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Abstract The paper presents a description of used methods and exem-
plary mathematical models which are classified into theoretical-empirical
models of thermal processes. Such models encompass equations resulting
from the laws of physics and additional empirical functions describing pro-
cesses for which analytical models are complex and difficult to develop. The
principle of developing, advantages and disadvantages of presented mod-
els as well as quality prediction assessment were presented. Mathematical
models of a steam boiler, a steam turbine as well as a heat recovery steam
generator were described. Exemplary calculation results were presented and
compared with measurements.
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1 Introduction

Modelling is one of the fundamentals of science and engineering. The term
mathematical model is understood as a set of relationships that create an
image of a real process. Mathematical models used in engineering belong
to a group of applied models, thus models representing only that part of
knowledge of processes that are crucial for its purpose. The developed
model enables the study of the effects of interactions on those quantities
(which have physical equivalents in the process under investigation) for
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which such effects are observed. It should be characterized by sufficient
prediction on the quantitative side of phenomena and a short computation
time.

A mathematical model can be developed as an analytical model with
the use of known physical laws, or, as an empirical model. The advan-
tage of developing analytical models is that the process mechanism can be
understood more accurately. Most often these processes are characterized
by a high degree of complexity that makes model development difficult, or
often impossible, based exclusively on a mathematical description of physi-
cal processes. Advances in measuring techniques and computer technology
mean that empirical modelling techniques based on measurement data are
more and more frequently used. Developing empirical models consists in
converting a set of measurement data into a mathematical model that de-
scribes the most important process properties [1–3]. It is easier to develop
empirical models than analytical ones, but the scope of its applicability is
reduced to the parameters of the range of usability for which the model
has been calibrated. Good results are obtained by building an analytical
model with embedded empirical models. An analytical model is often built
as a balanced model. These results from an easy introduction and the sim-
ple structure of balance equations. Additional empirical models describe
processes that are difficult to express analytically, e.g., the combustion pro-
cesses or the heat transfer. The regression and neuronal modelling belong
to the most frequently used methods of empirical modelling.

2 Regression modelling

The foundations for linear regression in the form of the method of least
squares were introduced by Gauss as a special case of the maximization
of the error probability density function. The Gaussian rule was devel-
oped by Fisher in the form of the method of maximum likelihood. For a
linear model, while assuming that random errors of the model are inde-
pendent and have a normal distribution of the expected value of zero and
constant direct variation, the estimates of the model coefficients obtained
by using the method of maximum likelihood are identical to those derived
from the method of least squares. When error distribution differs from
the normal one, it is impossible to use the results obtained by the method
of least squares. In general, the method of maximum likelihood that re-
quires knowledge of the probability distributions is used and computations
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are much more complicated than those of the method of least squares.
Normally, no analytical solution can be found and iterative methods are
employed.

The conventional regression model contains the following components:
response variable (a variable to be explained with model equations), ex-
plaining (explained) variables (used for description), structural parameters
(parameters expressing a qualitative effect of a related variable on an re-
sponse variable and a random component). The construction of a regres-
sion model requires the assumption of a model type and structure, a model
parameter estimation of an established structure based on experimental
results (measurements), the evaluation of the quality of the model’s predic-
tions and model verification. The model structure defines its construction
with an accuracy to several unknown numeric constants. The model struc-
ture should reflect cause and effect relationships in phenomena which occur
in the process. The model structure is established arbitrarily. Model pa-
rameters can be estimated when the model structure is known.

Model parameter estimation consists in determining the values of these
parameters according to the adopted estimation criteria. The best known
methods of model parameter estimation are the conventional method of
least squares, maximum likelihood method, momentum method and Bay-
esian method. The simplest algorithm is obtained by adopting the mini-
mization of the error sum of squares for a model as the estimation criterion
[1–4]. This is the method of least squares. The concept of estimation by
using the method of maximum likelihood estimation has already appeared
in Gauss’s papers. It consisted in such a selection of unknown parameters
for which the highest probability of observations is made. If variables have
continuous probability distribution, the estimation method comes down to
searching of the highest value of the likelihood function that is defined as
a product of the probability density function for individual variables. The
method of maximum likelihood and proof of the properties of the obtained
estimators were decisively formulated in Fischer’s papers. The momentum
method and Bayesian method are less often used. The application of the
conventional method of least squares for model parameter estimation is
presented in this paper.

The method of estimating with the method of least squares incorpo-
rates the danger that it always enables an estimation of model parameters,
even if the developed model accuracy is very low because of an improperly
selected model structure or large measurement errors. The coefficient of de-
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termination is a parameter which enables the model to fit to the empirical
data to be evaluated. It is equal to the square of the coefficient of correla-
tion between the empirical and theoretical values of the response variable
obtained from the regression model. The coefficient of determination takes
values from [0, 1]. The square root of the coefficient of determination is re-
ferred to as the coefficient of multidimensional (multiple) correlation. The
coefficient of determination indicates that there is a relationship between
the output values derived from measurements and that obtained by model
calculations. The coefficient of determination is a measure of model quality
in terms of data variability. The closer to unity the value of determination
coefficient, the higher model accuracy.

The determination of confidence intervals for estimated coefficients and
model output data (response variable) requires assumptions for the proba-
bility distribution of model random errors to be made. In the conventional
regression analysis, an independence – an expected value equal to zero and
the constant variance of model random errors are assumed. A confidence
interval for the model input variable is of special importance to the users.
It is the narrowest in the middle of the measurement result area. The
greater the distance from the mean of the measurement results, the higher
the error in the expected value prediction. The best results of prediction
should be found in the ‘middle’ of the measuring range.

Verification of the model consists in performing statistical tests to de-
cide whether it can be accepted or not. A key issue in the verification of
parametric models is the verification of model type and structure. The
incorrect type and improper structure lead to a model of very poor pre-
dictive properties. To yield a usable equation for prediction purposes, as
many functions as possible of input variables with different impacts on the
output variable should be introduced into the model. An additional input
variable introduced into the model equation may have a minute effect on
the output variable because of its strong correlation with other variables
present in the equation. In addition, a large number of estimated coef-
ficients requires a large amount of available measurement data to assure
the high accuracy of assessments; this can be cost consuming in industrial
research. A compromise between these extremities is the selection of the
best model equation. There is no general procedure for such a selection.
The procedures based on statistical testing are most frequently used. They
include elimination procedures. In the a posteriori elimination method, the
procedure starts from the most complicated model equation containing all
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independent variables that are consecutively eliminated, until the suitabil-
ity of the equation is decided. The a priori selection procedure is an attempt
to achieve the same target in the reverse direction, i.e., by adding indepen-
dent variables until a satisfactory model equation is obtained. The step
regression procedure [4] is an improved version of this procedure. These
improvements consist in examining the independent variables at each stage
of statistical significance which have been introduced into the model in the
previous stages. An independent variable that could have been the best
single variable to be introduced in the previous stage, can be useless in
a later stage due to its dependence on other independent variables which
are present in the model equation. An F-Snedecor test is a decisive fac-
tor for introducing or removing variables from the model equation in the
presented elimination methods. The advantages of the use of conventional
regression analysis include known methods, algorithms and computer pro-
cedures of parameter estimation, prediction quality assessment and optimal
model structure selection. However, this only applies to linear models with
regard to estimated parameters. Regression models provide short compu-
tation time, computations that are not iterative, so not sensitive to the
selected starting point. Disadvantages include the lack of effective estima-
tion methods and statistical assessment procedures for models of nonlinear
structure with regards to estimated coefficients and the necessity to inverse
a matrix that for a large number of measuring points may have a significant
size. The numerical inversion of matrices of such a considerable size causes
computational difficulties, and rounding the errors affects the estimation
result.

3 Neural modelling

Neural networks belong to the domain of artificial intelligence [5]. Fields
of neural network technical applications include automation and robotics,
as well as process identification and optimisation. In process identification
and control, a neural network is a nonlinear model of the process which
enables an appropriate control signal to be developed. Neural networks
are used for modelling heat processes as numerical algorithms that can
be employed for function approximation. A neural network is a set of in-
terconnected neurons. In modelling heat processes a layered structure of
the network without feedback is most commonly used. The best known
representative of such networks is a multilayer perceptron. This network
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consists of a very large number of neurons connected in parallel and linked
with weighted connections. Information is transmitted from the inputs of
the first layer to the outputs of the last (output) layer. The output signals
of consecutive layers are the inputs of the next layers. A neural network
can have one or more outputs in the last layer.

The multilayer perceptron modelling includes several stages [6]: struc-
ture identification, neural-network connection weight identification and net-
work testing. The network structure identification consists in determining
the number of layers and the neuron type and number in each network layer.
Nonlinear neurons with a sigmoid activation function are most often used.
The network architecture contains an input layer, one or more hidden layers
and an output layer. The output layer can have one or more neurons. Ex-
perience gained from neural network modelling shows that when modelling
the heat processes of many outputs considerably better results are obtained
by using individual models for each output than by building a model with
many output neurons. There is no good quantitative approach in the lit-
erature – no quantitative criterion indicating the quality of the network
structure. In practice, the network structure is selected through trial and
error, i.e., if the learning process does not bring the desired results, the
network structure is changed.

Network weights are identified in the so-called network learning pro-
cess [5,6]. The first step in the learning process is developing the training
and validation sets. The training set is data set that should describe, as
accurately as possible, the process within the range of variability under in-
vestigation. A single piece of data is called the teaching vector. It contains
an input vector, i.e., input data entered into network inputs, and an output
vector, i.e., data that should be generated in network outputs. After pro-
cessing the input data vector its values are compared to the expected values
and it is decided if the response is right and, if not, what the error is. This
error is then propagated into the network but in the opposite direction to
the input vector, i.e., from the output layer to the input layer. Based on
this, weight correction is made in each neuron so that the reprocessing of
the input vector causes a decrease in the response error. After processing
the whole teaching course (this process is called an epoch) the error for the
entire epoch is calculated and the whole cycle is repeated until the error is
reduced below the permissible value.

After teaching, the network functionality should be verified. To do this,
input vectors from a validation set are entered into network inputs to check
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whether the network can perform the learned task effectively. The valida-
tion set has the same properties as the training set, i.e., data accurately
describing the process within the range of variability under investigation.
However, it is important that the validation set data are not used for learn-
ing purposes. In the network verification process no error retrospection is
performed, but only network responses are recorded and, on this basis, it
is decided whether the network meets the assumed prediction requirements
and can be used for process simulation. After teaching the network, it is
worth repeating the whole procedure for another set of generated initial
weights.

Empirical models built by using artificial neural networks can approxi-
mate any continuous or discontinuous functions. They have a high adapt-
ability to modelling various phenomena (nonlinear, too) and efficiency, even
in the presence of strong interferences. Modelling efficiency depends consid-
erably on the method used and the selection of network learning parameters.
In the learning process the following methods can be used: backward error
propagation, backward error propagation and momentum, variable metric
and Levenberg-Marquardt algorithm. The results obtained from modelling
the heat processes indicate that the Levenberg-Marquardt algorithm is the
most effective teaching method [3,7]. The choice of measuring points for
training and validation sets has a significant effect on prediction results.
Both the training and validation set should cover the whole range of the
variability of the usability parameters for a process under investigation.
Situations where some areas contain a lot of measuring points, while others
contain only a few points should be avoided. In such situation, a neural
model will feature high quality prediction within the areas of high concen-
tration of measuring points. In industrial practice it is difficult to fulfill
this condition. Most working points of power equipment are concentrated
within the design parameter area. Only a few points are located on the
boundary of the working parameter area. In such cases the best results are
yielded by using the Levenberg-Marquardt algorithm.

The disadvantages of neural modelling include:

• a developed neural model is not unique; this means that there is
a number of models of different structures and coefficients that can
perform the same transformation; there are no unique methods for
assessing the effect of structures and parameters on the quality of
modelling;

• models based on artificial neural networks require much more compu-
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tation time than parametric models, especially for linear models and
when the Gauss’s least square method is used for identification;

• structure of the models based on neural networks is often highly com-
plicated and then the computational load may be a barrier limiting
its application;

• the so-called over-training syndrome may occur, which means that
the model properly reproduces training set standards, while being
totally powerless for other standards not used in the learning process;
a developed model may give unsatisfactory results of predictions when
changing the working parameters of power equipment.

4 Simulation model of a steam boiler

Combustion flow of substance and heat exchange processes occur in a steam
boiler. An analytical description of these processes is highly complicated,
and numerical computation time is very long. Simpler models characterised
by a short computation time are required for industrial purposes. Such
models can be built by using empirical modelling methods. An empirical
model of a steam boiler includes the relationship between efficiency and the
energy losses of a boiler and working parameters, and can be formulated as
a set of relationships between output variables and input variables without
going into the physics of occurring phenomena. This is the so-called ‘black
box model’. Such a model developed by using neural modelling techniques
is presented in the paper [7]. Empirical models of the ‘black box’ type
have a limited range of applications. They can be used within the boiler
operation range for which measuring data are available. Better prediction
results are obtained by building an analytical model with embedded em-
pirical models. An analytical model is most often built as a balance model.
This is the result of the easy introduction and simple structure of balance
equations. Empirical models that describe the complicated combustion and
heat transfer processes can be built by using the regression and neural mod-
elling techniques. They describe the relationship between the temperature
of flue gas exhausted from a boiler and combustible fraction (in grams) in
solid combustion products and the working parameters.

A hybrid model of a boiler has been developed [6,8]. A balanced model
was built based on standard PN-EN 12952-15 [9]. A neural model was de-
veloped to describe the relationship between the temperature of flue gases
exhausted from a steam boiler and the working parameters. The neural
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network structure, including the number of layers and neurons in individ-
ual layers was experimentally chosen. A sigmoid activation function was
adopted. The input quantities for this model are as follows: thermal power,
heat flux transferred in the steam air preheaters, lower heat value (LHV)
of fuel, oxygen content in flue gasses exhausted from the steam boiler, com-
bustion air temperature and the boiler feedwater temperature. The step
regression method was used for describing the effect of working parame-
ters on the combustible fraction in solid combustion products. The set of
variables analogical to that of a neural model for the temperature of flue
gasses exhausted from a boiler was adopted. Figures 1 and 2 present sample
simulation computations for the BP-1150 steam boiler.

Figure 1: Dependence of boiler energy efficiency on thermal power and feedwater
temperature.

An increase in boiler thermal power causes a rise in steam boiler efficiency.
A decrease in feedwater temperature, while keeping other working param-
eters unchanged, also leads to an increase in boiler efficiency, but to a
lesser extent. This results from better flue gas cooling, thus also reducing
the relative energy losses of flue gasses. Regenerative feedwater preheating
decreases boiler efficiency but increases the efficiency of the steam-water cy-
cle operation. As a result, the efficiency of electricity production increases.
Enhanced fuel quality increases steam boiler efficiency. This results from
decreasing an unnecessary ballast in the fuel.
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Figure 2: Dependence of boiler efficiency on thermal power and the LHV of fuel.

5 Simulation model of a heat recovery steam
generator

Within a heat recovery steam generator (HRSG), a process of heat ex-
change between flue gas and working fluid is carried out. In order to de-
velop a mathematical model of heat transfer process, often heat transfer
correlations are used. However, they require knowledge about the dimen-
sions and geometries of all heat exchangers in the HRSG. In addition, such
models are relatively complex and often require iterative procedure. In
many papers, instead of mathematical description of heat transfer process,
constant values of pinch point and approach point are used [10,11]. At that
time, the model of HRSG may be simplified to mass and energy balances
and as a result, such model is characterized by shorter computing time, but
it does not take into account the influence of technical HRSG condition on
approach point and pinch point values.

Models, that are developed for thermal diagnostic systems, should be
characterized by short computing time and take into account the techni-
cal condition of modelled machines. Therefore, in order to describe heat
transfer process, empirical equations may be used, whose coefficients may
be estimated on the basis of measured results. Such models contain mass
and energy balance equations as well as empirical equations describing heat
transfer process in all heat exchangers.
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The heat flow, Q̇, is described by Peclet’s law [12]

Q̇=U A △t , (1)

where: U – overall heat transfer coefficient, A – surface area, △t – loga-
rithmic mean temperature difference.

The largest share in the total heat transfer coefficient is the resistance
of the convection from the flue gas side. In the case of a superheater, the
resistance of the convection from the superheated steam side is also essen-
tial. The product of overall heat transfer coefficient and surface area (U A)
has been often approximated by the use of following empirical equations
[11]:
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where: β1–β5 – empirical coefficients, cp – flue gas specific heat capacity, k
– flue gas thermal conductivity coefficient, ν – flue gas kinematic viscosity
coefficient, ṁfg – flue gas mass flow rate, ṁs – superheated steam mass
flow rate, the subscript 0 refers to the design operational conditions; the
symbols without subscript 0 represent the actual operational conditions.

On the basis of formulated mass and energy balance equations together
with empirical equations describing heat transfer process, the model of
double-pressure heat recovery steam generator was developed (Fig. 3).

The simulation model of the double-pressure heat recovery steam gen-
erator allows to calculate temperature, pressure as well as mass flow rates
of working fluid at all characteristic points. In addition it also calculates
among others the heat rate transferred in all heat exchangers and average
value of overall heat transfer coefficient. Figures 4–7 present the compari-
son of the results of calculations with the results of measurements for mass
flow rate and temperature of generated high-pressure (HP) and low-pressure
(LP) steam.
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Figure 3: Schematic diagram of double-pressure heat recovery steam generator.

Figure 4: Comparison of the results of
calculations with the results of
measurements for HP steam
mass flow rate.

Figure 5: Comparison of the results of
calculations with the results of
measurements for HP steam
temperature.

The presented comparison confirm the high prediction quality of the devel-
oped model. This is additionally confirmed with the high values of deter-
mination factors R2 and the small values of model errors δ.

The high prediction quality of mass flow rates and thermal parameters
of generated HP and LP steam is essential, because these values constitute
input data to the simulation model of the steam-water cycle.
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Figure 6: Comparison of the results of
calculations with the results
of measurements for LP steam
mass flow rate.

Figure 7: Comparison of the results of
calculations with the results
of measurements for LP steam
temperature.

6 Simulation model of a steam turbine

The turbine simulation model contains mass and energy balance equations
for high-, medium, and low-pressure parts of the turbine taking into ac-
count leaks in the valves spindles seals and from the external glands, steam
mass flow in the balance piston and inter-cylinder steam mass flow and
the model of the steam expansion line for the individual groups of stages.
To determine the steam expansion line in the turbine, analytical modelling
or methods based on the steam capacity equation and internal efficiency
equation are used [2,6,13,14]. Flow computations that require knowledge of
flow system geometry are complicated and time-consuming. Computations
based on the steam capacity equation and internal efficiency equation re-
quire an estimation of the empirical parameters of these functions based on
the results of measurement [6,13]. For each turbine operating at a constant
rotational speed, there is a strict relationship between the inlet parame-
ters pin, Tin and the outlet pressure pout at the turbine stage group. This
equation is called the steam-flow capacity equation. Approximate versions
of this equation are most commonly used. The calculations which were
carried out indicated that the exact identification of outlet pressure at the
stage group is achieved for Flügel formula. In literature, there are many
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empirical forms of Flügel formula, among others [6,10,11,13,14]:
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Ġin = A2pout , (5)

where Ġin – steam flow mass flow rate at the inlet of group of stages, vin

– steam volume at the inlet of group of stages, pin – steam pressure at
the inlet of group of stages, pout – steam pressure at the outlet of group of
stages, A1, A2, B1 – empirical coefficients.

The unknown values of empirical coefficients A, B are often estimated
on the basis of measured results with the least-squares method. They
result from the adjustment to measurement data and have no physical
interpretation, unlike physical models.

The adiabatic internal efficiency of a steam turbine is expressed by the
ratio of actual external work to theoretical work during adiabatic reversible
expansion. In literature there are various empirical functions describing the
internal efficiency of turbine stages. Most of them depend on outlet pressure
at the stage group or the ratio of outlet pressure at the stage group to inlet
pressure to the stage group [6,13–16]. Most commonly used relationships
describing the internal efficiency include:
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where: ηi – the internal efficiency of group of stages, pin – steam pressure
at the inlet of group of stages, pout – steam pressure at the outlet of group
of stages, C1, D1, C2, D2, E2 – empirical coefficients.

Unknown values of empirical coefficients A, B, C, D, E are calculated by
using estimation methods, e.g., regression method.

By using the substance and energy balance equation and the empirical
model for steam expansion at individual turbine stages, the 18K370 turbine
simulation model has been developed [14]. A computational scheme for
this turbine is presented in Fig. 8. Figure 9 shows the steam expansion line
based on this model (solid line) with marked measuring points for selected
unit loads.
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Figure 8: Schematic diagram of the steam turbine 18K370: Bout – the mass flow rate
of fresh steam produced in the boiler, val. – the leaks in valves seals, HPin –
steam mass flow rate at the inlet of high-pressure (HP) part of the turbine, un.
p. – mass flow rate on unload piston, I-C – mass flow rate of the inter-cylinder
steam, HPout – steam mass flow rate at the outlet of high-pressure part of the
turbine, exi HP – mass flow rate of the steam from the external HP glands,
R-SS – mass flow rate of re-superheated steam from the boiler, MPout – steam
mass flow rate at the inlet of medium-pressure (MP) part of the turbine, exi MP

– mass flow rate of the steam from the external MP glands, LPin – steam mass
flow rate at the inlet of low-pressure (LP) part of the turbine, ex1 LP – mass
flow rate of the steam from the external LP glands, LPout – steam mass flow
rate at the outlet of low-pressure (LP) part of the turbine.

The presented model of the 18K370 steam turbine allows the calculation
of non-measured operating parameters (particularly streams and thermal
parameters of steam at the outlet of each group of stages) and energy
assessment indicators, e.g. efficiency of each part of the steam turbine.
An important benefit of the developed model is that it also features the
capability of adapting to the changing technical conditions of the steam
turbine. The model can be used in predictive control systems, in intelligent
hierarchical control systems (OCL) and thermal diagnostics systems.

7 Summary

Theoretical fundamentals and the model construction rules which use the
regression and neural modelling techniques are presented. The regression
models ensure the availability of computer procedures for linear models and
short computation time, but they require the inversion of the matrix which,
for a large number of measuring points, may have a significant size. Models



126 H. Rusinowski and M. Plis

Figure 9: The exemplary steam expansion line for unit loads 370 MW and 189 MW.

developed by using artificial neural networks can approximate any contin-
uous and discontinuous functions, but the model structure is often highly
complicated and then the computational load may be a barrier limiting its
application.

The mathematical models of the BP-1150 steam boiler, the 18K370
steam turbine as well as the double-pressure heat recovery steam genera-
tor have been presented. The values of prediction quality indices and the
comparison of the calculation results with the results of the measurements
indicate that a good modelling accuracy has been achieved, while main-
taining a short computation time. The presented models were used in an
operational control system at the Opole Power Plant and Zielona Góra
comjbined heat and power plant to simulate unit operation and calculate
working deviations.
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