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A new chaotic system with axe-shaped equilibrium,
its circuit implementation and adaptive synchronization

SUNDARAPANDIAN VAIDYANATHAN, ACENG SAMBAS and MUSTAFA MAMAT

In the recent years, chaotic systems with uncountable equilibrium points such as chaotic
systems with line equilibrium and curve equilibrium have been studied well in the literature.
This reports a new 3-D chaotic system with an axe-shaped curve of equilibrium points. Dynam-
ics of the chaotic system with the axe-shaped equilibrium has been studied by using phase plots,
bifurcation diagram, Lyapunov exponents and Lyapunov dimension. Furthermore, an electronic
circuit implementation of the new chaotic system with axe-shaped equilibrium has been de-
signed to check its feasibility. As a control application, we report results for the synchronization
of the new system possessing an axe-shaped curve of equilibrium points.

Key words: chaos, chaotic systems, curve equilibrium, Lyapunov exponents, circuit de-
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1. Introduction

It is well-known that chaos theory has been applied to several areas such as
such as lasers [1,2], memristors [3, 4], chemical reactions [5, 6], finance [7], os-
cillators [8—15], neural networks [16], ecology [17], biology [18, 19], weather
systems [20, 21], electrical circuits [22-27], sound encryption [28], image en-
cryption [29], cryptosystems [30], robotics [31], secure communication devices
[32,33], etc.

An important area in chaos theory is the modelling of chaotic systems with
infinite number of rest points (or equilibrium points) such as line rest points
[34-36] or closed curve of rest points such as circle [37], square [38], rounded
square [39], rectangle [40], cloud-shaped curve [41], etc.
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Recent research on chaos modelling has shown that the chaotic systems with
infinite number of rest points can be classified as special chaotic systems with
hidden attractors [42, 43]. Hence, discovery of chaotic systems with line equi-
librium or closed curve equilibrium is an important research topic. The syn-
chronization of the chaotic systems has useful applications in the control lit-
erature [44-47].

In this work, we report a new chaotic system with a closed curve of equilib-
rium points, which has the shape of an axe. We present the system dynamics,
phase plots, and analysis of the chaotic system with axe-shaped equilibrium.
Furthermore, we provide a circuital implementation of the chaotic system with
axe-shaped equilibrium. As a control application, we report results for the syn-
chronization of the new system possessing an axe-shaped curve of equilibrium
points.

2. A new chaotic system with an axe-shaped curve of equilibrium points

Recently, Pham et al. [39] have reported a general model of dynamical sys-
tems given by

X = Z,
y = —Zf(x,y,Z), (1)
¢ = glxy),

where f(x,y,z) and g(x,y) are two arbitrary nonlinear functions.
We get the rest points of the general model (1) by solving the equations:

z=0, (2a)
_Zf(xvyv Z) - 07 (2b)
g(x,y) =0. (2¢)

It is clear from (2a) that z = O for any rest point of the system (1).

Thus, we deduce from (2b) and (2c¢) that the rest points of the system (1) lie
on the curve g(x,y) = 0 on the plane z = 0.

Hence, by a suitable choice of the functions f(x,y,z) and g(x,y), we can
construct numerous dynamical systems with different types of open or closed
curves of rest points.

In this paper, we choose the functions as

{ flx,y,2) = —x> —ay+by* +cxz, 3)
g(x,y) = 4lx[+4[y[+xy—10,
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which leads to the system

= z,
y = —z(—x* —ay+by* +cxz), (4)
z = 4|x|+4]y| +xy—10.

Thus, the rest points of the new system (4) are described by the closed curve
z=0, 4|x| +4]y| +xy—10=0, (35)

which is an axe-shaped curve in the (x,y)-plane as shown in Figure 1. It is ob-
served that the axe-shaped curve (Figure 1) is very different from the basic closed
shapes like circle, square, rounded square and cloud [37—41].

3 T T T T
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-3 -2 -1 0 1 2 3
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Figure 1: Axe-shaped curve of rest points of the system (4)
For the choice (a,b,c) = (6,0.2,0.1), we show that the system (4) is chaotic.
For numerical simulations of phase plots and for the calculation of Lya-
punov chaos exponents, we take X (0) = (0,0,0.2) and (a,b,c) = (6,0.2,0.1).

The chaos nature of (4) is guaranteed by the Lyapunov exponents calculated us-
ing Wolf’s algorithm [49] for T = 5000s as

Ly =0.11867 > 0, L, =0, Ly =—0.13175 < 0. (6)

For the system (4), L1 + L, + Lz = —0.01308 < 0.
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Thus, the system (4) is dissipative.

The local finite-time Lyapunov dimension [48] of the system (4) is esti-
mated as

Li+1,

D=2+
|L3|

=2.9007. (7)

We observe high complexity of the system (4) with axe-shaped equilibrium
by the high value of the Lyapunov dimension Dy .

It is observed that the system (4) is invariant under the change of coordinates
(x,y,2) — (—x,—y, —z) for all values of the parameter set (a,b,c). This shows
that the system (4) has point reflection symmetry about the origin in R. Hence,
if (x(1),y(t),z(2)) is a trajectory of the system (4), then (—x(¢), —y(t), —z(¢)) will
be also a trajectory of the system (4).

Figures 25 show the phase plots of the new chaotic attractor (4) for X (0) =
(0,0,0.2) and (a,b,c) = (6,0.2,0.1).

Figure 2: MATLAB simulation of (4) for X(0) = (0,0,0.2) and (a,b,c) =
(6,0.2,0.1)

The bifurcation diagram of the system (4) is illustrated in Figure 6. In addi-
tion, Poincaré map in Figure 7 also displays chaotic property of the system (4).
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Figure 3: MATLAB simulation of (4) in (x,y)-plane for X (0) = (0,0,0.2) and
(a,b,c) =(6,0.2,0.1)
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Figure 4: MATLAB simulation of (4) in
(a,b,c) =(6,0.2,0.1)
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Figure 5: MATLAB simulation of (4) in (x,z)-plane for X (0) = (0,0,0.2) and
(a,b,c) = (6,0.2,0.1)

Bilircation Diagram of New Chaotic System

C

Figure 6: Bifurcation diagram of (4) with respect to the bifurcation parameter ¢
whena=6and b =0.2
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Figure 7: Poincaré map of (4) in the plane z(n+ 1) versus z(n) for (a,b,c) =
(6,0.2,0.1)

3. Circuit realization of the system with axe-shaped equilibrium points

In this section, the system (4) with axe-shaped equilibrium is realized by
an electronic circuit shown in Figure 8. The main circuit that realizes the sys-
tem (4), has three integrators (U1A,U3A, USA), four inverting amplifiers (U2A,
U4A, U6A, U10A), one absolute function by |x| signal (USA, U9A) and one ab-
solute function by |y| signal (U7A,U11A). The state X = (x,y,z) of the system
(4) is characterized by the voltage across the capacitors (Cy,Cy,C3). For the scale
setting on the circuit, we can use the amplitude control method [25-27]. Thus,
the system (4) is changed into the following system.

X = z,
y = z(—x* —2ay+16by* +cxz), (8)
z = 4|x|+16]y| + 8xy —5.

Applying the Kirchhoff’s laws, the circuit of Figure 8 is described by the
following equations:

, |
X = —CIRIZ,
, 1o, 1,1,
_ L e , 9
Y R TR T R T oR ©)
1 ] 1
= .
= R e ERY T R
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Figure 8: Circuit design of (4): (a) X signal, (b) Y signal, (c) Z signal, (d) |X| signal and

(e) |Y| signal

The electronic components are chosen as: Ry = Ry = 400 KQ, R; =
33.33 KQ, R4 = 125 KQ, Rs = 4 MQ, R7; =25 KQ, Rg = 50 KQ, Rg = 80 KQ,
R¢ = Rio =Ri1 =R =Ri3=Ri4 =Ri5 =Ri6 = R17 =Rig = Ri9 = Ry =
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Ry =Ry = R23 =Ryy = R25 = R26 =Ry; = 100 KQ, Ci=0C= C3 =5.2nF
and V| = 1Vp¢. Oscilloscope phase portraits of the circuit are represented in Fig-
ures 9-11. It is easy to see the good agreement between MATLAB simulation
results (Figures 3-5) and the circuit simulation results (Figures 9—11).
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Figure 9: MultiSIM 10 simulation of the system in (x,y)-plane
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Figure 10: MultiSIM 10 simulation of the system in (y,z)-plane
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Figure 11: MultiSIM 10 simulation of the system in (x,z)-plane

4. Synchronization results for the new chaotic system
with axe-shaped equilibrium

In this section, we design an adaptive synchronizing law for achieving global
synchronization of a pair of identical new chaotic systems with axe-shaped equi-
librium points (called as the drive and response systems).

As the drive system, we take the new system with axe-shaped equilibrium
given by the dynamics

X1 = z1,
y1 = —z1(—=xf —ay; +by] +cxi2y), (10)
& = 4l +4yi]+xy - 10.

In Eq. (10), X; = (x1,y1,z1) represents the state of the drive system and a,b
are unknown parameters of the system.

As the response system, we take the new system with axe-shaped equilibrium
with controls given by the dynamics

Xz - Z2+MX7
yy = —Zz(—x%—ayz—i-by%-l—C)CzZz)+My, (11)
2 = 4fxa| +4|y2| +x2y2 — 10+ u;.
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In Eq. (11), X, = (x2,y2,22) represents the state of the response system and
u = (ux, uy, u;) is the adaptive control to be determined.
We define the synchronization error between the state responses X; and X; as
€x = X2—X1,
€y = Y2—VI, (12)
€; = 22—11-

It is easy to determine the error dynamics as follows:

éx = e;+uy,

¢y = 25 —21x; +a(y2z2 —yi121) —b(¥3z2 —yiz1)

13
— c(0z3 —x1z7) +uy, (1)
é; = 4(|xa| = |xr][+ |y2| = [y1]) +x2y2 —x1y1 +us.
As an adaptive control, we consider the feedback law
Uy = —e;—kyey,
uy = —2o05+ 2131 — 0(1) (yaza — y121) + B (1) (v322 — y1z1) (14)
+ Y1) 0z —x127) —kyey,
u; = —4(|x2| = [xr| +[y2| = [y1]) —x2y2 +x131 — ke

In (14), (a(r),B(z),y(t)) is an estimate of (a,b,c) and ky, ky, k, € R,
When we implement the feedback control law (14), we obtain the closed-loop
synchronization error dynamics as

éx = _kxe)m

éy = [a—a(t)](y2za—y1z1) — [b— B(1)](y3z2 — yiz1)

15
— e (0] (03 1) — ey )
éZ — _kzez .
To simplify the closed-loop dynamics (15), we set
eq=a—o(t),
eb:b_ﬁ(t)v (16)

e. =c—Y(1).
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Then (15) simplifies into the error dynamics

ey = —kyey,

éy = eq(y220—y121) — 6b()’%Z2 —J’%Zl)

— ec(xzz% —xlzf) — kyey, a7
é, = —kge;.
It is also easy to verify that
ba=—0&,  ép=—P, éc=-7. (18)
We consider the quadratic Lyapunov function candidate
V(ex,ey,ez,eq,6p,6c) = O.S(e)% + eg + eg + ez + e% + eg). (19)

Time-derivative of V along the dynamics (17) and (18) is calculated as fol-
lows.

V = —keei —kyes —k.e? +ealey(y2z2 — yi21) — &,
+epley03 —en) Bl e (g -nd) -7
We consider the following dynamics for the parameter updates.
a = ey(y222—y121),
B = —ey(3z2—yiz), @1)
7 = —e(F-x3)

Theorem 1 The new chaotic systems with axe-shaped equilibrium points given
by the dynamics (10) and (11) are globally and asymptotically synchronized
by the adaptive control law 14) and the parameter update law (21) where
ky,ky, k; € RT.

Proof. Itis an easy observation that the candidate Lyapunov function V' defined
via Eq. (19) is positive definite on RO.
Furthermore, when we substitute (21) into (20), we obtain the time-derivative
of V as
V = —keer —kyes — ke (22)

Thus, V is a negative semi-definite function on R3.
We set K = min{ky,ky,k;} and e = (ex, ey, e;).
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Then we get V < —K|e|?, which can be expressed as
Kle(t)|* < V. (23)

By integration of the above inequality, we deduce that
13
K/|e(r)|2dT<V(O) _V(). (24)
0

Thus, it follows that e(¢) € L.

Using (17), it can be deduced that é € L.

As a consequence of Barbalat’s lemma [50], e(¢) — 0 as t — oo for all values
of e(0) € R3.

For numerical simulations, we take the gain constants as (kj,k»,k3) =
(10,10, 10) and the system parameter values as (a,b,c) = (6,0.2,0.1).

As initial states of the systems (10) and (11), we take (x1(0),y1(0),z;(0)) =
(1.5,0.6,0.1) and (x2(0),¥2(0),22(0)) = (0.4,0.3,2.4).

Also, we take (¢(0),(0),7(0)) =(1.2,0.5,3.1).

Figures 12-14 show the complete synchronization of (10) and (11), while
Figure 15 shows the time-history of the synchronization error e.

2
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Figure 12: MATLAB simulation showing synchronization of the states x; and x; of the
systems (10) and (11)
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Figure 13: MATLAB simulation showing synchronization of the states y; and y, of the
systems (10) and (11)
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Figure 14: MATLAB simulation showing synchronization of the states x; and x; of the
systems (10) and (11)
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Figure 15: MATLAB simulation showing the time-history of the synchronization error e
between the systems (10) and (11)

5. Conclusions

In this research work, we reported a chaotic system with an axe-shaped curve
of equilibrium points. In addition to detailing the dynamic properties of the new
system, an electronic circuit implementation of the new chaotic system with axe-
shaped equilibrium was also reported to check its feasibility. As a control appli-
cation, we gave results for the synchronization of the new system possessing an
axe-shaped curve of equilibrium points.
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