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Engineering example of the constraint forces in
non-holonomic mechanical: forklift-truck robot
motion. Part I

SOUFIANE HADDOUT, MOHAMED AIT GUENNOUN and ZHIYI CHEN

In the presented paper, a problem of nonholonomic constrained mechanical systems is
treated. New methods in nonholonomic mechanics are applied to a problem of a Forklift-truck
robot motion. This method of the geometrical theory of general nonholonomic constrained sys-
tems on fibered manifolds and their jet prolongations, based on so-called Chetaev-type con-
straint forces. The relevance of this theory for general types of nonholonomic constraints, not
only linear or affine ones, was then verified on appropriate models. On the other hand, the
equations of motion of a Forklift-truck robot are highly nonlinear and rolling without slipping
condition can only be expressed by nonholonomic constraint equations. In this paper, the geo-
metrical theory is applied to the above mentioned mechanical problem. The results of numerical
solutions of constrained equations of motion, derived within the theory, are presented.

Key words: forklift-truck robot; Lagrangian systems, nonholonomic constraints, reduced
equations of motion, numerical solution.

1. Introduction

Forklift-truck is a powered industrial truck used to lift and move materials
on short distances. The forklift was developed in the early 20" century by var-
ious companies including the transmission manufacturing company Clark and
the hoist company Yale & Towne Manufacturing (Brindley, 2005). Following
World War 11 the use and development of the forklift truck has greatly expanded
worldwide. Forklifts have become an indispensable piece of equipment in manu-
facturing and warehousing operations. Many researchers are linearized the fork-
lift system equations for used in open-loop and closed-loop controllers (e.g.,
Zimmert and Sawodny, 2010; Lee, 2014). In addition, analogous to many me-
chanical systems such as mobile robots (Ou et al., 2014), aerial/underwater ve-
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hicles (Zhang et al., 2014; Sun et al., 2013; Li and Wang, 2013), wheeled pen-
dulum robots (Xu et al., 2014), underactuated robots (Xia et al., 2014; Lai et
al., 2014; Xin and Liu, 2013), moving liquid containers (Zang and J. Huang,
2015), and so also on, forklifts are nonholonomic systems, whose the govern-
ing equation issues are challenging and remain open. On the other hand, in
some mechanical and engineering problems one encounters different kinds of
additional conditions, constraining and restricting motions of mechanical sys-
tems. Such conditions are called constraints (Swaczyna, 2011; Haddout, 2018a).
Constraints may be given by algebraic equations connecting coordinates (holo-
nomic or geometric constraints), or by differential equations, which restrict co-
ordinates and components of velocities. Non integrable kinematic constraints,
which cannot be reduced to holonomic ones, are called nonholonomic con-
straints (Swaczyna, 2011; Haddout, 2018b; Haddout et al., 2017). In addition,
the motion of mechanical systems is frequently subjected to various constraint
conditions, holonomic or nonholonomic. Nonholonomic constraints lead typi-
cally to nonlinear equations of motion of the constrained system. While the-
ories of holonomic or some special types of linear nonholonomic constraints
are already well elaborated for quite general situations, various theoretical ap-
proaches to general nonholonomic mechanics occur up to now, from the phys-
ical point of view on the one hand, and from the geometrical point of view on
the other. On the other hand, in last decades numerous physical and engineer-
ing applications make necessary to profound research and complete the theory
of the nonholonomic systems and numerical aspects of solutions are presented.
Therefore problems of nonholonomic mechanics are intensively studied in many
recent papers, e.g., Bullo and Lewis, 2004; Cardin and Favreti, 1996; Carinena
and Raada, 1993; Cortes et al., 2009; de Leon et al., 1997a, 1997b; Giachetta,
1992; Janova and Musilova, 2009; Czudkova, and Musilova, 2013, where mod-
ern methods and concepts of differential geometry and global analysis are used
and which contribute to the essential advance in both the theoretical and appli-
cation aspects. The geometrical theory used in the presented paper was applied
to the first order mechanical problems in (Krupkovd, 1997a) and then gener-
alized for higher order case in (Krupkova, 2000). It serves as an appropriate
tool for constructing certain type of equations of motion of nonholonomic me-
chanical systems subjected to quite general constraints (an application to typ-
ically non-linear constraint see in (Krupkova and Musilovd, 2001)). The the-
ory is developed on fibered manifolds and their jet prolongations as underly-
ing geometrical structures, naturally related to the character of physical prob-
lems. The main physical idea of the theory is based on the concept of Chetaev-
type constraint forces introduced in analogy to “classical” Chetaev forces (see
Chetaev, 1932-1933). Equations of corresponding unconstrained motion are re-
lated to the so-called dynamical form and they define the components of this
form. Using equations of constraints, a special canonical distribution on the first
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jet prolongation of the underlying manifold (corresponds to the phase space)
can be constructed. Then the first prolongations of admissible trajectories of
the constrained motion are just integral sections of this distribution. By adding
Chetaev-type forces (with Lagrange multipliers) to equations of motion, a dy-
namical form of the constrained problem is obtained and deformed equations
of motion are constructed. These equations together with constraint conditions
give the system of differential equations for unknown constrained trajectories
and Lagrange multipliers. Another possible approach to the problem within the
same theory starts from its description by the so-called Lepage class of forms
instead the dynamical form itself. The Lepage class is, of course, closely re-
lated to the dynamical form, and it is obtained by the factorization of modules of
forms by special submodules irrelevant from the point of view of the problem.
This procedure leads to the so-called reduced equations of motion containing
no Lagrange multipliers and giving the system of differential equations for con-
strained trajectories only. Nevertheless, constraint forces can be then obtained
from deformed equations. In addition, on the base of the geometrical theory
with Chetaev-type constraint forces, one can formulate a constraint variational
principle and solve the corresponding constraint inverse variational problem (see
e.g., Krupkova and Musilova, 2005), as well as study symmetries of constrained
systems. Symmetries and arising first integrals may then essentially simplify in-
tegration of the resulting constrained equations of motion, see e.g., Swaczyna,
2005. (Nevertheless, in the present paper no attention is paid to higher order
theories, field theories and the constraint variational problem.) Of course, the
calculation procedure itself is made in coordinates. Its practical advantage lies
in the possibility to choose appropriate coordinates, and also in two equiva-
lent alternatives of solving the problem. The first of them is based on the solu-
tion of reduced equations of motion free of Lagrange multipliers and additional
computation of these multipliers and corresponding constraint forces from dy-
namical equations, or alternatively, the direct solution of dynamical equations
containing Lagrange multipliers. The decision between these two procedures
is influenced by the concrete physical problem. Even though the correspond-
ing constraint is semiholonomic and thus it could be in principle treated by
classical methods of Lagrange multipliers (for details concerning the method
in general see e.g. the classical textbook of analytical mechanics (Brdicka and
Hladik, 1987)), the direct application of Krupkovd’s geometrical theory is very
effective in this situation. On the other hand, a great interest has been devoted
towards forklifts-truck modeling as it is a mechanical system characterized by
nonholonomic constraints. On the other hand, the forklifts-truck have become
an indispensable piece of equipment in manufacturing and warehousing opera-
tions in the word, that many researchers have tried to find proper equations to
describe the dynamic of this system. Mainly, it is possible to distinguish be-
tween two different approaches: the first obtains the motion equations using
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the Newton’s laws, while the second studies the system from the Lagrangian
or Hamiltonian point of view (Neimark and Fufaev 1972; Koon and Marsden,
1997). So far, the greatest part of the existing literature has been dedicated to
models with lots of simplifications, even if these have been capable to explain
the dynamical characteristics of the forklift truck. For example, linearized equa-
tions of motion are commonly introduced in order to cope more easily with the
problem.

The aim of this paper is to use the geometrical theory for obtaining non-
linear equations of motion of the above exposed mechanical problem, using the
above mentioned Krupkova approach for a practical mechanical system and find
their solution in some particular cases, any simplifications are not used. This is
made in the last section, where the sets of equations of motion i.e., reduced, are
derived. The numerical solution of reduced equation is presented. We arrange
the remaining parts as follows. In Section 2, we introduce the geometrical theory
of nonholonomic mechanical systems. Further, Section 3 presents the nonlinear
dynamics of forklift-truck. After that, the proposed the reduced equations for the
forklift-truck and numerical solution in Section 4. Finally, the paper is wrapped
up with conclusions in Section 5.

2. Geometrical theory of nonholonomic mechanical systems

In this section, we recall basic geometrical concepts of the theory we will use.
For more details and proofs see (Krupkovd, 1997a). As underlying geometrical
structures of the theory fibred manifolds and their jet prolongations are consid-
ered. Key geometrical objects adapted to the fibred structure are sections and
their jet prolongations, projectile and vertical vector fields, as well as horizontal
and contact differential forms. The detailed theoretical background can be noted
in (Krupkové, 1998).

The geometrical theory of nonholonomic mechanical systems is devel-
oped on an (m+1)-dimensional underlying fibred manifold (Y, 7,X) with the
one-dimensional base X, ((r € X) being time in non-relativistic mechanics),
m-dimensional fibers (configuration space), and its jet prolongations (J*Y, 7, X)
with s = 1, 2 for typical physical cases (a fiber of J'Y over (t € X) represents
the phase space). We denote (V, &), & = (7,4°), 1 < 0 <m, a fibred chart on Y,
(U,8),U=m(V), { = (), the associated chart on X and (Vy, &), Vs = &, 1(U),
& = (1,4°, q2) the associated fibred chart on J°Y, where ¢ = ¢° and ¢9 = ¢°.
Moreover, denote by 7,: J'Y — J°Y,0<s <r <2, JOY =Y, canonical projec-
tions. A section of fibered manifold (Y, 7, X) is a smooth mapping y: I — Y, such
that Yo = id;, I C X being an open set. Analogously sections of (J'Y, 7, X)
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are defined. A section 8 of (J'Y, m,, X) is called holonomic if it is of the form
0 =J'Y, where 7 is a section of (Y, w, X).

Recall, that a vector field 1 on J'Y is called m.-projectile if there exists
a vector field 19 on X such that Tmw,n = ng o m,.. A vector field n is called
m-vertical if Tw,n = 0. A form p on J'Y is called 7,-horizontal if its contraction
by an arbitrary chosen 7,-vertical vector field nvanishes, i.e. it holds inp = 0.
A form p is called contact if J"y*p = 0 for all sections 7y of (Y, 7, X). Concepts
of 7, ¢-projectile vector field, 7, s-vertical vector field, and 7, -horizontal form
are defined by the quite analogous way. Moreover, for every k-form p on J'Y

there exists the unique decomposition into its g-contact components, 0 < g <k,
k

T 1P = Zo PgP, the O-contact components p,p = hp are called also the hori-
q:

zontal one.

From the point of view of physics, all possible trajectories of so-called first
order unconstrained mechanical system on a fibred manifold are given just by
section y of (Y, r, X) such that they are solution of the system of m second order
ordinary differential equations of motion:

Esol?y=0,  Es=As(t,qd",¢")+Bov(t,d",d")§", (1)

where 1 < A < m and Einstein summation are used. Consider the 1-contact
7 p-horizontal 2-form on Jzy =0, E = Ec0° Ndr =0, called dynamical form.
A solution 7y of Egs. (1) is called a path of E. We define the Lapage class [o(] of
E by the requirement pjo = E (see Krupkova, 1997a or 1997b).

The class [a] is named also the mechanical system. Every representative of
this class is of the form:

a:AGwGAdt+BngGAqu+ngwGva, (2)

where w° = dq® — ¢°dt are contact 1-forms forming the basis of 1-forms
(dt,®°,4%) on J'Y adapted to the contact structure. So, [@] = & mod 2-contact
forms. The following proposition was proved (see Krupkovd, 1997a or 1997b):

Proposition 1 A section y of (Y, w, X) is a path of the dynamical from E if and
only if
Jyiga =0 3)

for every mi-vertical vector field n on J'Y .

2.1. Non-holonomic dynamics

A nonholonomic constrained mechanical system is defined on the
(2m+1—k)-dimensional constrained sub-manifold & C J'Y fibered over ¥ and
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given by k equations (1 <k <m—1)

. af!
f'(t,q°,¢°) =0 such that rank (aj_;):k 1<i<k
q

or in the explicit normal form

sm—k+i __

q gi(tvqo-v ql>7 1<l<m—k (4)

It is evident that only admissible trajectories for a nonholonomic mechanical
system are such sections y: I >t — Y for which J'y(t) € g forallt €1, i.e,
floJly =0 for 1 <i < k (the so-called g-admissible sections). The constraint
(4) leads to the canonical distribution 3 of codimension k on . Its annihilator is
of the form

. ; 0g' .
30 = span{¢'}, @' = _821 o' +1* o™ (5)

where 1: o — J'Y is the canonical embedding. The canonical distribution is
closely related to the constraint ideal ®(3°)

0(3%) = {(pi /\x,-}x,- is a form on ((0} , (6)

where @' are 1-forms on & called canonical constraint 1-forms. The impor-
tance of the canonical distribution is evident from its following property (see
Swaczyna, 2005; Krupkova, 1997b):

A section y of Y is g@-admissible if and only if J'7y is an integral section of
the canonical distribution.

We have already mentioned in the first part that there are two possible equiv-
alent approaches to the description of nonholonomic mechanical system-one of
them, called physical, is based on deformed equations with constraint forces and
Lagrange multipliers and the other, geometrical one, uses reduced equations.

Geometrical approach introduces the constrained mechanical system related
to the mechanical system [a] by the equivalence relation:

[ot] = [1*a] mod ©(3Y). (7)

A gp-admissible section y of (Y, 7,X) is called a path constrained system [0t
if for every m;-vertical vector field 1 belonging to the canonical distribution it
holds

Jipa =0. (8)

The following proposition can be formulated (see again Krupkova, 1997b):
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Proposition 2 A section y of (Y, m,X) is a path of the deformed system [Qg) if
and only if for every m|-vertical vector field | belonging to 3 holds

flolly=o0, (A} +B)§*) o>y =0, 9)

, k 8gj k k 8gj
A=A+ Amfk+ja—q.l + Y | Bim—krit Y, Bmfk+j,mfk+ia—q.l
j=1 =1

i=1 j=

dg g 5
X<W+8q0q ))ol, (10)

k pa) i 0 i
g 8
B;s = (Bls + l:Zl |:Bl,m—k+i8qs +Bm—k+i,s 8ql}

dg’ dg'
+ (Bm_kﬂ,m_kﬂ-a%a—f}s)) ot (1D)

Relations (9) represent the system of reduced equations for m unknown func-
tions ¢y (k of them are first order and (m—k) second order ordinary differential
equations).

Physical approach is based on Chetaev-type constraint forces. Such a force
is given by the constraint itself, in analogy with holonomic situations. It is ex-
pressed by the dynamical form:

3 i
<I>:<I>Gw"/\dt:u,-—f/\dt, 1 <i<k, (12)
dg°

where functions g;(z, q*, q"l) are Lagrange multipliers.

Note that such dynamical form satisfies the generalized principle of virtual
work in® |y = 0 for every m;-vectical vector field 1 belonging to the constraint
distribution 3y, 3?/ = span {(pi, dfi, 1<i< k} ,U, UNQ # @ being an open
set of a chart on J'Y, see [36].

Denote

[%] = [OC - (b]?

(9 )
Op = {Ac—u,-a—fc} @0° ANdt+ Bgy@° NdG° + F5y0° AN @Y. (13)
q

The equivalence class [0 is called the deformed mechanical system.
A go-admissible section y of (Y, w, X ) is called a path of [a¢] if (Eq —Ps) 0
J?y. The following proposition holds (see Krupkova, 1997b; Krupkova, 1998):
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Proposition 3 A section y of Y is a path of the deformed system || if and only
if for every m-vectical vector field 1 on J'Y it holds

i

dq°

Jlfin% = 0 or equivalently Ag + Bsv§" = Wi and floJ'Y =0. (14)

System (14) is given by k first order and m second order ordinary differential
equations for unknown functions ; and ¢° y and it represents the deformed equa-
tion.

2.2. Semiholonomic constraints

Let us now describe a special type of nonholonomic constraints, called semi-
holonomic. Such conditions usually take place for rolling of rigid bodies without
slipping. A system of constraints (3) is called semiholonomic if the constraint
ideal (5) is differential, i.e the canonical distribution (4) is completely integrable
(see e.g. Krupkova, 1997a). This means that d¢ € @(3°) and thus following
conditions hold:

d.gt d. [dg 9%g! .
_Zc =0 —2-=0, 1<I, <m—k, 1<i<k, (15
S0 4\ 3 S0 = s<m i (15)
where
g _ 9 agj 8, 0, d_é‘:ijuqlijugf%.
gl dq! gl ) dgmk+i di ot dq' gkt

In the following section we apply the obtained equations (8 and 13) obtained
for general nonholonomic mechanical system to the example of forklift robot
system.

3. Lagrange’s equation of forklift-truck robot

We will consider the forklift-truck shown in Figure 1, consists of a vehicle
(forklift) and a forks-mast support mechanism.

The forklift-truck enables four degrees of freedom. The Lagrange equation
determination can be determined by defining total potential and kinetic energy
of the system as a function of generalized coordinates: swing angle of mast 6,
swing angle of the vehicle about (OZ) axis ¢ (or forklift body rotation), vehicle
position r (or the centre of the mass of the vehicle translation displacement on
the (XOY) plane) and z centre of the mass projection of the load on the (OZ) axis
(see Fig. 2). On the other hand, the total kinetic and the potential energies of the
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Forklift truck

. N, ,
Hinge connection mast/ body

Figure 1: Schematic geometry of forklift-truck structure

system (i.e., forklift robot) in function of generalized coordinates are written as
follows:

4(2 4 2 ¢?
%J wheel T

2T = mli‘z +m1r2(p2 + ¢2J1 +
..m(icos @ — r@sin@ — s@sin @ —dfsinHcos Q..
.. —dQcos 0sin@)? + my (isin @ + r$ cos ¢ + s cos P—
..d0sin O sin @ + d cos 0 cos )% +my(dOsin0)* + (¢ cos 0)(J5 + J5)+

(sin@)?(Jy +J3) + 0> (J) +J5) +m3(7cos @ — r¢sin g — s sin o+

ZtanOcos @ +z

o520 S8 —z@tan B sin @) + m3 (7-sin @ + r¢ cos @
+s¢cos@+zZtanOsing 4z 79 sin(p+z(ptan900s(p)2+m3z'2, (16)
cos
V =migp+mpgdcos O +msgz, (17)

where g is the gravitational acceleration; m, my and mj3 are the masses of the
mast, vehicle, and the load, respectively; Ji, Jo —J5 —JY, J3 —J5 — J% and Jypeer
are the mass moment of inertia of the forklift, mast, load and forklift-wheel re-
spectively. R is the radius wheel and s is the distance between mast-forklift mass
centre. The Lagrange function of unconstrained mechanical system is given by
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Figure 2: Coordinate systems of the forklift-truck robot

relation:
L=T-V,
1, 1 5 1 2(i% 4 r2¢? 1
L= imlrz + Emlrz(p2 + E(pZJl + %thed + zmz(rcos(p

. 1
—r@sin@ —s@sin@ —dOsinBcos@ —d@pcosO sin(p)2+ Emz(fsin(p
. 1 .
+ r cos @ +s¢ cos ¢ —d O sin O sin @ + d ¢ cos O cos @) + Emg(d@ sin9)?

1 1 . 1.
+ E((pcos 0)2(J5+J5) + E(gbsm 0)2(Jo+J3) + EOZ(JQ’-I—Jé’)

1 0
+ §m3(f’COS§D —r@sin® —s¢ sinq)-i—z’tan@coup—i—zm cos @
1
—z¢tan O sin(p)2+ §m3(i”sin(p—l—r(pcos(p—l—s(pcos(p+z'tan9 sin @

0 1
o6 Sin ¢-+2¢ tan 6 cos (P)2+§m322_mlgp—m28d cosO—mszgz.  (18)
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For small swing, sin@ ~ 0; sin¢ ~ ¢@; cos 0 ~ 1 and cos ¢ ~ 1. In this case,
with the trigonometric functions approximated, the mast-forklift angles terms in
the Lagrange equation can be simplified. Then the Lagrange equation is simpli-
fied to the following equation:

[T S U S 2(7 +r?¢?)
inmlr —i—EmIr (0] —|—§(P Jl_'—T

+ %mz(iﬂcosq) —r@sin@ —s@sing —d0 6 cos @ —d@sin)?

J, wheel

1 .
+ Emz(i”sin(p + r@cos @ + spcos @ —dOO sin@ +dcos @)?

1 . 1
+ Emz(dGG)2 + img(f’cosq) —r@sin@ —s@sin@ +z6 cos @

+ 20 cos @ — 2¢O sin )?
1 . . o - . 2
+§m3(rsm(p+r(pcos(p+s(pcos(p+z0s1n(p+z0s1n(p+z(p900s(p)

1 1 1
+ §m3z'2+ 5902(6 +J5) + 5(¢9)2(Jz +J3)

1.
+§92(J§’+J§’) —migp —mogd — m38z. (19)

4. Forklift-truck dynamic motion

4.1. Formulation of a problem

Using the geometrical theory of nonholonomic system mentioned in the sec-
ond section we define the structure of the mechanical system as follows. In cases
where the number of degrees of freedom is greater than the number of gener-
alized coordinates, additionally defined coordinates are not independent of the
present generalized coordinates. Equations with terms in the time derivatives
of the generalized coordinates and which cannot be integrated are called non-
holonomic constraint equations. There are four degrees of freedom of the cor-
responding unconstrained mechanical system i.e. Thus, the fibered manifold of
the problem is (R x R*, pry, R) where pry is the cartesian projection on the first
factor. We choose the fibered chart on Y as (V,&) where V is an openset V C Y
and & = (t,ql,qz,q3,q4) = (t,r,2,0, ). The associated chart on the base is
(pr1,®), ® = (¢) where ¢ is the time coordinate, and associated fibered chart
onJ'Y =R xR*xR*is (V1, &), Vi = pr ' (V,E), & = (t,4°,4°), 1 < 6 < 4,
ie & = (t, ,2,0,0,7.2,0, <p). The basic parameters used to specify the forklift-
truck geometry are illustrated in Figure 2. On the other hand, the Euler—Lagrange



494

S. HADDOUT, M.A. GUENNOUN, Z. CHEN

equations of system motion are:

E

E>

| =mirg? +4rR—(P22theel —my@sin @(7cos @ — r@sin @ — s@sin @
—dB6cosp —dsing)
+my@cos @(Fsin @+ r¢pcos @ +s@cos @ —dOO sin +d@cos @)
—m3¢sin@(icos @ — r¢sin@ — s sin @ + 260 cos ¢ +z60 cos Y — zHOsin @)
+m3pcos @(i-sin @ + r cos ¢ + s cos ¢ + 20 sin @ +z0 sin @ + 29O cos @)
—mi— %thell +my@sin@(7cos @ — rgsin@ — s@sin @
—dB6cosp —dsing)
— mycos {icos P —2/@sin@ — r@sing — rg* cos @ — s@sin @ — s¢p2 cos @
—dB0cos @ —dézcos(p—l—dée(psin(p —d@sin@ —d(pzcos o}
—my@cos Q(isin@ +rgcos @ +s@cos P —dOOsing +ddcos @)
—mysin@{#sin@ + 2/ cos ¢ + r@pcos ¢ — F@* sin @ + s cos @ — s@p? sin @
—d60sing —dO*sing —dOOcos ¢+ dPcosp —dp*sing}
+m3@sin @(icos @ — r@sin@ — s¢psin @ + 26 cos @ +z0 cos @ — zPH sin Q)
—m3cos {Fcos @ —2/@sin@ — r@sing — r@* cos @ — s@sin @ — s¢p2 cos @
+70cos @+ 20 cos p —220@sin @
420 cos @ — 220 psin @ — 2P sin @ — z*H cos @}
— m3¢pcos Q(#sin@ + rg cos @ + s@cos ¢ + 20 sin @ +z0sin @ + 2¢O cos Q)
—m3sin@{#sin @ + 27 cos ¢ + r{cos ¢ — fgi)z sin @ + s cos @ —sg'o2 sin @
+70sin @ + 220 sin @
+220 ¢ cos @ +z0sin @ + 220 G cos @ + 2P cos @ —z(p29 singp} =0, (20)

= —myd 6 cos p(icos @ — r¢sin@ — s¢psingp —dOO cos ¢ — dsin @)
— mad @ sin @ (#sin @ + r¢cos ¢ +s@cos @ —dOO sin @ +d @ cos Q)
+md*6260 4+ m3(2c0s @ — z@sin @) (7cos @ — rsin @ — s sin @
+20c0s @ + 20 cos @ — (O sin @) + m3(Zsin @ + z¢ cos @)

- (7sin @ + rg)cos @ + s cos @ + 20 sin @ +z0 sin @ + 2 cos @)

+ ¢%0(Jy +J3) 4+ mad 6 cos @(i-cos ¢ — r sin @ — s sin @
—d66cosp —dpsing)
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—mrd@Psin@(icos P — r¢sin@ — spsin@ —dOO cos ¢ —dPsin Q)

+ mpdO cos @{icosp —2FPsin@ — r@psinp — r¢? cos @ — s@sin @
—s¢?cos @ —dBO cos @ —dbcos 9 +dOO@sing —dsing —dp>cos o}
+myd B sin @ (i-sin @ + r@cos ¢ + s cos ¢ —dOO sin @ +dcos )
+mpdO @ cos Q(i-sin@ +r@cos @ +spcos® —dBOsing +dcos )

+ mpd0 sin {Fsin ¢ + 27p cos @ + r@ cos ¢ — @ sin @ + s cos @

—s(p2 sin@ —d6 6 sin g —d6? sinq)—a’é9([')c0s<p—i—d('pcosq)—dg’o2 sing}
—my00° —2m,0°0

— m32cos Q(#cos @ — r@sin@ — s@sin @ + 26 cos ¢ +z6 cos ¢ — 2O sin )
+m3z@sin@(icos @ — rgsin@ — s@sin@ + 20 cos ¢ +z60 cos P — zHOsin @)
—m3zcos {icos @ —27@sin@ — r@sing — r@? cos @ — s@sin @ — s¢p> cos @
+70cos @+ 20 cos p —220¢sin@

+z6cos @ —2z0@sing —zpOsin@ —zp*Hcosp}

— m3Zzsin @ (7sin @ + r@cos @ + sp cos @ + 20 sin @ + 20 sin @ + PO cos @)
— m3z( cos Q(i-sin @ + r@ cos @ + sP cos @ + 20 sin Y +z0 sin @ + 2O cos P)
— m3zsin @{#sin @ + 27/ ¢ cos ¢ + r@pcos ¢ — i’(i)2 sin@ + s cos @ — s(i)2 sin @
+20sin @ +220sin@ +220 ¢ cos ¢ +z0sin @

4220 ¢ cos @+ 2¢O cos ¢ — zp*Osin} — (I +J5) =0, (21)

= my(—7isin@ —r@cos @ — spcos ¢ +dO0Osin g —dcos @) (icos
—rsing@ — s¢sing@ —dOO cos ¢ —dPsin Q)

+my(cos @ — r¢sin@ — s¢psing —dO 0 cos ¢ — dsin @) (i-sin @ + r¢ cos @
+spcos@ —dBOsing +dpcos)

+m3(—7sin @ — r¢) cos p—s cos 9—z0 sin p—z0 sin @ — 2O cos @) (7-cos @
—rsin@ — s¢sin@ + 260 cos ¢ +2z0 cos P — zpOsin Q)

+m3(icos @ — r¢sin @ — s sin@ + 260 cos @ +z60 cos ¢ — zHO sin @) (#sin @
+ 7 cos Y +sQcos @+ 20 sin@ +z0 sin @ + 29O cos Q)

—2myirQ —mirtp — pJ; — 4%%%th&1

—mp(—7sin@ —rcos @ —s@cos @ —d@cos Q)(icosQ — r@sin @
—s¢sing —dBOcos @ —dsing)
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— (—rsing — ssin@ —dsin@){i*cos ¢ — 2F @ sin @ — r$sin @ — r¢p> cos @
—s@sing —s(pzcosgo

—dB6cos@—db?cos 9 +dOO@sing —dpsing —d(pzcos(p}

—my(Fcos @ —r@sin@ — s@sin@ —d@sin @) (7sin @ + r cos @ + sP cos @
—dB0sing +d@cos @)

—m3(rcos @ + scos @ +dcos @) {isin @ + 27 ) cos @ + r{ cos ¢ — (> sin @
+s{cos @ —s([)2 sin @

—dB0sing —dO*sing —dOOPcos P +dpcos P —dp*sing}

— m3(—7sin @—r¢cos p—spcos @ + 20 sin @ +z0 sin @ + 20 ¢ cos @) (i-cos @
—rsin@ — s¢sin@ + 260 cos ¢ +z0 cos P — zpOsin Q)

—m3(—rsin@ — ssin @ +z0 sin @) {icos @ — 2/ sin @ — r{sin @ — r$p? cos @
— s@sin @ — sp? cos @ + 76 cos @ + 226 cos ¢ — 20 ¢ sin @

+z0cos @ —2z0@sing — zpOsin @ —zp>Hcos @}

—m3(Fcos @ — rgsin@ — s¢sin@ + 20 cos ¢ — z6 cos @ — zO P sin @) (i-sin @
+ 7 cos @ + s cos @ + 20 sin @ +z0 sin @ + 29O cos @)

—m3(rcos @ +scos @ +z6 cos @){isin@ + 27 cos @ + r§ cos ¢

— i@ sin @ + 5P cos @ — s¢*sin@ + 70 sin @ + 20 sin @

+220¢cos @ +z0sin@ + 220 ¢ cos @ 4+ z(HH cos @ —zgi)ZO sing}

= (2 +73) = (90° +2006)(J2+J3) =0, (22)

Ey=m3(0cos@ — @O sin@)(icos @ — r¢sin@ — spsin@ + 260 cos @
420 cos @ — 29O sin )
+m3(@sin@ + ¢O cos @) (isin @ + r¢cos ¢ + s cos @ + 20 sin @
+20sin @ +2( 0 cos @) — m3g
—mj3(0cos@ — O¢sing)(icos@ — r@sin@ —s@sin @ + 26 cos @
420 cos @ — 29O sin )
—m30cos @{icos @ — 2rPsin@ — r@sin @ — rgbZCOS(p —s@sing —sgi)ZCOS(p
470 cos @ +2:0 cos ¢ —2:0¢sin @ +z0 cos ¢ — 220 ¢psin @ — 7O sin @
— 20?0 cos @} —m3 (0 sin@ + O cos @) (#sin @ + r¢ cos @
+ s cos @ +20sin @ +z0 sin @ + 2¢O cos Q)
— m30sin @{isin @ + 27-¢ cos @ + rpcos @ — iFp*sin @
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+s@cos @ —sgi)zsingo-l—'z'e sin @ 4220 sin @ + 20 ¢ cos @
+20sin @ + 220 ¢ cos ¢ + 20 cos ¢ — zp>Osin @} —m3zz = 0. (23)
The Lepage class of the unconstrained mechanical system is thus given by
the representative:
a=A10"' Ndt + A0 ANdt +Az0° Ndt +As0* Ndt+ ..

Jwheel .
e —my o' Adi-..

L —my —

+ [—m392 —mﬂ »’ ANdz..

..+ [—m2d292 —m292 —m3z2 —Jé/ —Jé/} ®> ANdb..
2

r . . .
o _mlr2 —Ji _4ﬁ-]wheel —m3(rsmq)+ssm(p)2—|—z292 sin® % ot ANd@,
—m3(rcos @ +scos @ +z0 cos @) —Jy —Jy — 0%(J3+J2)
(24)
where:

w! = dr— idt, 0’ =dz—zdt, © =d0—0dt:, o*=do—¢dt

and
~2
A =mr¢? +4%theel —my@sin@(7cos @ — r@sin @ — s@sin @
—dB0cos @ —dsin@) +ma@cos @(isin@ +r@cos @ + spcos @
—d00sing +ddcosP) —m3@sin@(icos  —r@sin@ — s@sin @
+20c0s @+ 20 cos @ — 2O sin Q) + m3 cos Q(#sin @ + rgcos @
+ s cos @ + 20 sin @ +z0 sin @ + 296 cos ), (25)

Ay =m3(0cos@ — @Osin)(icos@ — r@sin@ —s@sin@ + 26 cos @
+ 20 cos @ — 2O sin @)
+m3(0sin@ + @O cos @) (#sin @ + r$ cos @ + sp cos @ + 20 sin @
+20sin@ +z¢ 0 cos Q) —m3g —m300z, (26)

A3 = —mpdBcos (icos @ —r@sin@ —s@sin@ —dO O cos @ —d@sin @)
— mpd @ sin @(i-sin @ + r@) cos @ +sPpcos ¢ —dOO sin g +dpcos P)
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+mad?6260 4+ m3(2cos @ — z@ sin @) (cos @ — r sin @ — s sin @
+20cos @ +2z0cos @ — 2O sin Q)

+m3(zsing +z@cos @) (Fsin@ + r@pcos ¢ + s cos @ + 20 sin @

+ 20 sin @ + 20 cos @)

+ ¢%0(J3 +J2) + mad 6 cos @(i-cos @ — r¢ sin@ — s¢p sin @

—dB6cosp —dsing) —myd>06?

+mad O sin @(i-sin @ + r¢cos @ + s@ cos ¢ —d OO sin @ +d cos @)

- 2m2929 —m302zz, (27)

Ag = my(—isin@ —r¢cos @ — s cos @ +dOOsin @ —d@cos @) (icos @
—rsing@ — s¢sin@ —dOO cos ¢ —dPsin Q)
+my(Fcos @ — r¢sin@ — s¢psinp —dO O cos ¢ — dsin @) (i-sin @
+rpcos P +spcos@ —dOOsing +dcos @)
+m3(—7sin@ — rgcos ¢ — s¢ cos ¢ —z0sin @ — z0sin @
— 200 cos @) (icos @ — r¢sin@ — spsin@ 4260 cos ¢ + 260 cos  — zpOHsin )
+m3(7cos @ — r¢sin@ — s¢sin @ + 260 cos @ +z60 cos @
—z(Osin@)(7sin @ + rcos @ +s¢ cos @ + 0 sin @
+ 20 sin @ + 29O cos Q) > H). (28)

4.2. The constraint

The condition that the forklift rolls without sliding on the plane means that
the instantaneous velocity of the point of contact of the forklift-wheel is equal to
zero at all times. This gives rise to the following nonholonomic constraints:

fl=#(cos@+sing) +re(cos —sing) =0,

) 29
f?=z¢+z0tanf =0, 29

or in normal form
. (cos @ —sin
p= g1 = g 0 _SNP)
(cos @ +sin ) (30)
z=gr = —z0tanb.

These two nonholonomic conditions define the constraint submanifold .
Constraint (29) obeys condition, i.e. it is semiholonomic. The geometric the-
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ory allows us to solve such a problem immediately, without integrating the con-
straint.

5 fi (cos@ —sin @)
aqo_} = rank 1o 0 r(cosq)-i—sin(p) =2. (31)

rank [
01 ztanB 0

4.3. Constrained mechanical system-reduced equations

The geometrical approach described in the first section applied to our prob-
lem leads to the constrained mechanical system [¢t,] related to the unconstrained
mechanical system [a]. The class [o)] is generated e.g. by the following repre-
sentative:

o, = A o' Ndr+ A o Ndt+ Ay’ Adi
: /51 . /32 a /33 : (32)
+ ) B0 Ndi+Bjpo° ANdO+B;z0° Ndo,
=1

where:
o' =dz—zdt, ©*=d0—0d:, © =do—dt.

Computing the coefficients Ajaccording to equation (10) we obtain following
expressions:

Al =mr¢? +4rR—(p22theel —maPsin@(#cos @ — r@sin @
—s¢sing —dBOcos @ —dpsing)
+my ¢ cos @(Fsin @ 4 rcos @ +s@cos @ —dOO sin +d@cos @)
—m3¢sin@(icos @ — r¢sin@ — s¢sin @ + 260 cos ¢ +z0 cos P — zpOHsin Q)

+m3 ¢ cos @(7sin @ + r¢ cos ¢ +s@ cos @ + 20 sin @ + 20 sin @ + 2¢O cos @),

(33)

A'z =A, —Ajzztan0, (34)

Al = A3 —Azr% (35)
and coefficients B)_ according to equation (11) are:

B, = —m3y0® —ms, (36)

B}, = By, = —m3z60 —2m3726? sin @ cos @ tan 6, (37)
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(cos @ —sin@)

(cos@ +sing)’ (38)

B3 = By, = 2m3z07 sin @ cos ¢ + m3z0r
B/ _ 2n2 2 2 1" 1" 3 .
2 = —mad 0° —mp0° —m3z" —J3 —Jy +4m3z°0sin@cos ptan 0, (39)
B)y = By, = —2m37°0sin@cos @
d20% — 0% — a2 — g — J (cos @ —sin@)
- (m " mz =S5 = )r (cos @ +sin@)

2
r . . .
_ (—m1r2 —J _4ﬁt}wheel —m3(rsin¢ + ssin (p)2 +7°67 51n2(p
—m3(rcos @ +scos @ +z60cos @)* —J5 —Jy — 0*(J3 +J5)ztan O,  (40)
2
r . . .

By =—myr* =, _4]§theel —m3(rsing +ssin@)® +z26%sin’ @

—m3(rcos @ +scos @ +z0cos @) —Js —Jb — 0% (J3+J2)

(cos @ —sing)

2m37*0si 22— =
+2m3z~0 sin @ cos @ r(cos(p Fsing)
cos @ —sin @ 2
o d292— 92_ 2_J//_J// 2 (XY S ] 41
+(=m e sz 3= h)r cos @ +sin @ S
The reduced equations are of the form:
|+ B+ B0 +B3¢ =0,
A+ B+ By 6+ By3¢ =0, (42)
A5+ B33+ B30 + B35, =0,
P (cosq)—s?n(p) _o,
(cos@ +sing) (43)
;+z0tanf = 0.

There is no analytical solution of reduced equations of motion, in general situa-
tion.

4.4. Numerical solution of reduced equations of motion

The reduced equations of the forklift motion derived in Section 4.3
(Egs. (42)) were numerically solved for following example values of param-
eters characterizing the forklift: m; = 280 kg, my = 40 kg and m3 = 100 kg;
R=0.15m; s =0.5m; J; = 160 kg-m?, J, = 0.018 kg-m?, J, = 13.36 kg-m?,
Jy =0.327 kgm?, J3 = 1.67 kgm?, J; = 1.67 kg:m?, J§ = 1.67 kg'm? and
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Jyheet = 0.045 kg-m?; ¢ = 9.81 m/s?, d = 1 m. A numerical solution was made
with the help of the program Maple.13. In Figs. 3-6, the graphical outputs 6(¢),
@(t), r(t) and z(¢) of calculations are presented.

2.0 -—
18] i
16| |
1.4.— —-
12] ]
10]- i
08| - K ]

06| . L . R

Forklift body rotation [rad]

0.4 - A e

02| - R ]

0_0-.‘. 1 .-' 1 s 1 L 1 L
0 1 2 3 4 5

Time [s]

Figure 3: Solution of forklift body rotation ¢(z) - (10~")

2'0 T T T T

16 o o ]
1_4-_ oo ) " Vo O o i
b - - o - .
10 DL . i
08 L . i

0.6 - ) -

Swing angle of mast [rad]

04 ; -

0.2 - . _

0.0F. .. " i

Time [s]

Figure 4: Solution of tangential swing angle 6(¢) - (10~")

A real forklift truck is a complex space structure. The governing equations
for the dynamic response of a forklift-truck (i.e., reduced equations) are derived
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Figure 5: Solution of forklift translation displacement r(r)
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Figure 6: Solution of center of the mass projection of the load on the (OZ) axis z (7)

based on Krupkova approach. These equations are essentially representing the
coupled engineering problem of structural dynamics and multi-body dynamics
are difficult to solve analytically. The numerical studies of reduced equations of
motion are presented and we find it as effective and applicable for problems in
physics and engineering for preliminary visualization.
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5. Conclusions

The presented results formulation indicate the effectiveness of the geomet-
rical theory of nonholonomic constraints for formulating of motion of concrete
nonholonmoic constraints systems with constraints based on the assumption of
rolling without slipping. In perspective of this research (Part II), actual work of
the authors focuses on experimental model of forklift truck for Krupkova ap-
proach validation are detailed.
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