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Flexible function block for industrial applications
of active disturbance rejection controller

PAWEL NOWAK, KRZYSZTOF STEBEL, TOMASZ KLOPOT, JACEK CZECZOT,

MICHAL FRATCZAK and PIOTR LASZCZYK

In this paper, the PLC-based (Programmable Logic Controller) industrial implementation
in the form of the general-purpose function block for ADRC (Active Disturbance Rejection
Controller) is presented. The details of practical aspects are discussed because their reliable
implementation is not trivial for higher order ADRC. Additional important novelties discussed
in the paper are the impact of the derivative backoff and the method that significantly simplifies
tuning of higher order ADRC by avoiding the usual trial and error procedure. The results of
the practical validation of the suggested concepts complete the paper and show the potential
industrial applicability of ADRC.
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1. Introduction

First English introduction to ADRC technique was made in [4] as to a novel
nonlinear control algorithm with a nonlinear observer. Since then, the concept
has been developed in many ways and ADRC technique has been established
as a new paradigm in control theory [7] that links the modern controller de-
sign with simplicity and generality of conventional PID controller. However,
practitioners still prefer PID-based control loops in the industrial practice [1,
9] because almost every commercial control equipment provides hardware or
software PID function block supporting its fast and reliable implementation.
Only a few exceptions of ready-to-use function blocks for different advanced
control algorithms available in the commercial PLC (Programmable Logic Con-
troller) market, e.g., Fuzzy Logic Control from SIEMENS R©, Omron R©, Schnei-
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der Electric R©, Modicon R©and Internal Model Control from Allen Bradley R©. At
the same time, some PLC-based implementations were reported for Model Pre-
dictive Control [24–25], Predictive Functional Control [3] and for Balance-Based
Adaptive Control [2, 13–15].

For the ADRC technique, some practical implementation aspects have been
also reported. Herbst [10] discusses the time-domain discretization of the first
and the second-order ADRC for speeding up real-time implementation and sum-
marizes the rule of thumb for ADRC tuning. This concept was developed in [11],
where the incremental form of ADRC controller is proposed and the problem of
bumpless switching for reliable ADRC implementation is also suggested. In [22],
the bumpless switching and anti-windup action are also discussed and automatic
tuning tool based on robust closed-loop shaping is presented. These considera-
tions are limited to the simplest case of first-order ADRC algorithm but the results
are validated in the practical application to control of regenerative heater. This
paper provides a significant extension of these concepts and discusses two addi-
tional novelties: the impact of the derivative backoff and the method of simplified
ADRC tuning based only on the process step response. The unified PLC-based
implementation of ADRC controller is also presented that encapsulates all case-
independent calculations for the 1st, 2nd and 3rd order in the form of the general-
purpose function block. This block has the flexibility and generality comparable
with the general-purpose PID function blocks and thus, it can be considered as
the alternative for practitioners who implement industrial control systems.

2. Theoretical background of ADRC

In this paper, the control of SISO (Single Input Single Output) dynamical sys-
tem of the relative degree r ­ 1 is considered. The controlled output Y should be
stabilized at the set point Ysp by adjusting the manipulating variable (MV) u and
the influence of disturbances should be rejected. In practical cases, the accurate
model of the process is unknown and then, ADRC paradigm provides the con-
troller design [4, 6, 8] based on the following simplified model Y (r) = h+b0 ·u,
where h represents the so-called total disturbance that lumps all modelling un-
certainties and b0 is the adjustable scaling parameter. This model can be repre-
sented in the canonical (r+1)-th order extended state-space form (1) where the
additional state variable x′r+1 represents the dynamics of the generalized total
disturbance h.

The fundamental idea of ADRC methodology is to implement the Extended
State Observer (ESO) for reconstructing the states x′ from process input-output
measurement data. Based on (1), the appropriate ESO has the unified form of
the Luenberger observer (2). Its tuning requires adjusting the gains L from the
characteristic polynomial and the rule of thumb is that the dynamics of the ob-
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server should be 3÷10 times faster comparing to the desired closed loop dynam-
ics [5, 10].
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Based on ESO (2), after substituting h ≈ x̂′r+1, assuming constant set-point

Ysp and the linear r-th order closed-loop reference model Y (r) = kp
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For the systems of the unitary relative degree, (3) has the single tuning parame-
ter kp. For r > 1, additional tuning parameters kd j ( j = 1÷r−1) are respectively
required.

3. Practical implementation issues

The ADRC implementation in the form of the flexible function block encap-
sulating all indispensable case-independent calculations requires some prelim-
inary assumptions dealing with the e.g. acceptable ADRC order, time-domain
discretization and tuning method.

3.1. Adjustment of ADRC order

The optimal choice of ADRC order n is still the open question [12, 26]. In
the majority of cases, it should be adjusted equal to or lower from the relative
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process degree r. Thus, to ensure flexibility, it was decided to prepare the ADRC
general-purpose function block for the adjustable order n ¬ 3. It is justified by
the fact that for the majority of lag-dominated industrial processes, their effective
substitute relative degree is r ¬ 2 [11, 20]. For dead time-dominated processes,
the dead time can be compensated by Smith predictor while the substitute effec-
tive relative degree of the residuary lag dynamics is still r ¬ 2. Adjusting n = 3
additionally expands the functionality of the ADRC function block for the pro-
cesses of higher-order substitute dynamics.

3.2. Time domain ADRC discretization

ADRC implementation in the form of the general-purpose function block
should support the calculations for ADRC order n ¬ 3. It was decided to avoid
conditional code execution and to encapsulate the calculations for n = 3, recon-
figurable for n < 3. Consequently, ESO (2) computation is derived using Euler
method and zero-order holder, with integration step equal to the control sampling
time Ts [sec]:

x̂′4,i = x̂′4,i−1 +Ts · l4 ·
(
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(4a)

and the final form of ADRC control law is computed as:

ui =
1
b0

[
kp ·
(
Ysp,i − Ŷi

)
− kd1 · x̂′2,i − kd2 · x̂′3,i − x̂′4,i

]
, (4b)

where i is discretization instant. The code is configured by the binary switches
p1, p2, k1, k2, k3, based on two least significant bits of the binary representation
of the adjusted ADRC order n as: p1 = n1, p2 = n1 ·n0, k1 = n1 ·n0, k2 = n1 ·n0,
k3 = p2, and on the values of tuning parameters l1, l2, l3, l4, kp, kd1, kd2 that are
adjusted as described in previous section and for different values of n, some of
them can be zero.
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Despite of adjusted value of n, state variable x̂′4,i always represents a current
estimation of the total disturbance h. At the same time, respectively, x̂′2,i and x̂′3,i
always represent a current estimation of the consecutive time derivatives: Y

(1)
i

(for n = 2 and n = 3) and Y
(2)
i (for n = 3). The backward calculations ensure that

at each cycle, the latest information is propagated from x̂′4,i to Ŷi and finally to
the control law (4b). This approach is equivalent to the concept of the current
observer [10–11, 17, 19] but in the form suitable for higher-order ADRC imple-
mentation. An additional benefit from this approach is the easy implementation
of bumpless switching, which is not trivial for higher order ADRC – this problem
is discussed later in the paper.

3.3. ADRC tuning

Another open question is optimal/robust ADRC tuning [12, 26]. For prac-
titioners, it is extremely important to have reliable and easy-to-apply tuning
method that can be based only on limited knowledge on the process dynamics
(e.g. on the approximating model of its step response). So far, the most suit-
able method was suggested in [5]. The controller bandwidth should be adjusted
as ωc = (3÷ 5)/τset , for the desired closed-loop settling time τset , depending
on the process relative order. Then, the ESO bandwidth should be adjusted as
ωo = (3÷ 10) ·ωc but in the practice, its higher limit should be based on the
ADRC sampling time Ts and on the impact of the measurement noise. Then,
ADRC and ESO tunings from (4) can be easily computed from ωc and ωo [5, 10,
12, 19], subject to adjusted ADRC order n.

Finally, assuming that ADRC order matches the relative process order, the
value of the scaling parameter b0 can be adjusted depending on this order and on
the parameters of linearised process dynamics. Thus, not only the process gain
k but also the process time constants should be known for proper ADRC tuning:
T1 for n = 1, T1 ­ T2 for n = 2 and T1 ­ T2 ­ T3 for n = 3. Then, respectively,
the “true” value of b0 should be adjusted as k/T1, k/(T1 ·T2) and k/(T1 ·T2 ·T3).
However, in the industrial practice, the tuning is usually based on FOPDT (First
Order + Dead Time) approximation of the process step response but for higher
order processes, the same FOPDT approximation can correspond to process dy-
namics of different order and of different combination of time constants. Thus,
the reliable method is suggested for adjusting the scaling factor b0 for the sec-
ond and third order processes, based only on FOPDT approximation of the step
response.

The concept comes directly from the half-rule [21] dedicated to determining
the FOPDT approximation of higher order processes based on their known dy-
namics. In this paper, the inverse half-rule is proposed for the second and third
order processes without dead time. The procedure starts from determining the
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parameters of FOPDT approximation of the process step response: process gain
k, its substitute time constant T and dead time T0. This approximation can be ob-
tained by any reliable method and then, the following cases should be considered
subject to the assumed process order:

• for n = 2, the time constants T1 > T2 can be directly calculated as T1 =
T −T0, T2 = 2 · T0 and then, the scaling factor can be calculated as b0 =
k/(T1T2).

• for n = 3, the time constants T1 ­ T2 ­ T3 cannot be explicitly determined
so the corresponding scaling factor for ADRC cannot be directly deter-
mined as b0 = k/(T1T2T3). It results from the fact that for third-order pro-
cesses, this problem cannot be solved explicitly because potentially, there
are many combinations of T1 ­ T2 ­ T3 that can result in the same FOPDT
approximation. Thus, instead, it is suggested to use inverse half-rule to
determine the acceptable range of the scaling factor b0 ∈

[
b0,min,b0,max

]
.

Each value chosen within this range must correspond to time constants
T1 ­ T2 ­ T3 that represent the same FOPDT approximation parameters
T , T0 determined from process step response. Consequently, the respective
optimization problem can be defined formally in the following way. Let us
define b0,min = k/(T1max ·T2max ·T3max), b0,max = k/(T1min ·T2min ·T3min),
where:

(T1max,T2max,T3max) = max
T1,T2,T3

(T1 ·T2 ·T3) , (5a)

(T1min,T2min,T3min) = min
T1,T2,T3

(T1 ·T2 ·T3) , (5b)

subject to the same inequality constraint:

T1 ­ T2 ­ T3 > 0, (6)

and two equality constraints from half rule:

T = T1 +
T2

2
, T0 =

T2

2
+T3 . (7)

After including the equality constraints into the objective function (T1 ·T2 ·
T3), solving the optimization problem (5a) always leads to the following formu-
las:

T1max =
(2 ·T −T0)+

√
(T −T0)

2 +T ·T0

3
,

T2max = 2 · (T −T1max) ,

T3max = T0 −
T2max

2
,

(8)
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and these formulas always satisfy the inequality constraint (6). Thus, the lower
limitation b0,min = k/(T1max ·T2max ·T3max) can be always determined based only
on the formulas (8). Similarly, solving the optimization problem (5b) leads to:

T1min =
(2 ·T −T0)−

√
(T −T0)2 +T ·T0

3
,

T2min = 2 · (T −T1min),

T3min = T0 −
T2min

2
,

(9)

but in this case, the minimum is located on one of the equality constraints (7)
and then, from (7), the limit values of time constants can be calculated as:
T−

1 = T − 0.5 ·T+
2 , T+

1 = T − 0.33 ·T0, T−
2 = T+

3 = T0/1.5, T+
2 = min(T/1.5,

2 ·T0), T−
3 = T0 − 0.5 · T+

2 . Consequently, for (5b), the upper limit is b0,max =

max(k/(T−
1 ·T+

2 ·T−
3 ), k/(T+

1 ·T−
2 ·T+

3 )). Finally, after computing the acceptable
range for the scaling factor b0 ∈ [b0,min,b0,max], the lower limitation b0 = b0,min
is advised for ADRC tuning.

In both cases, the value of b0 should be considered as the starting point for
further retuning. The suggested method allows for an approximation of the initial
“safe” value of b0, which makes the tuning faster and reliable. It is a very useful
tool because, in the majority of practical industrial cases, multiple trials and error
tuning are not acceptable.

The proposed method is illustrated for two example transfer functions rep-
resenting different configurations of the pneumatic setup described later in the
paper and for their FOPDT approximations obtained from step response by two-
point method [18]:

K1(s) =
0.56

(9.5s+1)(4.2s+1)
≈ 0.56

11s+1
e−3.3s, (10a)

K2(s) =
0.73

(7.3s+1)(2.2s+1)(1.4s+1)
≈ 0.73

8.3s+1
e−3s. (10b)

Then, assuming that only the process order is known, the suggested inverse half-
rule was applied from both FOPDT approximations. The results are shown in
Table 1.

For (10a) and for the 2nd order ADRC, the inverse half-rule approximation
of b0 is very close to its “true” value. For (10b) and the 3rd order ADRC, the
“true” value of b0 falls within the range [b0,min,b0,max] calculated from inverse
half-rule and its value is closer to the lower limitation b0,min. Readers should
note that the accuracy of inverse half-rule approximation depends on the method
of determining the FOPDT model.
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Table 1: Results of inverse-half rule for the processes (10)

Process
“True” value Inverse half-rule

of b0 approximation of b0

K1(s) b0 = 0.014 b0 = 0.011

K2(s) b0 = 0.0325 b0 ∈ [0.0236,0.1022]

4. Additional functionalities for reliable industrial applications

4.1. Constraints of manipulating variable and equivalent of anti-windup action

In practice, the manipulated variable is always constrained as u∈(umin,umax),
which results from technological requirements or from limitations of the output
of the control device. Usually, these limitations are constant but in some cases,
they can vary subject to disturbances variations and the ADRC function block
should provide the inputs that allow for their continuous update.

For ADRC controller, integration of the control error e is substituted by
integrating the modelling error (see x̂′4 in ESO (4a)), which compensates for
modelling inaccuracies and ensures offset-free control. Consequently, when the
ADRC-based control system operates at the stable operating point and when the
manipulated variable u is bounded (which always holds for constrained con-
troller output), the process output is bounded as well and the limiting value of
the additional state estimate x̂′4 is also bounded. Thus, in opposition to the con-
ventional integral action, the value of x̂′4 remains constant after converging, even
if the static control error e 6= 0 exists in the system due to the constraints of the
controller output. However, it is potentially dangerous when the convergence of
x̂′4 does not stop when the controller output u has reached its saturation umin or
umax. Then, the reversal of the MV u is expected immediately when the controller
output u falls within its operating range and it requires implementing the equiva-
lence of anti-windupaction. The estimate x̂′4 is computed by ESO (4a) only if the
controller output u calculated by the control law (4b) is at its acceptable range
(umin, umax). When u falls outside this range, the update of x̂′4 is automatically
frozen while the other ESO states should be successively computed without any
interference.

4.2. Bumpless switching

For ADRController, the mismatch between the output of the process and of
its simplified model is compensated by on-line updating the value of x̂′4 in (4a)
by continuous integration of modelling error. Thus, for the bumpless switching
from MAN to AUTO, the internal process model should be continuously updated
not only in AUTO mode but also in MAN mode [11, 15–16]. It ensures that this
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model matches the process output even when the controller operates in MAN
mode. Then, this switching can be bumpless.

When ADRC function block operates in MAN mode, the value of u is ad-
justed manually as uman and ESO (4a) is computed on-line ensuring that the
current value of x̂′4 compensates all inaccuracies of the model (1) for u = uman.
This technique is effective when switching takes place at the steady state (for
control error e = 0). Otherwise, if switching takes place in transient (for e 6= 0),
the value of the estimate x̂′4 should be adjusted to satisfy the control law (4b)
for the manually adjusted value uman. In other words, in MAN mode, the inverse
control law with u = uman should be solved for the value of x̂′4:

x̂′4,i =−b0uman + kp

(
Ysp,i − Ŷi−1

)
− kd1x̂′2,i−1 − kd2x̂′3,i−1 + l4

(
Yi − Ŷi−1

)
, (11)

In the first equation of (4a), at the moment of switching, the value of x̂′4,i is
computed by (11). Then, in AUTO mode, the ESO calculations are carried out
according to (4a).

4.3. Derivative backoff and anti-backoff action

Derivative backoff [23] occurs for controllers with derivative action. When
the measurement of the controlled variable Y reaches the sensor saturation (or
returns from it), the jump of the derivative action appears that is opposite to what
is expected when the sensor operates normally. This phenomenon is important
for ADRC practical implementation because ESO (4a) computation is based on
the on-line measurement of Y . Thus, the sensor saturation does introduce deriva-
tive backoff and for the ADRC order n > 1, derivative backoff always appears.
The complexity of the required anti-backoff action increases with the increment
of the order n. At the same time, anti-backoff action suggested for PID controller
[23] cannot be applied for ADRC due to the lack of the integral action.

The impact of derivative backoff is presented in Fig. 1 (solid lines) for the
closed-loop system with the example process (10b) and the ADRC controller
(n = 3, b0 = 0.023, ωo = 1.75, ωc = 0.35). The sensor saturation was adjusted
as Ysat = 1.9 and the load disturbance was applied at t = 10.

Assuming that Ysat is known, the suggested anti-backoff strategy is based
on (4). When the saturation is reached, all estimates of the time derivatives of
the controlled variable x̂′2 and x̂′3 become zero, which results in the jump of the
manipulating input. This jump can be avoided by proper adjusting the value of
x̂′4. At the time of reaching the saturation, (4a) can be rewritten and solved for:

x̂′4,i =−(k1 · l1+ k2 · l2+ k3 · l3) ·
(
Ysat − Ŷi−1

)
− (k1+ k2+ k3) ·b0 ·ui−1 ,

x̂′3,i =−p2 ·
(
l2 ·
(
Ysat − Ŷi−1

)
− k2 ·auxi

)
, (12a)

x̂′2,i =−p1 ·
(
l1 ·
(
Ysat − Ŷi−1

)
− k1 ·auxi

)
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Figure 1: Impact of derivative backoff and preventing an anti-backoff action for ADRC-
based closed loop system. Vertical lines indicate the moments of reaching the sensor
saturation and of returning. The dotted line represents the sensor saturation Ysat

and then, after inversing (4b) and introducing (12a), for Γ = (p1 · kd1 · l1+
p2 · kd2 · l2 + k1 · l1+ k2 · l2+ k3 · l3):

Ŷi =
kp ·Ysp,i +Γ ·Ysat

kp +Γ
. (12b)

The values (12a) must be computed once the controlled variable has reached
the saturation. Then, they should be applied as the initial values for (4) and the
computation should continue until the measurement of Y returns from the satu-
ration and anti-backoff action for this returning should be applied. This action
utilizes the current values of ∆Ŷi, ∆x̂′2,i and ∆x̂′3,i defined in (4a) but they depend
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on the slope of returning from the saturation that cannot be predicted. Thus, af-
ter returning from saturation, the current value of the manipulating variable ui

should be frozen for a certain period of time τwait to allow for ESO (4a) con-
vergence. Then, (4) can be computed normally. This period of time should be
determined from the adjusted observer bandwidth as τwait = (3÷4)/ωo.

The results of the suggested preventing anti-backoff action is shown in Fig. 1
with dashed lines. Very significant jumps in the manipulating variable resulting
from derivative backoff are smoothed at the moments of reaching and returning
from saturation. However, the significant underoscillation appears in the control
performance. Its impact increases for more aggressive ADRC tuning and can be
limited if tuning is more conservative. However, in practical cases, it is very dif-
ficult to determine the price of anti-backoff action in the control performance.
One can be only sure that this action smoothes the variations of the manipulating
variable, which proves its reliability. Thus, after a huge number of experiments
and due to large uncertainty on the expected results, it was decided not to imple-
ment anti-backoff action in the general purpose ADRC function block. However,
the concept works and the user can consider its implementation.

5. General concept of ADRC function block

General-purpose ADRC implementation was designed as a library function
block that should be easily accessed and utilized in a standard manner. It encap-
sulates all process-independent calculations (4), as well the additional function-
alities discussed previously. Its simplified diagram with its input-output speci-
fication defined to allow for easy and on-line parameterization is presented in
Fig. 2. Tuning & configuration adjusts tunings and configuration switches for (4).
This block also provides errors information when any errors occur during oper-
ation. ESO computes (4a) and Control law computes the manipulated variable
uraw by (4b). MV constraints provide limitations for the manipulating variable u
applied to the process.

This block can be executed in PLC by calling it as the subroutine in the
control loop that should be executed with the sampling time Ts, in the same way,
in which the general-purpose built-in library PID function block is implemented
in the industrial control applications. The user-defined inputs can be aggregated
into three groups:

• process-related inputs extracted from measurement data: controlled vari-
able Y and on-line measurement of manipulated variable ureal,

• tuning and parameterization inputs: ADRC order n, parameters b0 and ωo,
ωc, sampling time Ts and the time constant of the reference trajectory Tre f

that potentially filters the variations of the set point Ysp,
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Figure 2: Schematic diagram of the ADRC function block. User-configurable inputs are
grouped on the left and the accessible outputs are indicated by thick lines

• other parameterization inputs required for reliable control in different con-
trol structures: constraints for manipulated variable (umin, umax), binary in-
put for switching between AUTO and MANUAL modes (A_M), the value
of the manipulated variable uman adjusted manually at MANUAL mode,
binary input (AWin) enabling the anti-windup action when the block op-
erates as the primary controller in the cascade structure, binary input Yok

that determines validity of the measured controlled variable Y , binary in-
put ureal_on that determines accessibility of on-line measurement data for
manipulating variable (this signal should be connected to the input ureal)
and us f determining safe value of manipulated variable applied to the pro-
cess in emergency cases.

The natural choice for ADRC function block outputs are: manipulating vari-
able u applied to the process, control error e, controlled variable Y and the bi-
nary signal AWout used when the ADRC function block operates in the secondary
loop in the cascade structure (this signal allows to enable anti-windup action in
the primary controller when the computed value of u has reached its saturation).
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However, for monitoring the performance of the block, some additional outputs
were defined: desired reference trajectory Yre f , state vector x̂′ computed by ESO
(4a) and err that contains an error code.

The input ureal should be used when the real value of manipulating variable
applied to the process is measurable online. Then, this data should be connected
to ureal and binary input ureal_on should be enabled. The current measurement
data of real manipulating variable improves ESO (4a) computation because if the
dynamics of the actuator is significant, in transients, the real value of manipulat-
ing variable applied directly to the process can be different from the one forced
by the controller output. Thus, when the signal ureal is accessible, it is preferred
to use it for more accurate ESO (4a) computation. Otherwise, only the value of u
computed by (4b) is accessible and it should be used for ESO (4a) computation.
Then, nothing should be connected to ureal and binary input ureal_on should be
disabled.

6. Practical validation of ADRC function block

Practical validation of the general-purpose ADRC function block was based
on the pneumatic setup shown schematically in Fig. 3. It represents the third
order dynamical process that consists of three serially connected tanks of the
respective volumes V1 = 5 [L], V2 = 2 [L] and V3 = 0.75 [L]. The relative pres-
sures at each tank are denoted as p1, p2, p3 [bar]. The system is supplied with the
air of the relative pressure ps [bar] and between the tanks, the air flows through
the constant pneumatic resistances Rpa, Rpb, Rpc [1/(m·s)]. From the last tank,
the air flows out through the adjustable pneumatic resistance Rpout [1/(m·s)] and
the relative pressure outside the tank is denoted as p4 = 0[bar]. The supply-
ing relative pressure ps is adjusted by the proportional valve MPPES-3-1 from
Festo R©within the range 0–5 [bar]. All the pressures ps, p1, p2, p3 are measured
on-line by the SDE1 pressure sensors and the pneumatic resistance Rpout at the
outlet from the third tank can be changed by switching between two pneumatic
valves of different resistance. All process signals are connected to analog I/O
modules in ET-200 module connected to PLC SIEMENS R© S7-1500. All data is
visualized by SIEMENS R© panel KTP 1000 and stored in SIEMENS R© S7-1500
unit.

The control goal is defined to stabilize the process output Y = p3 at the set-
point Ysp by manipulating supplying pressure u = ps, both for tracking and for
disturbance rejection. For the latter, two different disturbances are applied. One
is the load disturbance emulated by adding ∆ps directly to the manipulating vari-
able. The other is switching between two different pneumatic resistances Rpout .
This switching not only disturbs the process but also significantly changes its
dynamics.
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Figure 3: Pneumatic setup and its simplified scheme. The lower diagram also shows the
simplified hardware diagram of the setup configuration

For the experimental tests, the general-purpose library ADRC function block
shown in Fig. 4 was implemented in SCL (Structured Control Language) in TIA
Portal environment. This block was prepared according to the input-output spec-
ification and it includes functionalities presented above in the paper. The block
was executed in OB35 block with the sampling time Ts = 0.1 [s], jointly with
the scaling functions, for clarity not shown in Fig. 4. The choice of the sampling
time is justified by the process dynamics and in the practice when the industrial
processes are considered, the sampling time can be adjusted even larger without
any significant influence on the control performance.
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Figure 4: Implementation of the library ADRC function block
for SIEMENS R©S7-1500

The first stage of experiments was dedicated to validation of the suggested in-
verse half-rule for tuning ADRC controller of different order n, in the application
to control the same pneumatic setup representing the third order dynamical pro-
cess. The same experiment depicted in Fig. 5 was carried out for ADRC function
block configured respectively for n = 1, 2 and 3. For each case, the scaling factor
b0 was estimated from FOPDT approximation of the process step response. For
n= 1, the estimation was derived directly from the first order part as b0 = k/T and
for n = 2 and 3, the inverse half-rule was applied. Then, the experimental retun-
ing was needed to obtain the final adjustment of b0 and to adjust the other ADRC
tunings ωo, ωc. The final tunings are shown in Table 2. For n = 1, the initial es-
timation of b0 is far from its final adjustment due to a very significant mismatch
between the order of the process and the applied ADRC order. The final adjust-
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ment is 3 times larger than its initial estimation. For n = 2, the estimation of b0 is
better and its final value is only 2 times larger. For n = 3, the final adjustment of
b0 is equal to the lower limitation obtained from the suggested inverse half-rule.
In each case, from a practical viewpoint, the estimation of b0 is accurate enough
to avoid blind trial and error experimental tuning. The estimated values do not
provide the best possible control performance but even if no further retuning was
applied, the ADRC performance is acceptable.

Figure 5: Experimental comparison of the control performance between ADRC of a
different order (n = 1, 2 and 3) for the 3rd order pneumatic process. The upper diagram
shows the controlled variable and the lower – manipulating variable
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Table 2: Tunings of ADRC adjusted for experimental tests

ADRC Approximation Final adjustment
ωo ωcorder of b0 of b0

n = 1 0.099 0.3 0.9 0.3

n = 2 0.025 0.05 1.75 0.35

n = 3 [0.025, 0.13] 0.025 1.75 0.35

The results are presented in Fig. 5. For each case of n and for the suggested
tuning, ADRC controller provides acceptable control performance. However, the
best tracking and disturbances rejection are obtained for n = 2, which is lower
from the order of the real process dynamics. Retuning does not change this pic-
ture significantly. For n = 1, the dynamical properties of ADRC do not allow for
effective compensation for the process dynamics. On the other hand, for n = 3,
for which the best results should be expected, more aggressive tuning results in
large chattering in the manipulating variable without significant benefit in the
control performance. Thus, it can be expected that for higher order process dy-
namics, the ADRC of the second order should be suggested.

At the second stage, the functionalities of the ADRC function block were
tested and Fig. 6 shows the results for the most complex case (ADRC function
block with n = 3, tuned as in Table 2). The experiment scenario includes denoted
switching from MAN to AUTO, changing the setpoint Ysp and operating the
process at the limitations of the MV u (umin = 0 and umax = 5). The results show
the bumpless switching from MAN to AUTO mode and the immediate reversal
of the MV u when the controller output u falls within its operating range. The
latter proves the functionality of the implemented equivalent anti-windup action.

Finally, to convince the practitioners, the comparison with the conventional
PID controller was carried out. For comparison, only ADRC for n = 2 and tuned
as in Table 2 was considered because it ensures the best control performance (see
Fig. 5). PID controller was implemented based on the PID Compact function
block from standard SIEMENS R©TIA PORTAL library. Its tuning was carried
out by the built-in auto-tuning functionalities including pretuning (PIDPT with
gain kP = 5.69, integral action time TI = 16.65 [s] and derivative action time
TD = 2.91 [s]) and finetuning (PIDFT with gain kP = 6.31, integral action time
TI = 5.40 [s] and derivative action time TD = 1.36 [s]). Readers should note that
in the industrial practice, the autotuning procedure is the most popular method
for PID tuning so its choice for comparative studies is not accidental. The results
are presented in Fig. 7 and they show that ADRC rm significantly outperforms
both PIDPT and PIDFT. It ensures the best compromise between good tracking
and very good disturbances rejection.
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Figure 6: Experimental validation of the additional functionalities of the ADRC function
block
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Figure 7: Experimental comparison of the control performance between ADRC (n = 2)
and PID auto-tuned by pretuning (PIDPT) and by finetuning (PIDFT), for the 3rd order
pneumatic process. The upper diagram shows the controlled variable and the lower –
manipulating variable

7. Conclusions

This paper shows the practical implementation of the ADRC controller in
the form of the general-purpose function block. The designed block was tested
experimentally and the results show its applicability in the industrial control sys-
tems. Jointly with the suggested inverse half-rule that allows for approximate
estimation of the ADRC tuning parameter b0, the practitioners obtain the pow-
erful tool for fast, relatively easy and reliable ADRC implementation. This im-
plementation is possible even in the complex control systems because the mean



398 P. NOWAK, K. STEBEL, T. KLOPOT, J. CZECZOT, M. FRATCZAK, P. LASZCZYK

execution time of the ADRC function block is about 9.1 [ms], which is compa-
rable with the execution time of the standard SIEMENS R©library PID Compact
function block that is about 11 [ms]. Additional comparison of the control per-
formance between the ADRC function block tuned according to the suggestions
presented in this paper and the PID Compact function block tuned by the built-in
autotuning procedure shows the superiority of ADRC. Thus, better control per-
formance jointly with easy implementation in the form of the general-purpose
function block and with the reliable tuning method makes ADRC a very interest-
ing alternative for the application in the regulatory-level industrial control sys-
tems.

Very important problem that also should be addressed is the influence high
frequency disturbances on the control performance of ADRC. When higher order
of ADRC is applied, one should expect that the measurement noise can be mag-
nified due to the presence of higher order derivative action. This phenomenon
can be clearly seen in Fig. 5 (lower diagram) where chattering of the manipulat-
ing signal increases with the order of ADRC. Consequently, this effect must be
considered when such a chattering is not allowed in the control system, e.g. due
to limited service life of the actuator.
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