linear SVM (support 
vector machine) classifier to help generate accurate and robust 
home vector. Compared with other visual homing methods, 
MLBH not only overcomes the constraint on the spatial distri-
bution assumption of landmarks, but also has a high tolerance 
for inaccurate landmarks. Experimental results have proved that 
MLBH can exhibit good homing performance and adaptability 
in both static and dynamic environments.

*e-mail: grady_heu@126.com
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ones are warping and ALV. These two categories are widely 
applied in the field of visual homing, and various advanced 
methods involved with them have been proposed.

The warping methods distort either of the images (usually 
the goal image) according to the parameters describing the di-
rection, rotation, distance of the robot’s movement. By exhaus-
tively searching for the parameters, the optimal parameter set is 
determined when the warped image best fits the current image, 
and in what follows the home vector is obtained. In addition to 
the original 1D-warping model, many advanced methods were 
presented to further optimize the performance. For example, 
Möller et al. proposed the 2D-warping and min-warping model 
by a variation of the alignment angle estimation in the environ-
ment to replace the external compass in 1D-warping [17]. Zhu 
et al. adopted the SIFT features as the landmarks instead of 
the image pixels to improve the illumination robustness [18]. 
A SIMD implementation and image distance measures were 
respectively utilized to improve the efficiency and tolerance 
of min-warping [19, 20]. Recently, several robotic experiments 
were implemented to compare the warping methods with other 
methods in many aspects (such as calculation speed, illumina-
tion tolerance, etc.) [21, 22].

The ALV (average landmark vector) model has been ex-
tensively used as a benchmark in visual homing. ALV is rep-
resented as an average bearing of all the possible landmarks 
with respect to a certain location. The robot’s reliable homing 
behavior is derived from the difference between the ALV at the 
current location and the ALV at the home location. Based on 
the benchmark model, researchers have enrich ALV in many as-
pects, such as optimizing landmark distribution [23‒25], quan-
tifying keypoint distance [26] and exploiting auxiliary sensors 
[27]. These advanced methods lead to higher-quality landmarks 
or richer visual information, improving the homing accuracy 
and robustness greatly. Here we introduce in detail an optimized 
ALV method based on sparse landmarks [25] (we abbreviate the 
method as SL-ALV), because we use it as a comparative method 
with our approach. SL-ALV adopts more reasonable landmarks 
based on the imaging principle of panoramic vision, which is 

shown in Fig. 2. For landmarks that are the same height as the 
focus of the curved mirror, their projection pixels must be on 
a circle of the image, called horizon circle. A crucial property 
of the pixels on the horizon circle is that wherever the robot 
moves, these pixels will always stay on the circle. Therefore, the 
features nearby the horizon circle can be considered more stable 
and reliable for visual homing. In SL-ALV, the horizon circle is 
properly expanded to form a ring area, and the features are only 
extracted in this area instead of the whole image. The novel fea-
ture input form not only enables the low-quality features to be 
eliminated, but also better satisfies the equal distance assump-
tion [13], which is the optimal distribution of the landmarks for 
visual homing. In summary, SL-ALV can effectively improve 
the homing precision and reduce the calculation amount.

The homing approaches introduced above have been verified 
with great effectiveness, but most of them should obey a strict 
assumption on the spatial distribution of the landmarks, called 
equal distance assumption: The optimal homing performance 
can be exhibited when all the landmarks extracted from the 
image are uniformly distributed and located approximately the 
same distance from the home location [17]. However, this as-
sumption is always unrealistic and violated, as the non-uniform 
distribution of landmarks will affect the performance greatly. 
Besides, since the contribution of each landmark to the home 
vector is equivalent in most homing methods, inaccurate land-
marks will also impact on the precision seriously. The above 
problems are especially evident when dynamic variations exist, 
such as moving objects, illumination variations, etc. Several 
strategies have been presented to deal with the dynamic prob-
lems. Liu et al. used the robot’s odometer information coupled 
with the initial visual information to develop an indoor topo-
logical navigation framework [28]. Sabnis et al. presented the 
bit encoding approach to extract coarse location information 
in probabilistic framework [29]. These strategies showed good 
adaptability, but wasted more sources and increased the com-
putational complexity.

The proposed MLBH approach in this paper shows good 
robustness in dynamic environments. The model of MLBH is 
simple and easy to implement. MLBH uses the SIFT features 
as natural landmarks, which are divided into two categories 
based on their scale information. Through linear SVM Classi-
fier, the decision boundary of the two categories are generated 
to help calculate the home vector. The solutions to deal with 
the dynamic circumstances in MLBH are mainly motivated by 
the merits of SVM, it can effectively reduce the impact of the 
inaccurate landmarks in dynamic environments, so that the pre-
cision and robustness can be improved.

3.	 Machine learning-based homing

3.1. Landmarks and SIFT features. We use the SIFT features 
as the landmarks. Due to the ground-breaking work of SIFT, the 
extracted features are invariant to affine distortion, addition of 
noise, and change in illumination [30]. By using scale space, 
orientation histograms and 128-dimensional keypoint descrip-
tors, the generated SIFT features are considered to be highly 

Fig. 2. Simplified model of panoramic vision system and imaging 
plane: a) The model of panoramic vision system containing curved 
mirror and imaging equipment. b) Imaging plane. The blue circle 
represents the horizon circle, the area between two red circles is the 
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distinctive so that the same features in different images can be 
correctly matched with good probability.

Using David Lowe’s SIFT implementation available from 
http://www.cs.ubc.ca/~lowe/keypoints/, the ith SIFT feature fi 
can be extracted and characterized as follows:

	 fi = ( fi, x,  fi, y ,  fi, o,  fi, σ ,  fi, d)� (1)

where fi, x and fi, y  are the coordinates of fi in the image. fi, o is 
the orientation. fi, σ  is the scale value. fi, d is the descriptor. For 
different SIFT features, these parameters cannot be exactly the 
same.

3.2. Qualitative relation between scale and distance. A note-
worthy phenomenon are stated in [16] that the SIFT scale value 
is negatively correlated with the distance between the robot 
viewer and the natural landmark. In other words, when the robot 
moves away from a certain natural landmark, the corresponding 
SIFT scale value will become smaller. In this section, we will 
theoretically analyze this phenomenon.

Scale-space theory is a framework for handling image 
structures at different scales, it is also the prerequisite of 
SIFT algorithm. To build the scale-space pyramid, the initial 
image is repeatedly convolved with the Gaussian function and 
down-sampled, forming a series of smoothed images. Inspired 
by biological vision theory, scale space simulates the imaging 
process of the scene in the retina of the mammal from near 
to far. As the standard deviation σ (i.e. fi, σ ) in the Gaussian 
function increases, the image becomes more and more blurry. 
In a sense, it is equivalent to the imaging process of the scene 
in an actual viewer’s retina when the viewer moves farther and 
farther away from the scene.

SIFT aims to detect and describe local features in the scale 
space. Due to its property of scale invariance, a certain SIFT 
feature can be searched and selected by detecting the local ex-
trema at its optimal scale layer, and σ stands for the degree of 
blur. This process is equivalent that the viewer moves away 
from the corresponding landmark until an optimal position is 
determined, where the most reliable visual effect of the land-
mark can be obtained. Thus, it can be indicated that σ char-
acterizes the distance of the viewer’s movement as well. We 
define the distance between the certain natural landmark and the 
optimal position as the optimal virtual distance, for the viewer 
does not actually move to capture the scene images. Since each 
SIFT feature has only one local extrema response, the optimal 
virtual distance of each natural landmark must be unique.

When two images are matched, the two SIFT features in the 
same matching pair represent the descriptions of the same land-
mark from two different perspectives. Based on the above anal-
ysis, we can thus obtain the relative distance relation between 
the landmark and the two viewing positions by comparing the 
σ values of the two SIFT features: If one of the SIFT features 
has a larger σ value, it means that SIFT has done more Gaussian 
blur to detect this feature. That is to say, the viewer has moved 
a longer virtual distance. Due to the uniqueness of the optimal 
virtual distance for each landmark, it can be inferred that this 
viewing position is closer to the landmark.

To facilitate the interpretation, a simulated scene with sim-
plified locations is shown in Fig. 3. Let Lk be the kth natural 
landmark. di

C and dj
H separately stand for the distance from 

Lk to the current location C and the home location H, where 
i and j are the indexes of the features in the two images. dv is 
the optimal virtual distance of Lk. We assume that Lk can be 
visible from both C and H, the mapped SIFT features of Lk are 
denoted as fi C and fjH.

Fig. 3. Key locations and definitions in a simulated scene
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If the images captured at C and H are correctly matched to 
generate a feature matching pair pk = ( fi C,  fjH), we can use the 
relation between f C

i, σ , and f H
j, σ  to describe the relation between 

di
C and dj

H. It is apparent that the distance difference jdv ¡ di
Cj 

at C is larger than jdv ¡ dj
Hj at H:

	 jdv ¡ di
Cj > jdv ¡ dj

Hj.� (2)

If pk = ( fi C,  fjH) is considered as a correct matching pair, 
there must be f C

i, σ  > f H
j, σ . Therefore, we can acquire the fol-

lowing equivalence relation:

	 jdv ¡ di
Cj > jdv ¡ dj

Hj ⇔ di
C < dj

H ⇔ f C
i, σ  >  f H

j, σ .� (3)

In general, the visual homing methods take only two pan-
oramic images captured at the current location and the home 
location as input, so the robot cannot directly determine the 
explicit location distribution of the landmarks and the capturing 
locations. After acquiring the equivalence relation (3), we can 
partially handle the distribution problem by using the easy-to-
obtain σ values of the SIFT features. To make a more general 
definition, we denote ∆σ as the scale difference between the 
two SIFT features of the matching pair:

	 ∆σ  =  f C
i, σ  ¡  f H

j, σ .� (4)
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The qualitative relation between scale and distance can thus be 
formulated as follows:

	
di

C < dj
H ,� if  ∆σ  > 0

di
C > dj

H ,� if  ∆σ  < 0 .
� (5)

In fact, the proposed MLBH approach is not only reliant on 
SIFT, the features with associated scale information can also be 
used (SURF in particular). Although SURF accelerates the com-
putation time, it is not as sensitive to scale variations as SIFT 
[31]. Since the scale variations of the landmarks are very crucial 
in our approach, we tested different types of the features, and 
the experimental results proved that the optimal performance 
of MLBH can be obtained using SIFT.

3.3. Machine learning-based homing. In this section, we will 
introduce MLBH in detail. Figure 4 shows the basic model of 
MLBH. The origin of the world coordinate system is set to 
the C. µ is the perpendicular dissector of the segment CH , and 
it divides the world coordinate plane into two parts, denoted as 
α and β, respectively. F1 and F2 are two arbitrary points sepa-
rately lies on α and β. We wish to compute the home vector h 
pointing from C to H.

Aiming at deriving the expression of µ, we employ the linear 
SVM classifier to categorize the SIFT features and generate the 
classification decision boundary. SVM is a type of supervised 
learning model that analyzes data utilized for classification or 
regression, it can provide robust classification result even if 
some abnormal data exist [32]. The standard for obtaining the 
best hyperplane (i.e. decision boundary) is to separate the two 
classes with the maximum margin, [33]. Hence, compared with 
other linear classifiers (e.g. neural network), SVM pursues the 
most reasonable classification instead of only minimizing er-
rors, so that SVM can effectively neglect the abnormal data (i.e. 
inaccurate landmarks) and avoid over-fitting.

In MLBH, we consider all the detected SIFT features in the 
current image as our training data, which take the coordinates 
originated from C as the feature vector. In the meantime, as 
mentioned above, we have already labeled the data with –1 or 1 
according to the computed ∆σ  value. To train a robust linear 
SVM classifier, we adopt the k-fold cross validation method: 
The initial samples are randomly partitioned into k sub-samples 
of the same size, then one of the sub-samples are defined as the 
validation data for testing, and the remaining k-1 sub-samples 
are defined as the training data. The cross-validation process is 
carried out by k times, with each sub-samples used only once 
as the validation data. In our implementation, we set k to 10, 
which is a commonly used value.

After the classifier has been trained, we can readily derive 
the expression of µ by SVM as follows:

	 µx ¢ x + µy ¢ y + b = 0� (6)

where µx, µy and b are three constants. Once the training data is 
determined, the above parameters will remain the same. Never-
theless, for calculating the home vector, we need to standardize 
the parameters: If the calculated µy value is negative, all the 
three parameters are turned into their opposite number forms. 
Since the right side of Equation (6) is equal to 0, the trans-
formed expression is identical to before.

For the purpose of calculating h, a crucial conclusion is 
drawn that h has a constant geometric position relation with the 
decision boundary: Regardless of the position of the decision 
boundary in the world coordinate system, h is always perpen-
dicular to it, with the direction pointing from Gp to Gn.

The unit-length home vector h can thus be quantitatively 
computed. If Gp is above the decision boundary:

	 h =  –
µx

µx
2 + µy

2
, –

µy

µx
2 + µy

2
� (7)

if Gp is below the decision boundary:

	 h = 
µx

µx
2 + µy

2
, 

µy

µx
2 + µy

2
.� (8)

3.4. Procedure of MLBH. The procedure of the mobile robot’s 
homing process based on MLBH is depicted in Fig. 5. The de-
tails are described as follows:

Fig. 4. Basic model of MLBH
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In the current image, we define the group of the SIFT fea-
tures with ∆σ > 0 as Gp, and the group of the SIFT features 
with ∆σ > 0 as Gn. According to the geometric theory, the dis-
tance from F1 to C must be shorter than the one from F1 to H, 
the situation of F2 is as opposed to F1. Obviously, F1 belongs 
to Gp, F2 belongs to Gn. Thus, based on the qualitative relation 
in Section 3.2, it can be inferred that all the features in Gp must 
be on α, all the features in Gn must be on β. µ is not only the 
perpendicular dissector of the segment CH , but the boundary 
of Gp and Gn.
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●	 landmark detection: we detect the SIFT features from the 
current image and the goal image, then match the features 
to form the natural landmarks.

●	 landmark classification: all the landmarks in the current 
image are categorized into Gp and Gn according to the scale 
information.

●	 decision boundary acquisition: SVM is employed to acquire 
the expression of the decision boundary µ after Gp and Gn 
are determined.

●	 home vector calculation: according to the distribution of Gp, 
Gn and µ, the home vector is yielded based on Equation (7) 
or (8).

4.	 Experiments

In this paper, experiments based on both panoramic image da-
tabases and actual mobile robot were conducted to evaluate the 
homing performance of MLBH.

4.1. Panoramic image databases. The panoramic image data-
bases used in this paper were collected at Bielefeld University 
[34]. These databases provide standard panoramic image in-
formation, and many literatures have adopted them for visual 
homing research. The images were all captured by the pan-
oramic imaging system in different scenes. The environment of 
the panoramic image databases is a 4.8 m£2.7 m indoor space, 
and the images were collected uniformly spaced 30 cm apart. 
The resolution of these images is 752£564.

Six image versions of the panoramic image databases 
were used for experiments, each containing 17£10 = 170 pan-
oramic images. The samples of the above versions are shown 
in Fig. 6, and the brief descriptions of them are presented as 
follows:

1)	 Original: the default situation of the room. The doors 
and the windows were closed, and the overhead fluores-
cent lights were on.

2)	 Chairs: three additional chairs were randomly positioned 
in the room.

Fig. 5. Procedure of mobile robot’s homing scheme based on MLBH
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Fig. 6. Samples of panoramic image databases. (a–f) six image versions: original, chairs, screen, day, twilight, winlit
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3)	 Screen: a projection screen was positioned in the center 
of the room.

4)	 Day: the curtains were open in full daylight.
5)	 Twilight: the curtains and doors were open in the twi-

light.
6)	 Winlit: The light bars near the door were switched off.

4.2. Parameter settings for SIFT. In general, the number of 
the training data has a positive correlation with the precision of 
the final decision boundary, so we appropriately modify some 
parameters of the original SIFT implementation to maximize 
the feature production while maintaining the overall precision. 
The specific modifications are stated as follows:

1)	 The number of the levels and octaves in scale space 
is increased from 6 to 10 so that more transformed 
images can be generated to provide richer scale in-
formation.

2)	 The distance ratio between the nearest neighbor and 
the second-nearest neighbor is increased from 0.6 to 
0.8 so that more feature matching pairs will be pro-
duced.

4.3. Performance metrics. In this paper, three widely used 
metrics are adopted to characterize the performance of visual 
homing algorithms quantitatively.

The first performance metric is average angular error (AAE). 
We define the actual homing angular θ(H, C) and the ideal 
homing angular θ(H, C) as follows:

	
θ(H, C) = atan2(hy , hx)

θ(H, C) = atan2(yH ¡ yC , xH ¡ xC)
� (9)

where (hx, hy) is the calculated home vector h. (xH, yH) and 
(xC, yC) respectively denote the coordinates of H and C. The 
angular error AE(H, C) can then be computed by:

	 AE(H, C) = jθ(H, C) ¡ θ(H, C)j� (10)

where AE(H, H) = 0. For m£n capture positions in the envi-
ronment, we employ the average angular error AAE(H) to 
calculate the average homing performance of a single ver-
sion:

	 AEE(H) =  1
mn

mn

q =1
∑ AE(H, Cq) � (11)

where Cq represents the qth current location. According to the 
distribution of the capture positions in each image version, m 
is set to 17 and n is set to 10. To measure the performance for 
all the image versions, we define the overall average angular 

error OAAE(V), which calculates the total AAE for the entire 
image databases:

	 OAAE(H) = 
v

i =1
∑ AEEi(H) � (12)

where v is the total number of the image versions, i is the corre-
sponding index. Low AAE indicates that the robot can move to-
wards the home location with good rapidity and high precision.

The second performance metric is return ratio (RR). It ex-
presses the proportion of all possible current locations which 
can successfully reach the destination. For all the capture posi-
tions in the experiments, a dummy robot is created to perform 
a simulated movement according to the home vector. The robot 
moves at a step of rli = 0.5, which is the ratio between the step 
length of the robot and the sampling interval of the images. 
rbf (H, C) is defined as a binary function to reveal the results of 
homing process from C to H with the range of [0, 1]. If the robot 
continually computes the home vectors and moves by rli until H 
is reached, the value of rbf (H, C) is set to 1. If the robot fails 
to arrive at H when it travels more than half the circumference 
of the whole capture grids, the value of rbf (H, C) is set to 0. 
RR is computed to represent the successful homing rate of all 
possible C locations to a known H location by:

	 RR(H) =  1
mn

mn

q =1
∑ Rbf (H, Cq) � (13)

where rbf (H, H) = 1. High RR indicates that the robot can re-
turn from more possible locations to the destination.

The third performance metric is total distance error (TDE). 
If the current homing process is determined to be successful, we 
measure the total distance of the actual movement of the robot 
d(H, C) and compute the ideal minimum distance d(H, C). 
Then the total distance error TDE(H) can be calculated by:

	 TDE(H) = jd(H, C) ¡ d(H, C)j.� (14)

To obtain the overall results of all the image versions, we define 
the overall total distance error OTDE(V), which computes the 
overall TDE for the entire image databases:

	 OTDE(V) = 
v

i =1
∑ TDEi(H).� (15)

TDE is the performance metric applicable to the actual trials 
in the real scene. By measuring the actual trajectory of the 
robot, we can assess the deviation of the robot’s motion. Low 
TDE indicates that the robot can reach the destination with high 
efficiency and good robustness.

4.4. Experiments on image databases. Experiments were car-
ried out based on the image versions introduced in Section 4.1. 



627

A machine learning-based mobile robot visual homing approach

Bull.  Pol.  Ac.:  Tech.  66(5)  2018

These versions were selected mainly for two purposes. First, 
by the image version of original, chairs and screen, the homing 
performance was evaluated with different scenes. Second, by 
the image version of day, twilight and winlit, the homing per-
formance was evaluated with different illumination.

We employed the SIFT features with modified parameters 
stated in Section 4.2, then compared and analyzed the exper-
imental results of MLBH and SL-ALV. Since different two 
images had different degrees of similarity, the number of the 
SVM training data (i.e. natural landmarks) changed each time. 
According to our experimental results, about 100 » 600 nat-
ural landmarks were typically detected, the number increased 

Fig. 7. Home vector fields of MLBH and SL-ALV at (4.1), (9.5) and (13.4) under original version. The whole plots simulates the robot’s mobile 
space containing 17£10 capture positions. The red squares represent the pre-set home location. The arrows represent the calculated home 
directions pointing from all possible current locations to the pre-set destination. (a, c, e) The home vector fields of MLBH. (b, d, f) The home 

vectors fields of SL-ALV
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as the distance from the current location to the destination 
decreased.

In order to assess the overall performance of the homing 
approaches, we arbitrarily selected a capture position as the 
home location while the remaining 169 positions were set as all 
possible current locations, and calculated the home vector from 
each possible current location to the home location. We call 
the overall visualization results the home vector field. Multiple 
home vector fields are shown in Fig. 7. (4,1), (9,5) and (13,4) 
under the original version were separately selected as destina-
tions, which are discretely distributed in the experiment scene. 
Figure 8 plots a representation of the AE grids corresponding 
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to the home vector fields, overall darker plots represent better 
effects. The calculation results of AAE are shown in Table 1. 
It can be seen intuitively from the above experimental results 
that MLBH exhibits better precision than SL-ALV at most of 
the current locations. Besides, MLBH has low AE values com-
pared with SL-ALV, especially for the locations far from the 

destination. With respect to the selected destinations close to 
the edge of the experiment scene, since they were far from 
most possible current locations, the AAE values of both algo-
rithms increase. However, the increase in AAE using MLBH is 
significantly smaller.

Figure 9 shows the RR results of MLBH and SL-ALV. 
The home locations are still set to (4,1) (9,5) and (13,4). For 
each home location, we select all of the six image versions 
to perform the experiments. We can conclude that the RR 
results of MLBH is significantly higher than SL-ALV. The 
number of the locations which can successfully reach the 
destination using MLBH is approximately 24.33% more than 
using SL-ALV. The selection of the home location has a lower 
impact on the RR results of MLBH. In particular, when a re-
mote home location is selected, MLBH has the capability to 

Fig. 8. AE grid plots of MLBH and SL-ALV at (4.3), (9.5) and (13.4) under original version. The color change of the unit block from black to 
white shows a gradually increasing process of AE from 0° to 90°. (a, c, e) AE grid plots of MLBH. (b, d, f) AE grid plots of SL-ALV

Table 1 
AAE results for the two methods

Method
AAE(°)

(4,1) (9,5) (13,4)

MLBH 16.63 10.59 14.09

SL-ALV 31.28 19.22 31.02
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Fig. 9. RR results of MLBH and SL-ALV. (a–c) The RR results of six versions at (4.1), (9.5) and (13.4). The blue and red histograms are 
respectively denoted as the RR results of MLBH and SL-ALV
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maintain robustness, while the RR results of SL-ALV dropped 
sharply.

4.5. Experiments on actual mobile robot. To further evaluate 
the practical performance of MLBH, related experiments were 
performed on our omni-directional mobile robot. The selected 
mobile robot uses mecanum wheels that can guide the robot 
to move in any direction without changing the robot’s orienta-
tion. The panoramic vision system was mounted on the robot. 
Figure 10a and Fig. 10b respectively show the selected mobile 
robot and the layouts in the environment.

The detailed experimental process is as follows:
Step 1: �when the robot is stationary, it captures the pan-

oramic images at its current location.

Step 2: �the robot travels 30 cm in a straight line according to 
the homing direction calculated by MLBH/ SL-ALV, 
and then pauses.

Step 3: if the following two cases happen, jump to Step 5.
Case 1: �the robot arrives within 30 cm of the home loca-

tion.
Case 2: �the robot travels more than 25 steps (at this time, 

the robot has moved half the circumference of the 
trial area) or out of the trial area.

Step 4: continue to perform Step 1.
Step 5: �if Case 1 happens, we declare the homing process 

successful and record the robot’s total number of 
steps N. If Case 2 happens, we declare the homing 
process failed.

Fig. 10. Robot platform and trial environment. a) Onmi-directional mobile robot; b) layouts of the environment
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In order to create a dynamic environment, we took three 
measures during the robot’s homing process. First, the people 
moved freely around the robot; Second, the positions of some 
objects (such as chairs, easy-to-carry experimental equip-
ments, boxes, etc.) were changed arbitrarily; Third, the lights 
were turned on/off randomly. Figure 11 shows the image 
sequence samples collected by the robot during its homing 
process.

To obtain a general conclusion, we selected five discrete 
home locations, with five different starting locations for each 
home location. The starting locations were arbitrarily selected 
and distributed as evenly as possible throughout the trial area 
for tests. Figures 12‒16 show the actual homing trajectories 
of the robot guided by two methods along with a table of as-
sociated performance metrics. According to the experimental 
results on actual mobile robot, about 150 » 800 natural land-
marks were typically detected.

Note that the actual homing trajectories in Figs. 12‒16 have 
verified the good effect of MLBH. Compared with SL-ALV, 
MLBH has significantly lower angular and distance errors, 

as well as higher successful homing rates. A total perfor-
mance metric evaluation of all the homing trials of MLBH 
and SL-ALV are shown in Table 2. The results are consistent 
with the simulation results based on the panoramic image da-
tabases.

Fig. 11. Image sequence samples collected by the robot during the homing process

a b c

d e f

Table 2 
Total performance metric statistics of MLBH and SL-ALV

Metrics MLBH SL-ALV

Trial times 25 25

Successful homing times 25 23

OAAE(°)* 66.80 117.91

OTDE(m)* 7.16 17.06

Total homing steps* 172 205

*�Only the data when both of MLBH and SL-ALV have successfully 
*�returned to the home area are taken into account.
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Fig. 12. Actual homing trial 1. The home area is marked as a circle centered on a square block. The five starting locations C1, C2, C3, C4 and C5 
are marked as triangular blocks. Red solid lines represent the homing trajectories calculated by MLBH. Blue dashed lines represent the homing 
trajectories calculated by SL-ALV. Top left: the robot’s homing trajectories from five different current locations. Top right: the panoramic image 

captured at the home location. Below: associated performance metrics
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Metrics
C1 C2 C3 C4 C5

MLBH SL-ALV MLBH SL-ALV MLBH SL-ALV MLBH SL-ALV MLBH SL-ALV
Success Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
AAE(°) 5.04 11.29 18.68 39.63 23.94 29.45 22.45 21.04 18.54 22.39
TDE(m) 0.19 10.19 10.52 11.72 10.50 11.10 10.48 10.78 10.47 10.77
N 9 9 10 14 9 11 7 8 7 8

Fig. 13. Actual homing trial 2

Metrics
C1 C2 C3 C4 C5

MLBH SL-ALV MLBH SL-ALV MLBH SL-ALV MLBH SL-ALV MLBH SL-ALV
Success Yes Yes Yes Yes Yes Yes Yes Yes Yes No
AAE(°) 11.33 23.72 10.03 21.54 10.59 20.62 8.75 25.82 15.43 —
TDE(m) 10.32 10.32 10.23 10.53 10.17 10.47 0.30 10.90 10.18 —
N 8 8 8 9 9 10 11 13 8 —
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Metrics
C1 C2 C3 C4 C5

MLBH SL-ALV MLBH SL-ALV MLBH SL-ALV MLBH SL-ALV MLBH SL-ALV
Success Yes No Yes Yes Yes Yes Yes Yes Yes Yes
AAE(°) 12.26 — 11.36 22.25 12.72 26.06 18.67 18.39 17.43 17.83
TDE(m) 10.26 — 10.35 10.65 10.22 10.82 10.20 10.20 10.37 10.37
N 8 — 12 13 9 11 4 4 6 6

Metrics
C1 C2 C3 C4 C5

MLBH SL-ALV MLBH SL-ALV MLBH SL-ALV MLBH SL-ALV MLBH SL-ALV
Success Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
AAE(°) 14.79 25.89 12.52 29.42 17.92 25.40 17.45 23.52 13.99 28.55
TDE(m) 10.43 10.73 10.20 11.40 10.19 10.79 10.24 10.54 10.17 11.07
N 7 8 10 14 8 10 6 7 6 9

Fig. 14. Actual homing trial 3

Fig. 15. Actual homing trial 4
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5.	 Conclusions

In this paper, we propose a novel and robust visual homing 
approach called MLBH. The main advantages of MLBH can 
be summarized as follows.
1.	The model of MLBH is simple and easy to implement, the 

calculation process of the home vector is straightforward 
without exhaustive search or vector transformation.

2.	MLBH can overcome the constraint on the spatial distribu-
tion assumption of landmarks, so that the landmarks can be 
arbitrarily selected as needed.

3.	MLBH can reduce the impact of the inaccurate landmarks 
on performance, so it is suitable for both static and dynamic 
environments.
Experimental results revealed that MLBH had significantly 

low AAE and high RR, and 100% homing success rate was 
obtained according to our actual experiment. However, same 
as most homing approaches, MLBH also requires the robot to 
keep its orientation consistent while capturing images. Although 
the omni-directional mobile robot with mecanum wheels helps 
us solve the problem, the application of MLBH is still limited 
with respect to a general mobile robot. In the future, we will 
pay more attention to the image registration problem in order 
to overcome the constraint of the homing algorithms on the 
robot’s orientation.
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