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STUDY ON MINE VENTILATION RESISTANCE COEFFICIENT INVERSION BASED 
ON GENETIC ALGORITHM

BADANIE INWERSJI WSPÓŁCZYNNIKÓW OPORU WENTYLACJI KOPALNIANEJ 
NA PODSTAWIE ALGORYTMU GENETYCZNEGO

The frictional resistance coefficient of ventilation of a roadway in a coal mine is a very important 
technical parameter in the design and renovation of mine ventilation. Calculations based on empirical 
formulae and field tests to calculate the resistance coefficient have limitations. An inversion method to 
calculate the mine ventilation resistance coefficient by using a few representative data of air flows and 
node pressures is proposed in this study. The mathematical model of the inversion method is developed 
based on the principle of least squares. The measured pressure and the calculated pressure deviation along 
with the measured flow and the calculated flow deviation are considered while defining the objective 
function, which also includes the node pressure, the air flow, and the ventilation resistance coefficient 
range constraints. The ventilation resistance coefficient inversion problem was converted to a nonlinear 
optimisation problem through the development of the model. A genetic algorithm (GA) was adopted 
to solve the ventilation resistance coefficient inversion problem. The GA was improved to enhance the 
global and the local search abilities of the algorithm for the ventilation resistance coefficient inversion 
problem.
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Współczynnik oporu oporu wentylacji jezdni w kopalni węgla jest bardzo ważnym parametrem tech-
nicznym w projektowaniu i renowacji wentylacji kopalnianej. Obliczenia oparte na wzorach empirycznych 
i badaniach terenowych w celu obliczenia współczynnika oporu mają ograniczenia. W niniejszym badaniu 
proponuje się inwertowaną metodę obliczania współczynnika oporu wentylacji kopalni za pomocą kilku 
reprezentatywnych danych dotyczących przepływu powietrza i ciśnienia w węzłach. Model matematyczny 
metody inwersji jest opracowywany na zasadzie najmniejszych kwadratów. Zmierzone ciśnienie i ob-

* COLLEGE OF SAFETY SCIENCE AND ENGINEERING, LIAONING TECHNICAL UNIVERSITY, HULUDAO, LIAONING, 
CHINA

 KEY LABORATORY OF MINE THERMO-MOTIVE DISASTER AND PREVENTION, MINISTRY OF EDUCATION, HULU-
DAO, CHINA

** THE AUTHORS CONTRIBUTED EQUALLY TO THIS WORK
# Corresponding author: E-mail: lj1961@vip.sina.com



814

liczone odchylenie ciśnienia wraz z zmierzonym przepływem i obliczonym odchyleniem przepływu są 
uwzględniane przy określaniu obiektywnej funkcji, która obejmuje również ciśnienie w węźle, przepływ 
powietrza i ograniczenia współczynników oporu wentylacji. Problem odwrotności współczynnika oporu 
wentylacji został przekształcony w nieliniowy problem optymalizacji poprzez opracowanie modelu. 
Zastosowano algorytm genetyczny (GA) w celu rozwiązania problemu inwersji współczynnika oporu 
wentylacji. GA został ulepszony w celu zwiększenia globalnych i lokalnych możliwości wyszukiwania 
algorytmu problemu odwrotności współczynnika oporu wentylacji.

Słowa kluczowe: wentylacja kopalni węgla, współczynnik wentylacji, odwrócenie, algorytm genetyczny

1. Introduction

Underground mining is the primary method of coal mining in China. This method is sub-
ject to various complex and serious disasters, such as gas explosion and outburst, fire, and coal 
dust, all of which can be prevented and controlled by mine ventilation (El-Nagdy, 2013). The 
operating conditions of the main fans depend mainly on total mine ventilation resistance, and the 
ventilation resistance distribution determines the distribution of air volume in the underground 
mine (Cheng et al., 2012). The main fans and distribution of air are the main factors responsible 
for safe production in coal mines. 

The shape of the section, the length, and the supporting method of mine roadways have 
remained unchanged over a considerable period; hence, the ventilation resistance, which is the 
inherent property of a roadway, is a constant value. Meanwhile, ventilation resistance that can be 
obtained by empirical formula calculation and ventilation resistance test are important parameters 
in the simulation of the ventilation system. The friction resistance coefficient obtained by the 
empirical formula calculation is based on the mine roadway design rules, but this value deviates 
from the actual value significantly. The ventilation resistance test can measure the pressure and 
air volume; however, as the mine ventilation system has been installed and is operational, air 
volume and pressure measurement errors exist.

Based on the above discussion, it can be said that the study of the method to inverse the mine 
ventilation system resistance coefficient in operation by measuring the pressure and air volume 
representative node in mine roadway is worthwhile. It also has very practical significance for 
ventilation system fault identification and sensitivity analysis of the ventilation system. Inoue 
Masahiro first proposed mine ventilation resistance coefficient inversion by testing the pres-
sure and air volume in parts of mine roadways (Masahiro, 1987). Wang and Liu presented three 
methods for adjusting the estimated value of mine ventilation resistance (Wang et al., 1989). An 
algorithm for choosing the optimum circuit for the minimum regulation number of the measured 
airflow and evaluated resistance model was proposed by Si and Chen; and a method for solving 
the parameters of the Tikhonov regularisation based on the greedy algorithm was proposed to 
revise the model (Si et al., 2012). Ju and Wang proposed an orthogonal optimal design method 
for adjusting the air volume governing equations for known mine ventilation resistance intervals 
(Ju et al., 1991). Li et al. introduced an analytical calculation method based on the node pressure 
energy to solve the problem with the ventilation resistance measurement in some roadways (Li et 
al., 2012). An increasing number of successful applications of intelligent optimisation algorithms 
can be found in the engineering community. Increasing number of studies have been conducted 
on genetic algorithms in order to identify the pipe network resistance coefficient (Schaetzen et 
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al., 2000; Kapelan et al., 2003a; Kapelan et al., 2003b).The basic idea of a genetic algorithm is 
to convert the nonlinear model established by the least squares method into a nonlinear objective 
function, and then to solve the objective function using optimisation method. Vitkovsky, Simpson, 
and Lambert have improved the standard genetic algorithm to evaluate the resistance coefficient 
and to locate leakage in pipe network (Vítkovský et al., 1999). Lingireddy and Ormsbee cor-
rected the model parameters of a pipe network by using genetic algorithm and added linear and 
nonlinear constraints to the objective function by the use of the penalty function (Lingireddy 
et al., 1999).

An in-depth study on mine ventilation resistance coefficient inversion was undertaken in this 
study. An algorithm with improved mathematical model of ventilation resistance coefficient inver-
sion based on least squares method was introduced to solve the problem. Furthermore, research 
methods, results of the water supply network and heating pipe network in identifying resistance 
coefficients, and the three basic laws of fluid networks were used in this study.

2. Ventilation resistance coefficient inversion 
mathematical model

Utilising the mathematical model built by the least squares method to solve the problem of 
mine ventilation resistance coefficient inversion, an optimal or satisfactory solution is obtained 
by observing the data and utilising optimisation algorithm. Thus, the problem of mine ventilation 
resistance coefficient inversion under few measured points and multiple observations is translated 
into the problem of nonlinear function optimisation.

2.1. Objective function

Measured pressure values in X and air values of the roadway in Y were used to match the 
inversion model containing Z unknown system parameters. The process of finding a group of 
parameters to maximise the probability of uniformity between the measured values and the cal-
culated values from the ventilation network solution is called maximum likelihood estimation, 
which works under the condition that a group of parameters of ventilation resistance coefficient 
are provided. The reason for the above process is that the pressure values and roadway air values 
of the node are the actual measured values rather than the fitting parameters (Shi et al., 1997). If 
a random error, which obeys the normal distribution under the condition that the standard devia-
tion is σi, occurs in the measured pressure value and roadway air value in each node, the total 
likelihood of the probability of the range of measured pressure value and roadway air value in 
each node between pdi + Δp and qdj + Δq is:
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The optimal solution of the parameter α was found by seeking the maximum value of 
probability ξ. A mathematical transformation using logarithmic operation was performed on the 
above equation, resulting in: 
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When ln(ξ ) reaches its maximum value, then –ln(ξ ) reaches its minimum value.
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After removing the constant term, the following formula was assumed.
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Eq. (3) can be simplified into the following equation under the assumption that the stand-
ard deviation of the measured value is a constant term and the weight can be represented by the 
reciprocal of the square of standard deviation.
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The objective function of the mathematical model in mine ventilation resistance coefficient 
inversion can be chosen from Eqs. (3) and (4), which are both derived according to the prin-
ciple of least squares. Eq. (4) was chosen to be the final objective function form in this study. 
After considering the characteristics of ventilation network, the final objective function was the 
minimisation of the deviation between the real and calculated pressure values and the deviation 
between the real and the inverted air values in the measured node.
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where R — ventilation resistance coefficient in the roadway, N×s2/m8; pdi — the solution of the 
pressure value in I-th measured node, Pa; pdi

* — the real measured pressure value in I-th measured 
node, Pa; qdj — the inversion air volume in J-th measure node, m3/s; qdj

* — the real measured air 
volume in J-th measure node, m3/s; ωpi — the weight factor of the I-th measure node; ωqj — the 
weight factor of the J-th measure node; X — the number of measured nodes for pressure; Y — the 
number of measured nodes for roadway air value; L — the number of the cases for ventilation 
resistance coefficient inversion. 

In the system that arranges pressure measured node only, Eq. (5) can be converted to the 
following equation:
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In the system, which only arranges air value measure node in branches, Eq. (5) can be 
converted to the following equation:
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F q qR   (7)

2.2. Constraint conditions

Under any working condition, the ventilation system must meet the following constraints:

(1) Flow constraint
The air flow at the mine ventilation network nodes follows the flow conservation law. 

Moreover, the flow out of the node is positive, while the flow into the node is negative. Any 
node inflow equals the flow out of the node and the algebraic sum of flow at any node equals 0. 
The law of conservation of mass is thus met.

 , 0 ( 1,2, , )m ijq i m  (8)

where qm, ij — the flow of the J-th associated roadway of node I, m3/s.

(2) Pressure constraint
Each loop of the ventilation network satisfies the Kirchhoff’s second law, whereby the al-

gebraic sum of resistance loss of any closed loop equals to 0. The law of conservation of energy 
is thus met.
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where hi
(k) — the resistance loss of the branch i in the loop k, Pa; δhk — the adjustment accuracy 

of the loop, Pa; |Ck| — the number of branches in the k-th loop; L — the number of the basic loops.

Inside, the resistance loss of branches is 

 ???????????? 

Where hij — the resistance loss of branch J associated with node I, Pa; rij — the wind resistance 
of branch J associated with node I, N×s2/m8, qij — the flow of branch J associated with node I, 
m3/s, h'ij — the additional resistance of branch J associated with node I, Pa.

(3) Range constraint of the ventilation resistance coefficient 
There is a range constraint in roadway wind resistance of operating mine ventilation system 

to ensure the validity of the result of inversion. The constraint range can be represented by the 
following equation:

 min max0 R R R   (10)

where Rmin — the column vector of the lower limits of the ventilation resistance coefficient and 
Rmax — the column vector of the upper limits of the ventilation resistance coefficient.
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In summary, the complete mathematical model of mine ventilation resistance coefficient 
inversion can be represented by the following equations:
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The engineering significance of this mathematical model can be explained as follows. Un-
der the restraint conditions the model needs to satisfy the three basic laws of fluid network and 
the available range of ventilation resistance coefficient. The aim of mine ventilation resistance 
coefficient inversion is to minimise the deviation between the real and calculated pressure values 
and the deviation between the real and inverted air values in the measured node under single or 
multiple loading conditions. Theoretically, there is an optimal solution to make the deviations 
equal to zero. However, the deviations cannot be zero as there are some errors in measurement 
and some changes in observed underground environment. It is unnecessary or impossible to 
achieve zero-error in practical engineering application. Instead, the commonly used method is to 
control the deviation beneath a limit error level ε and to make the minimum F(R) less than ε so 
that the problem of ventilation resistance coefficient inversion can be converted to the problem 
of nonlinear optimisation.

3. Inversion method of ventilation resistance coefficient 
based on genetic algorithms

3.1. Improvement of standard genetic algorithms

The problems associated with the ventilation resistance c  oefficient inversion include large 
dimensions, large search space, large computation times, and high computational accuracy require-
ments. The standard genetic algorithms (SGA) cannot meet the demand of ventilation resistance 
coefficient inversion because SGA suffers from slow and early convergence when used for this 
purpose. Hence, some appropriate improvements must be made on SGA. The specific improve-
ment measures on SGA in this study include:

(1) Real number encoding instead of binary coding
Floating-point numbers are used to represent roadway ventilation resistance in practical 

applications. Several factors, such as the support condition of the roadway, the length of the road-
way, the sectional area of the roadway, the perimeter of the roadway and the degree of roughness 
of the wall influence the size of the ventilation resistance. There is a big range for the roadway 
ventilation resistance from 10–4 to 104 and this is chosen to be the unified interval of the ventila-
tion resistance. The minimum resistance can be found in the short roadway, such as link-roadway 
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and pedestrian ventilation roadway, while the maximum resistance can be found in roadways 
such as the completely closed air door and the roadway with a seriously deformed roof and floor.

Regarding the problem of the ventilation resistance coefficient inversion, real number cod-
ing was chosen to represent the solution vector of resistance coefficient, R, which meant that all 
roadways in the system would be arranged in a certain order to form a real number string. The 
range of ventilation resistance had to narrowed as the use of a big range resulted in randomisa-
tion in the searching process and even stagnation, which worked against the factor operation of 
genetic algorithms.

 10( ) log ( )f x x   (12)

Eq. (12) indicates a reduced range of the wind resistance range in the log scale of 10; there-
fore, the new range of ventilation resistance r' is from –4 to 4.

(2) Use of the ‘elite retention strategy’ (Technology of Elitism)
The introduction of the elite re tention strategy, also known as the technology of elitism, 

avoided the loss of the optimum individual that could directly duplicate into the next genera-
tion. The rate of convergence of genetic algorithms can be accelerated using an appropriate elite 
retention strategy.

(3) Use of the tournament selection to replace the roulette selection
The roulette selection is an option based on proportional selection that can easily lead to 

early convergence or stagnation. In order to avoid this disadvantage, a ranking selection known 
as the tournament selection was chosen.

(4) Strategy for improving crossover operator
An improvement was made in non-uniform crossover operator after assuming that two new 

sub-individuals p'1 and p'2 were produced after uniform crossover operation from the two parent 
individuals p1 and p2. The crossover probability of the two parent individuals was Pc.
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Obviously, the fitness value of p1 is larger than p2 in Eq. (13). The value of the new indi-
vidual p'1 was outside the interval [p1, p2]; however, the value of the new individual p'2 was still 
inside the interval [p1, p2]. A random number, β was chosen within the interval [0, 1] to execute 
crossover operation continuously until the demand that p'1 was inside the searching space was met.

(5) Strategy for improving mutation operator
A simple and fast uniform variation operator was chosen. Each gene component of the par-

ent individual pi, which was chosen to execute the mutation operation, was operated with the 
same probability. The mutation operation involved choosing a random value within the range 
of the variable corresponding to the gene component. In the most extreme case, either all genes 
mutated or none did.

(6) Adaptive selection of the probability of crossover and mutation
An adaptive method, which chooses a smaller probability of crossover and mutation in order 

to retain the excellent individual during the evolution, was chosen for those with a big adaptive 
value. A bigger probability of crossover and mutation was chosen for those with small adaptive 
value in order to weed them out during the evolution.
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Some issues also exist in the method discussed above. One problem is that the probability 
of crossover and mutation is close to zero when the individual adaptive value is close to the 
maximum of the adaptive v alue of the population. A further improvement can be made to make 
the probability of crossover and mutation of the individual non-zero, with maximum adaptive 
value, as follows:
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where pc — the probability of crossover, pm — the probability of mutation.

(7) Fitness scale
The exponential transformation was chosen to be the fitness scale in this study, as shown 

below:

 f ' = e–α f (16)

3.2. Treatment of genetic algorithms toward constraints 

The method of using constraints in this paper involved the use of the penalty function method 
in order to convert the problem of constrained optimisation to that of unconstrained minimal 
optimisation. The penalty function method was easy and simple, but it was difficult to choose 
an appropriate penalty factor to ensure that the objective function had a better approximation to 
origin al constrained optimisation problem.

 
T T
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The inverted ventilation resistance ri of branch i in any solution vector R can be defined by 
the following relation.

 
2

min max( ) [ ( ) / 2]i i ir r r r   (17)

A penalty function, φ(R), was formed to convert the problem of constrained optimisation 
to the problem of unconstrained minimal optimisation.

 1
( ) ( )

n

i i i
i

rR   (18)

Each roadway wind resistance has its reasonable range of range, falls within this range of 
wind resistance that is a reasonable set of solutions. The penalty function, φ(R), used the minimum 
of the square sum of the differences between the reversal wind resistance and the centre of the 
ventilation resistance constraint range as the standard. The closer the centre value is, the more 
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the inversion ventilation resistance becomes. The greater the distance is, the more ventilation 
resistance difference is. The value of ωi is 1 as usual.

After substituting the penalty function formula (18) into the equation (11), the problem is 
converted to that of unconstrained minimization optimisation.
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Usually, the value of f1 is larger than the value of f2. If the objective function is chosen to be 
the fitness function directly, the fitness function cannot guide the evolution of the optimisation 
algorithm effectively. Therefore, an appropriate scale was used, which was different with the 
fitness scale in genetic algorithms, to create a balance between f1 and f2. In this paper, we used 
the logarithmic transformation of 10.
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In the equation above, both f1 and f2 are zero when F(R) and φ(R) are equal to zero.

4. Example analysis

There are twelve nodes, seventeen branches and seven independent circuits in the ventilation 
network of Figure 1. The branch e17 was a branch with a fan. The equation for the characteristic 
curve of the fan was hf = 12 955.83 + 407.387 75q – 3.877 5q2. The independent loop of the 
ventilation network can be seen in Table 1. The original ventilation resistance and inversion air 
volume can also be seen in Table 2. The air volumes of all branches were obtained by solving 
the ventilation work using the cross iteration method. Then, the ventilation resistance coefficient, 
which was inverted from the calculated air volume data, was compared to the origin ventilation 

Fig. 1. Simple ventilation network
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resistance to analyse the inversion errors and effects. The original ventilation resistance and 
inversion air volume of this example can be seen in Table 2.

TABLE 1

Circuits of the ventilation network

Loop number Base branch Loop branch
C1 e4 e3, e1, e2, e5
C2 e6 e14, e15, e11, e7, e3
C3 e8 e12, e11, e7, e3, e1, e2, e5
C4 e9 e13, e12, e11, e7, e3, e1, e2
C5 e10 e11, e15, e14
C6 e16 e15, e12, e13
C7 e18 e1, e3, e7, e11, e15, e17

TABLE 2

Branch resistance and air flow of the ventilation network

Branch Origin ventilation resistance (N×s2/m8) Air volume (m3/s)
e1 0.08 64.431
e2 0.14 55.580
e3 0.20 32.959
e4 0.65 4.754
e5 0.20 25.648
e6 1.02 31.472
e7 1.00 28.205
e8 1.00 30.402
e9 1.20 29.932
e10 0.30 2.869
e11 0.32 31.074
e12 0.33 22.396
e13 0.30 8.006
e14 0.80 28.603
e15 0.12 53.469
e16 0.34 37.938
e17 0.13 120.011

The constraints on the range of ventilation resistance in this example were approximate; 
however, the actual situation should be combined with the constraints of the ventilation resist-
ance range. For important roadways, a close approximation to the real roadway resistance was 
made to get an approximate solution of the original ventilation resistance through optimisation.

The symbol, P, in the next figures and tables represent the population size.
The objective function and fitness scale function were established according to Eq. 19. The 

converted ventilation resistance in the fitness scale function was obtained through the penalty 
function method. The penalty factor, a, was used to estimate the proportional relationship between 
f1 and f2 based on the result of the test run and its value was 10. The range of the constrained 
ventilation resistance can be obtained by the multiple of the original ventilation resistance to 
describe the ventilation resistance coefficient inversion through the GA. The value of rmin was 
one tenth of that of ri and the value for rmax was ten times that of ri. Furthermore, the reduced 
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ventilation resistance range, [log10 rmin, log10 rmax], was found through the log operation based 
on 10 to avoid problems in floating point calculation 

Parameters control through a genetic algorithm. As the scale of this ventilation network was 
small, the controlled parameters were chosen artificially. The controlled parameters in ventilation 
resistance inversion by the genetic algorithm are shown in Table 6.

The inversion results based on the genetic algorithm were estimated where the population 
sizes were estimated as 50, 100 and 200 successively. Figures 2-4 show the GA’s evolutionary 
curves, while Table 5 shows the inversion results. With the growth of the evolution population 
and iterative searching in the genetic algorithm, the four subgraphs in Figures 2-4 were the best 
fitness, worst fitness, average fitness and fitness of standard deviation respectively.

The four adaptation curves showed a decreasing trend, thereby indicating the tendency of 
the evolutionary process to converge. However, the variance curve of the fitness of standard 
deviation was always in a downward trend, which meant that more similar the individuals in the 
population were becoming, the lower the diversity of the population was getting. In other words, 
it showed that the genetic algorithm was falling into a local optimum and had not yet converged 
to the optimal solution. There was a big error in ventilation resistance between the original value 
and the value from the solution.

Meanwhile, it can be seen from the best fitness curves in Figures 2-4 that the fitness scale, f, 
is decreasing when the population size is getting larger with other control parameters unchanged. 

Fig. 2. GA’s evolution when P = 50 Fig. 3. GA’s evolution when P = 100

Fig. 4. GA’s evolution when P = 200 Fig. 5. Ventilation resistances obtained from various 
population sizes
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TABLE 3

GA Parameters for ventilation resistance inversion

Parameter Data value
Coding scheme Real number encoding
Variable interval 0.1 to 10 times of the origin ventilation resistance
Population size 50/100/200

End condition The average fi tness of the population is close to the fi tness 
of the population (the value of the error is less than 0.001)

The probability of crossover Adaptive selection
The probability of mutation Adaptive selection

Selection operator Rank Selection
Crossover operator Single-Point Crossover
Mutation operator Single-Point Mutate

TABLE 4

Objective values of the optimal solutions under various population sizes

Number Population size
Fitness value ( f = 1 + f1 + α f2, where α = 10)

f1 f2

1 50 3.761 0.046
2 100 3.817 0.035
3 200 3.128 0.030

TABLE 5

Optimal solutions with various population sizes

Branch

Origin ventilation 
resistance 
coeffi cient

ri (N×s2/m8)

Lower bound of the 
ventilation resistance 

range
ri × 0.1 (N×s2/m8)

Upper bound of 
the ventilation 

resistance range
ri × 10 (N×s2/m8)

Optimal solution (N×s2/m8)

P = 50 P = 100 P = 200

e1 0.08 0.008 0.8 0.007 0.050 0.235 
e2 0.14 0.014 1.4 0.006 1.325 0.391 
e3 0.20 0.02 2.0 0.085 5.161 1.105 
e4 0.65 0.065 6.5 0.152 0.286 0.958 
e5 0.20 0.02 2.0 0.049 0.041 0.743 
e6 1.02 0.102 10.2 0.000 0.086 0.621 
e7 1.00 0.10 10.0 0.325 0.000 0.131
e8 1.00 0.10 10.0 0.402 2.338 0.724
e9 1.20 0.12 12.0 0.093 0.034 1.739
e10 0.30 0.03 3.0 2.014 0.339 0.679
e11 0.32 0.032 3.2 0.027 0.000 1.468
e12 0.33 0.033 3.3 0.003 0.001 1.551
e13 0.30 0.03 3.0 0.031 0.095 0.964
e14 0.80 0.08 8.0 1.706 0.583 2.228
e15 0.12 0.012 1.2 0.000 0.028 0.040
e16 0.34 0.034 3.4 0.000 0.039 0.127
e17 0.28 0.028 2.8 0.075 0.004 0.120
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This indicates that the increase in the population size can improve the convergence of the algo-
rithm. From the inversion results of Tables 2 and 5, it can be concluded that the genetic algorithm 
can invert ventilation resistance coefficient. 

This can be used to solve the optimisation problem of the ventilation resistance coefficient 
inversion, but the average relative error between the inversion result and the original ventilation 
resistance is very large. It is known from previous studies that the problem of ventilation resistance 
coefficient inversion is an ill-posed problem, where there are infinitely many solutions. In the absence 
of other constraints, the wind resistance range constraint affects the final inversion results directly.

5. Conclusion

(1) The mathematical model of ventilation resistance coefficient inversion is established 
based on the principle of the least squares. The measured pressure and the calculated 
pressure along with the flow measured and the calculated flow deviation are considered 
as the objective function, which also includes the node pressure, air flow and ventilation 
resistance coefficient range constraints. The ventilation resistance coefficient inversion 
problem was converted to a nonlinear optimisation problem through the establishment 
of the model. Genetic algorithm and particle swarm algorithm were adopted to solve 
the ventilation resistance coefficient inversion problem. GA was improved to enhance 
the global and the local search abilities of the algorithm for solving the ventilation 
resistance coefficient inversion problem.

(2) In order to apply the standard GA for the problem of ventilation resistance coefficient 
inversion, several improvements have been done on factors such as coding, selection, 

TABLE 6

Relative error between the original and the optimal solutions with various population sizes 

Origin ventilation 
resistance (N×s2/m8)

Inversed ventilation resistance (N×s2/m8) Relative error (%)
P = 50 P = 100 P = 200 P = 50 P = 100 P = 200

0.08 0.007 0.050 0.235 91.43 37.91 193.56
0.14 0.006 1.325 0.391 95.62 846.52 179.44
0.20 0.085 5.161 1.105 57.30 480.66 452.75
0.65 0.152 0.286 0.958 76.56 56.01 47.33
0.20 0.049 0.041 0.743 75.35 79.57 271.27
1.02 0.000 0.086 0.621 99.99 91.55 39.12
1.00 0.325 0.000 0.131 67.46 99.97 86.91
1.00 0.402 2.338 0.724 59.80 133.81 27.58
1.20 0.093 0.034 1.739 92.28 97.17 44.92
0.30 2.014 0.339 0.679 571.25 12.85 126.28
0.32 0.027 0.000 1.468 91.56 99.96 358.67
0.33 0.003 0.001 1.551 99.12 99.78 370.10
0.30 0.031 0.095 0.964 89.77 68.29 221.24
0.80 1.706 0.583 2.228 113.19 27.19 178.54
0.12 0.000 0.028 0.040 99.79 76.63 66.82
0.34 0.000 0.039 0.127 99.95 88.49 62.73
0.28 0.075 0.004 0.120 73.24 98.44 57.04

Average relative error 114.92 264.40 163.78
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crossover, variation, fitness scale changes, adaptive crossover rate and mutation rate. 
However, because the problem of ventilation resistance coefficient inversion is an ill-
posed problem, it is obvious to see this algorithm can find local best in the conditions 
of no constraints. 

(3) The final inversion results were directly affected by the constraints of the wind resistance 
range. These constraints should be matched to the actual situation as much as possible to 
approximate the true resistance value and to narrow the range of the wind resistance, espe-
cially for important roadways. The inversion method can be used on the roadways even if 
they are irregular or localised. The ventilation resistance in regular roadways can be obtained 
by using the look-up table and the determination method. This new overall method opens 
opportunities for getting the ventilation resistance by a small amount of measurement data.
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