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Abstract: The paper recapitulates recently conducted investigations of non-proportional
Luenberger observers, applied to reconstruction of state variables of induction motors. Three
structures of non-proportional observers are analyzed, a proportional-integral observer,
modified integral observer and observer with integrators. Criteria for gain selection of the
observer are described, classical ones based on poles, as well as additional, increasing
observer’s robustness. Fulfilment of the presented criteria can be ensured with the three
proposed methods for gain selection, two analytical, based on dyadic transformation and
one based on optimization.
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1. Introduction

From among all known types of Luenberger observers only proportional ones are commonly
applied in induction motor control systems [1]. Observers with feedbacks other than proportional
are more difficult to apply, however, they potentially provide better quality of state variable
reconstruction. An exemplary non-proportional observer is a proportional-integral observer [2–5]
that provides stronger reconstruction error attenuation than a proportional observer. Another non-
proportional observer, a proportional observer with integrators [6, 7], has the ability of alleviating
the disadvantageous impact of unknown disturbances present in an observed system. The third of
analyzed non-proportional observers, a modified integral observer [2, 3, 8], is characterized by
better robustness against disturbances overlaying observed system outputs.
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2. Mathematical model of an induction motor

The first step of observer design consists in the creation of an observed system’s mathematical
model. A linear dynamic system with n-element state vector x, p-element input vector u, q-element
output vector y and z-element vector d containing unknown disturbances, can be described with
a standard form set of matrix equations:


ẋ = A x + B2u + B1d
y = C x

. (1)

In (1) ẋ denotes the derivative over time of state vector x, A, B1, B2 and C are the real
matrices with proper dimensions and values dependent on equivalent circuit parameters of the
motor. Moreover, element values of the matrix A are dependent also on the angular speed of
the motor ω, treated as a parameter [1, 8]. Matrix equations (1) are derived from differential
equations describing an induction motor in transient states and algebraic equations of magnetic
couplings [9]:



ψ̇sα + Rsisα = usα

ψ̇sβ + Rsisβ = usβ
ψ̇rα + (ω − δω)ψrβ + Rr irα = 0
ψ̇rβ − (ω − δω)ψrα + Rr irβ = 0

,



ψsα = Lsisα + Lmirα
ψsβ = Lsisβ + Lmirβ
ψrα = Lr irα + Lmisα
ψrβ = Lr irβ + Lmisβ

. (2)

In (2) by ψsα and ψsβ magnetic fluxes coupled with the stator winding are marked in the
axes α and β of the stationary Cartesian coordinate system, respectively, ψrα and ψrβ denote the
fluxes coupled with the rotor winding. Similarly, isα, isβ , irα and irβ mark the currents of the
stator and rotor windings. Supply voltages of stator winding are denoted as usα and usβ . Constant
equivalent circuit parameters are denoted by Rs , Rr , Ls , Lr and Lm [9, 10].

It is assumed that the state variables of the motor ψsα, ψsβ , ψrα and ψrβ are included in the
state vector x, the inputs usα and usβ create the input vector u, outputs isα and isβ form an output
vector y. Additionally, disturbance δω was introduced in (2), symbolizing the difference between
the actual angular speed of the motor and the speed ω measured or reconstructed and passed to
the observer as a parameter. The δω signal is used only during the synthesis of a proportional
observer with additional integrators, in other cases it is omitted (δω = 0). Successive vectors of
the mathematical model (1) of the observed system assume forms:

x =


ψsα

ψsβ

ψrα

ψrβ


, u =

[
usα

usα

]
, y =

[
isα
isα

]
, d =

[
−ψrαδω

ψrαδω

]
. (3)

From the forms of vectors (3) it follows that for the mathematical model of the induction
motor n = 4, p = q = z = 2.
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3. Structures of the observers

State vector x of observed system (1) can be reconstructed with observers that have various
types of feedbacks. Each of them has its advantages and drawbacks that occur in particular
operating conditions.

A proportional-integral observer (PI) can be applied when the reconstruction quality provided
by a classic proportional observer is too low due to presence of excessive measurement noises.
Better operation of the PI observer is provided in such conditions by stronger feedback [2–4]. The
state equation of the PI observer assumes the form:

˙̂x = A x̂ + B2u + KP (C x̂ − y) + KI

t∫
0

(Cx̂ − y) d τ, (4)

where KP and KI denote the real gain matrices of proportional and integral feedback elements.
The reconstructed state vector of system (1) is marked by x̂. The PI observer provides potentially
better reconstruction quality than proportional one, however, it has twice as many state variables
and gains that makes its design more complicated. Another significant drawback is the structural
instability of the PI observer that occurs for some specific classes of the observed system,
independently of observer gains [4].

In the case when observed system (1) is driven with unknown disturbances included in
vector d, their negative impact on reconstruction quality can be alleviated with use of an observer
with integrators [6]. Its state equation has the form:

˙̂x = A x̂ + B2u + KP (Cx̂ − y) + B1

ν∑
k=1

Kν−k+1

t∫
0

· · ·
t∫

0︸    ︷︷    ︸
ν

(Cx̂ − y) d τν, (5)

where Ki denotes the gain matrix of the i-th additional integrator and ν is the number of applied
additional integrators. The greater the number of integrators, the stronger is compensation of
reconstruction errors caused by the presence of unknown disturbances. However, when more
integrators are applied, observer’s robustness against measurement noises included in outputs y
of observed system (1) is less. Another drawback of this observer is also possibility of structural
instability occurrence [7].

It can be proven [2, 3], that if the gains of the proportional and PI observers rise, the robustness
against measurement noises drops. This effect limits the possibility design of a high-gain observer,
characterized by strong reconstruction error attenuation. This effect does not occur in a modified
integral observer [3], described with the state equation:


ξ̇ = Aξξ + Bξu + Kξ

*..,Cξ1ξ −
t∫

0

y d τ
+//-

x̂ = Cξ2ξ

, (6)

where Kξ denotes the real gain matrix. The state vector of the observer ξ has greater number
of elements than the state vector x of observed system (1). Matrices of the observer assume the
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forms:

Aξ =


A 0n×q
C 0q×q

 , Bξ =


B2

0q×p

 , Bξ1 =
[
0q×n 1q

]
, Cξ2 =

[
1n 0n×q

]
. (7)

In (7) 1n denotes the identity matrix of n-th order and 0i×j denotes the i-row j-column
null matrix. The most significant drawback of this observer is tendency to constant component
cumulation.

Problems with instability and constant component cumulation that occur in non-proportional
observers described with (4), (5) and (6) demand modification of their structures. Modification
that consists in replacing integrators in observer’s feedback with first-order inertia has been
proposed [11]. On application of this modification, it is always possible to provide stability of the
observer by proper gains selection, and cumulated value of constant component can be limited as
well.

4. Characteristic polynomial of the observer

Analysis of observer’s dynamical properties and its gain selection is based on its character-
istic polynomial ϕ(s). In order to derive the characteristic polynomial of a given observer, its
mathematical model has to be transformed to the form of an equivalent proportional observer as
follows:

ẋo = Aoxo + Ko (Coxo − y) . (8)

The state vector of equivalent proportional observer xo has no elements. Inputs and dis-
turbances are omitted in (8), because they have no influence on a gain selection process. The
characteristic polynomial of observer (8) assumes the form:

ϕ(s) = det
(
Ao + KoCo − s1no

)
=

no∏
i=1

(s − λi), (9)

where λi denotes the i-th root of the characteristic polynomial, also called the eigenvalue or the
pole of the observer. The forms of matrices Ao, Ko and Co in (8) depend on type of observer’s
feedback. The observer’s feedback type determines also the number no of state variables of
equivalent proportional observer (8). For the PI observer described with (4), the number of state
variables no = 2n, and matrices assume the forms:

Ao =


A 1n

0n×n −ωc1n

 , Co =
[
C 0q×n

]
, Ko =


KP

KI

 , (10)

where ωc is the inverse of the inertia time constant of modified integrators in the observer’s
feedback. For the observer with integrators, described with (5), no = n + zν:

Ao =


A 0n×z(ν−1) B1

0z×n 0z×z(ν−1) 0z×z
0z(ν−1)×n 1z(ν−1) 0z(ν−1)×z


+


0n×n 0n×zν
0zν×n −ωc1zν

 , Ko =



KP

K1
...

Kν


, (11)
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Co =
[

C 0q×zν
]
. (12)

For the modified integral observer, described with (6), no = n + q:

Ao =


A 0n×q
C −ωc1q

 , Ko = Kξ , Co = Cξ1 . (13)

Block diagrams of all the discussed observers are shown in Fig. 1.

Fig. 1. Block diagrams of observers with various types of feedbacks, modified integrators are marked
with grey background

5. Experimental investigations

The presented observers have been tested in a multiscalar control system [10, 12]. The block
diagram of the applied control system is shown in Fig. 2. Multisclar state variable x21 has the value
equal to the square of a rotor flux module. State variable x12 is proportional to the electromagnetic
torque of the motor te. The observer was equipped with the speed adaptation mechanism described
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in [1]. Estimation quality may be evaluated based on shapes of the transients of the multiscalar
space variables x12 and x21. The more disturbed they are, the worse is estimation quality. In
particular, in the ideal case, the transient of x21 should have the form of a flat line.

Fig. 2. Block diagram of laboratory system

6. Gain selection criteria

Dynamical properties of the observer are determined by its eigenvalues λ. A gain selection
process consists in obtaining such values of observer’s Ko elements that eigenvalues described
with (9) were properly placed in the complex plane. Real parts of all eigenvalues must be negative
in order to provide the stability of the observer. The greater are absolute values of eigenvalue real
parts, the shorter are the time constants of the observer and the stronger reconstruction errors are
attenuated. Eigenvalue imaginary parts are equal to proper vibration pulsations of the observer.
It is favorable when imaginary parts are equal to zero, because then the observer is a clearly
inertial (non-oscillatory) system, therefore there is no threat of occurrence of resonance that
might substantially increase reconstruction errors.

Apart from basic criteria based on eigenvalues, additional ones can also be introduced. For
example, it may be concluded from previous research conducted by the authors [5] that the greater
is robustness of the observer against measurement noises, the lesser is the value of the quantity
named by the authors a matrix amplification index. This quantity is defined with the formula:

∥Ko∥w =
1
no

no∑
i=1

√√√ q∑
j=1

(
K(i, j)
o

)2
, (14)

where K(i, j)
o is the element of the matrix Ko placed in its i-th row and j-th column.
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Other additional criteria can be introduced based on special properties of the observed system.
For example, all the matrices of the induction motor described with (1)–(3) are composed of
second-order square submatrices of the following form:

G =


a −bω

bω a

 , (15)

where G is the elementary 2-nd order matrix, a and b are real scalars. It can be proven that if
the gain matrix of the observer is also built in this way then the observer has identical dynamical
properties for positive and negative angular speed ω. Such property is demonstrated by the
observer described in [1]. If this criterion is not met, then the eigenvalues of the observer depend
on the direction of motor rotation.

7. Optimization gain selection

In order to calculate observer’s gains with an optimization method, selection criteria have to
be expressed with fitness function. The function proposed by the authors has the form:

F =
∑
i

kiFi , (16)

where Fi is the component representing i-th selection criterion and ki is the weight coefficient.
Each function Fi equals zero when a corresponding criterion is met. Its positive value becomes
greater, when the achieved solution becomes more distant from the optimal solution. The function
F defined in this way always has the minimum value.

A stability criterion is represented with the component:

F1 =

no∑
j=1


1 if Re(λ j ) > 0
0 if Re(λ j ) ≤ 0

. (17)

Function F1 equals zero when all the eigenvalues of the observer are placed in the left part of
the complex plane.

Component F2 is increased, when real parts of eigenvalues become more distant from assumed
reference value λref :

F2 =

no∑
j=1

���Re
(
λ j − λref

) ��� . (18)

An analogous component for imaginary parts is defined with the assumption that the reference
value equals zero:

F3 =

no∑
j=1

���Im(λ j )
��� . (19)

Components F2 and F3 describe criteria connected with observer’s time constants and proper
vibration pulsations.
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Robustness of the observer can be increased with application of the component:

F4 = ∥Ko∥w . (20)

The produced fitness function was minimized with a genetic algorithm. The calculation
process consists of three stages. First, the form of the gain matrix Ko has to be assumed. Additional
criterion (15) can be applied at this stage. Next, the roots λi of characteristic polynomial (9) have
to be calculated. In the end, the value of fitness function (16) has to be calculated. All calculations
should be performed for several values of angular speed ω, chosen from the expected operation
range of the motor.

The eigenvalues and laboratory test results obtained for the observers with integrators are
presented in Fig. 3. Observers’ gains were selected with the presented optimization method.
Additional criterion (15) has been applied, therefore eigenvalue plots are symmetrical in relation
to the straight line representing ω = 0.

In Fig. 3 transients of multiscalar state variables are shown. The presented transients were
recorded during acceleration of the motor and during reversal performed at low angular speed.

Fig. 3. Eigenvalues and experimental results of the observer with additional integrators with gains
selected with genetic algorithm



Vol. 67 (2018) Non-proportional full-order Luenberger observers of induction motors 933

8. Analytical gain selection

Many of known analytical methods for control system design can be adopted to gain selection
of the observer. These methods have one significant drawback, they are relatively easy to apply
only when the correction feedback signal is one-dimensional. In the case of observers it means
that the observed system should have one output only (q = 1). This problem can be solved with
use of dyadic transform (described in section 7.1) that should be applied before gain selection
performed by such methods (described in 7.2 and 7.3).

8.1. Dyadic transform

The basic idea of the transformation consists in decomposition of the gain matrix Ko to dyads
[12, 13]. Each dyad is a first-order matrix being the product of one of the matrix Ko columns and
corresponding row of an identity matrix:

Ko =

q∑
i=1

K[i]
o 1{i }q =

q∑
i=1, i,j

K[i]
o 1{i }q︸           ︷︷           ︸

Kd (κ)

+ K[j]
o︸︷︷︸

kd (κ)

1{ j }q = Kd (κ) + kd (κ)1{ j }q , (21)

where the superscript [i] denotes the i-th column of the matrix and the superscript { j} denotes the
j-th row of the matrix. On decomposition, the j-th dyad is treated as unknown and it will be further
computed with one of methods described in sections 7.2 and 7.3. All other dyads are summed
and create matrix Kd . Element values of this matrix should be arbitrary assumed. Moreover,
parameter κ can be introduced into assumed values, in order to provide an additional degree of
freedom that makes it possible to consider additional gain selection criteria. The parameter value
is to be chosen at the end of the gain calculation process.

The created Kd matrix together with matrices Ao and Co describing the observed system
defines a mathematical model of a new equivalent observed system with one output, represented
by the matrices: 

Ad (κ) = Ao + Kd (κ) Co

Cd = 1{ j }q Co

. (22)

The observer of the equivalent system has the form of proportional observer (8) and is
described with matrices Ad, Cd and column vector kd . Application of additional criterion (15) is
impossible with this method, this results from the basic idea of dyadic transformation.

8.2. Modified Söylemez–Munro method

In [13, 14] Söylemez and Munro proposed an analytical method for pole placement of a linear
control system. This method has been adopted by the authors for observer design. In dyadic
transform that reduces a multi-dimensional gain selection problem to a single-dimensional one,
the desired j-th dyad represented by column vector kd can be calculated with the formula:

kd (κ) =
[
Φ(κ)T

]−1
X(κ)−1δ(κ), (23)
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where X is the lower-triangular Toeplitz matrix, containing coefficients of the matrix Ad charac-
teristic polynomial:

X(κ) : X(κ)(k,m) =


0 if k < m

1 if k = m

a(κ) {no−k+m+1} if k > m

where k ∈ [1; no], m ∈ [1; no] (24)

and a is a vector of characteristic polynomial coefficients of the matrix Ad , in which the element
with number no + 1 has been omitted. This element corresponds to the greatest power and from
properties of characteristic polynomial it follows that its value always equals 1. Matrix Φ is
defined with:

Φ(κ) : Φ(ω, κ)[k] =
(
Ad (κ)T

)k−1 (
−C{ j }o

)T
, where k ∈ [1; no]. (25)

Φ must be non-singular. If it is not, calculation of gains is impossible. In such case, as-
sumptions made during dyadic transform must be changed. In (23), vector δ contains differences
of coefficients of two characteristic polynomials. The first one is calculated for matrix Ad and
denoted as a. The second one is calculated based on the assumed desired eigenvalues of the
observer λref , and is represented by vector α:

δ(κ) = α − a(κ). (26)

Since parameter κ is present, equation (23) has to be evaluated symbolically, thus software
for computer aided symbolical calculations must be applied. Another parameter that appears in
(23) is the angular speed of the motor ω. Calculated kd vector ensures that all the eigenvalues
of the observer are equal to reference ones λref . Since parameter κ is present, the gain selection
problem has an infinite number of solutions. This enables further taking into consideration an
additional criterion consisting in minimization of matrix amplification index (14).

The results of the gain selection and laboratory tests obtained for the PI observer are presented
in Fig. 4. During the gain selection it occurred that independently of the assumptions made during

Fig. 4. Eigenvalues and experimental results of the PI observer with gains selected with the
method proposed by Söylemez and Munro
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the dyadic transform, matrix Φ was always singular for angular speed ω = 0. This is why the
eigenvalues are different from reference ones in close neighborhood of this speed. From the
recorded transients it can be seen that these differences have no impact on proper operation of the
control system, because even for ω = 0 the observer remains stable (Re(λ < 0).

8.3. Basis transformation method

The same dynamic system can be described with (1) in many equivalent ways that differ in
a set of chosen state variables contained in the state vector x. In particular, when two different
state vectors are linear combinations of each other, in both cases the matrices in (1) have different
values; nevertheless the eigenvalues are the same. The set of state variables defines the base
of the system and transformation of the basis has no impact on its dynamical properties. Basis
transformation of the observed system after the dyadic transform, described with matrices Ad

and Cd , results in matrices Adt and Cdt :

Adt (κ) = T(κ)−1Ad (κ) T(κ),

Cdt = cCd T(κ),
(27)

where T is the basis transformation matrix that must be non-singular. The principle of the basis
transformation method consists in finding such transformation matrix that transforms matrices of
the system into canonical forms:

Adt (κ) =


01×(no−1)
- - - - - -
1no−1 --

--
--

− a(κ)
 ,

Cdt =
[
01×(no−1) 1

]
.

(28)

From the definition of characteristic polynomial (9) it may be inferred that gain matrix kdt of
the observer (8) of the system described with matrices (28) is equal to the difference of vectors
of characteristic polynomial coefficients:

kdt (κ) = a(κ) − α . (29)

Thus, in order to calculate observer’s gains with the basis transformation method, first trans-
formation (27) must be performed, then gains of the observer for the transformed system have to
be calculated with (28), and in the end, reverse transform of the calculated gain vector is to be
performed:

kd (κ) = T(κ) kdt (κ) . (30)

The last step is selection of κ parameter, which is performed in the same way as in the
Söylemez–Munro method.

The results of the gain selection and laboratory tests obtained for the modified integral observer
are presented in Fig. 5. The assumed reference eigenvalues dependent on angular speed of the
motor ω.
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Fig. 5. Eigenvalues and experimental results of the modified integral observer with gains selected
with the basis transformation method

9. Summary

The paper recapitulates the results of investigations that have been conducted by the authors
in recent years. Three structures of non-proportional observers have been analyzed and applied.
Proper operation of the observers has been confirmed with laboratory tests. Complicated structures
of the observers result in difficult selection of their gains.

The gains can be computed with three methods developed by the authors in order to meet clas-
sic selection criteria based on eigenvalues as well as new ones proposed by the authors. Analytical
methods enable more precise pole placement than optimization. However, the optimization with
a genetic algorithm is the only one of the proposed methods that fulfils a criterion of symmetry
(15). It also enables such selection of the gains that they are independent of the angular speed of
the motor.
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