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Abstract The coupled fluid/solid heat transfer computations are per-
formed to predict the temperatures reached in the rotating disc systems.
An efficient finite element analysis (FEA) and computational fluid dynam-
ics (CFD) thermal coupling technique is developed and demonstrated. The
thermal coupling is achieved by an iterative procedure between FEA and
CFD calculations. In the coupling procedure, FEA simulation is treated
as unsteady for a given transient cycle. To speed up the thermal cou-
pling, steady CFD calculations are employed, considering that fluid flow
time scales are much shorter than those for the solid heat conduction and
therefore the influence of unsteadiness in fluid regions is negligible. To facil-
itate the thermal coupling, the procedure is designed to allow a set of CFD
models to be defined at key time points/intervals in the transient cycle and
to be invoked during the coupling process at specified time points. The
computational procedure is applied to predict heat transfer characteristics
of a free rotating disc.

Keywords: Heat transfer; Coupled analysis; Computational fluid dynamics; Finite ele-
ment analysis; Disc; Rotating cavity

1 Introduction

An accurate prediction of metal temperatures is an important problem
in the gas turbine design and optimization. The coupled fluid/solid heat
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transfer computations are widely used to predict the temperatures reached
in the rotor/stator disc cavities. Development and improvement of the pre-
diction methods and tools helps to automate aerothermal analysis and to
reduce gas turbine design and testing costs [1].

To assist gas turbine design, accurate and fast prediction of compo-
nent metal temperature is one of the key issues. In industry, finite element
analysis (FEA) is routinely used to predict metal temperatures with the
thermal boundary conditions provided by thermocouple measurements and
empirical correlations. The limitation of this practice is obvious. Its effec-
tiveness is subject to availability and applicability of the current database
and correlations for a new design.

With rapid progress of computational fluid dynamics (CFD) and com-
puter power, CFD has proven to be a useful tool to assist and to improve
the metal temperature predictions [2]. There are three types of approaches
in using CFD solutions for fluid/solid heat transfer calculations. One is
generally referred to as conjugate heat transfer analysis, the second is re-
ferred to as non-coupled FEA/CFD procedure, and the third one referred
to as coupled FEA/CFD analysis.

In conjugate analysis, the fluid/solid heat transfer calculations are re-
alized by expanding the CFD capability to include heat conduction calcu-
lations in solid regions neighbouring the fluids [3,4]. A number of studies
have been performed showing application of the conjugate analysis for en-
gine component temperature predictions, such as a real turbine rotor/stator
system simulation [5], a blade film cooling prediction [6], and an internally
cooled turbine blade application [7]. It was found that the applications of
the conjugate analysis were limited to steady and simple transient calcu-
lations. A CFD simulation is expensive, and this would be especially true
for a time accurate calculation of a flight cycle, as a relatively small time
step has to be used to resolve the flow unsteadiness. Therefore, the compu-
tational cost of performing a transient conjugate flight cycle analysis with
an unsteady CFD solution is prohibitive.

Non-coupled procedures reduces the CFD cost, where only a limited
number of steady CFD calculations are performed at key engine operat-
ing conditions to produce a set of CFD-based correlations, which provide
the necessary thermal boundary conditions for FEA calculations. Typical
examples include turbine disc cavity applications considered in [8,9]. How-
ever, successful application of the non-coupled procedure is dependent on
user experience and expertise, such as boundary segment partitioning for
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the discrete correlations. The use of discrete correlations over a continuous
wall could also be a concern for potential degradation of thermal solution
accuracy.

Coupled FEA /CFD analysis is an alternative technique, where separate
FEA and CFD codes are used for solid and fluid regions with a smooth ex-
change of information between the two codes to ensure continuity of tem-
perature and heat flux. There are a variety of approaches in implementing
the coupled FEA/CFD analysis. For instance, 3D FEA to 3D CFD cou-
pling procedure is demonstrated in [10] for cooled turbine blade application.
A coupled finite volume method and boundary element method approach
with application to turbine blade calculation is described in [11]. Coupled
procedure for film-cooled turbine blade applications is reported in [12]. An
efficient coupling procedure of in-house FEA code to a commercial CFD
code is reported in [13]. This procedure is successfully applied to turbine
disc cavity calculations for flight cycle simulations and steady state cou-
pling in [14,15].

To further enhance computational efficiency, a frozen flow or energy
equation only coupling option is also developed in [13, 15], where just en-
ergy equation is solved while the flow is frozen in CFD simulation during
the thermal coupling process for specified time intervals. This option has
proven very useful in practice, as the flow is found to be unaffected by the
thermal boundary conditions over certain time intervals.

In this study, the coupled heat transfer calculations are performed based
on full coupling procedure between FEA and CFD code and simplified cou-
pling procedure based on energy equation option. To speed up the thermal
coupling, steady CFD calculations are employed, considering that fluid flow
timescales are much shorter than those for the solid heat conduction and
therefore the influence of unsteadiness in fluid regions is negligible. To facil-
itate the thermal coupling, the procedure is designed to allow a set of CFD
models to be defined at key time points/intervals in the transient cycle and
to be invoked during the coupling process at specified time points. Multi-
grid and Krylov subspace methods are applied to solve energy conservation
equation in the fluid domain and their efficiencies are compared.

2 Methodology

The mathematical model includes equations describing temperature distri-
bution in the solid domain and equations describing distributions of pres-
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sure, velocity and temperature in the fluid domain.

2.1 Solid domain

The thermal analysis consists in calculation of the temperature distribu-
tion and the thermal parameters of the system. It is based on the heat
balance equation obtained in accordance with the energy conservation law,
for whose discretization the finite element method is used. In addition to
the calculation of the temperature field, the heat flux at the boundary of
the system and the heat transfer coefficients are found as a result of the
thermal analysis for the given temperature of surrounding fluid [16].

In the Cartesian frame of reference (z,y,2), the energy conservation equa-
tion has the form

oT 0 oT 0 oT 0 oT
P on (Aa—x) T 9y (Aa—ﬂ s (%) = )

where t is the time, z, y, and z are the Cartesian coordinates, p is density,
¢ is the specific heat capacity, A is the thermal conductivity, and T is the
temperature. The internal heat sources in Eq. (1) are neglected.

Titanium is used as a material of rotating wall, and steel is used as
a material of stationary wall. The thermophysical properties of material
are functions of temperature.

2.2 Fluid domain

The turbulent flow of viscous compressible gas is described with the Rey-
nolds-averaged Navier-Stokes (RANS) equations and the equations of the
modified k— turbulence model, for whose discretization finite volume method
is used. As a result of the integration of flow equations, the velocity, pres-
sure and temperature distributions in fluid domain are found.

In Cartesian frame of reference the governing equation takes the form
8_Q+8Fx+8Fy+8FZ:H’ @)
ot Odx 0Oy Oz

where @ is the vector of conservative variables, F,, F,, and F, are the
vectors of inviscid and viscous fluxes, and H is the source term. The system
of Eq. (2) includes the mass conservation equation (continuity equation),
momentum conservation equation and energy conservation equation. The
conservation equations written in the form (2) are applicable to absolute
and relative velocity formulations.
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To complete the system of Egs. (2), pressure of an ideal gas is calculated
as

p=(v—Dple — ¢*/2) (3)

where ~ is the ratio of specific heat capacities at constant pressure and
constant volume, p in the pressure, e is the specific total energy. The
velocity magnitude is

¢’ = (vi—l-vZ—l—vg) —wr?
where r is the rotation radius, w is the rotation speed.
The vector of conservative variables and the flux vectors have the fol-
lowing form:
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Here, ¢ is the time, z, y, and z are the Cartesian coordinates, p is density,
Uz, vy and v, are the Cartesian velocity components. To model flows that
include rotating boundaries, the rotating frame of reference is used. The
flow may be unsteady in an inertial frame (a domain fixed in the labo-
ratory frame), but steady relative to the rotating non-inertial frame (the
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domain moving with the rotating part). The non-inertial character of the
reference system is taken into account by introducing the Coriolis force and
centrifugal force in the source term

0
0
H=| pw(yw+2v, )
pw(zw — 2vy)
0

The viscous stress tensor is defined as

(v Ov; 200k
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The heat flux is given by Fourier law

oT

dx;

where T is the temperature. The effective viscosity is calculated as a sum
of the molecular and turbulent viscosities

Qi:_/\e

He=p"+ [t

The molecular viscosity, u, is a function of temperature. It is modelled by
Sutherland’s law

p (TN*T+S,
Hox B (T* > T+SO ’
where p, and T, are reference viscosity and temperature, and Sy is a
constant determined experimentally, so that u, = 1.68 x 1075 kg/(ms),
T, =273 K, andSy = 110.5 K for air. The thermal conductivity is linked
to the specific heat capacity at constant pressure, C,, and the Prandtl num-
ber, Pr, so that A = ¢, u/Pr and Pr = 0.7 for air.

The turbulent viscosity is calculated by the Kolmogorov-Prandtl for-

mula
k‘2
Mt = Cup? )
where £ is the turbulent kinetic energy, and ¢ is the dissipation rate. The
effective thermal conductivity is expressed in terms of the viscosity and the

Prandtl number
I O
Ae=Cp (Pr+Prt) .

The turbulent thermal conductivity is calculated using turbulent Prandtl
number, which is Pr; = 0.9 for air.
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2.3 Turbulence model

The k- model of Launder and Spalding [17] is used to close RANS equations
written in the form (1). The k- turbulence model solves two transport
equations for the turbulent kinetic energy and its dissipation rate [17]. The
transport equation for the turbulent kinetic energy is derived from the exact
equation, while the transport equation for its dissipation rate is obtained
using physical reasoning and has a little resemblance to its mathematically
exact counterpart.

The transport equations of k-¢ turbulence model are written in the
following form [17]:

%Jr (pv - V) k=V [(Wr&) Vk] +P—pe (4)
ot Ok
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The turbulence production term, resulting from interaction between the
mean flow and the turbulence field, is

2 avi
P= (2utSZ]—§pk5”> 87 .
J

The components of the strain rate tensor are

Sij:l <8vi+8vj> .
2 al’j 8:EZ
The coefficients of k-¢ model have the following default values ¢, = 0.09,
or = 1.0, 0. = 1.3, cc1 = 1.44, c.o = 1.92.

In a stagnation flow, high level of strain rate produces excessive lev-
els of turbulent kinetic energy whereas deformation near stagnation point
is nearly irrotational. To prevent the generation of non-physical levels of
turbulent viscosity in strained but irrotational flow, the Kato-Launder cor-

rection to production term is used [18]. The production term in equation
(4) is modified as follows:

Ov: 3/2
P = Mt<25i ) (€2;,) Y2 . (6)

J al’j
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The components of rotation tensor are

Q--—l (8112 _avj>
Z]_Z 8:Ej 8332 '
This correction of production term leads to a marked reduction in energy
production near the stagnation point, while having no effect in a simple
shear flow.
A hybrid form of the production term is proposed in [19], in which

the standard form of production term and Kato-Launder correction are
averaged

P = pe|S|[(1=a) |S[+a|Q]

where 0 < a < 1 is a weighting factor. The invariants of strain rate tensor
and rotation tensor are

1S =(25:5:) %, |0 =(20:;9:)"* .

The hybrid model is particularly used for stagnation flows. In that case
the weighting factor is chosen to be a = 0.85, as recommended in [19].

To account for rotational effects and curvature of stream lines in the
transport equations of the k- model, the method proposed in [20] and
generalized in [21,22] is used. The eddy viscosity is obtained from the
equation

2
Mt = Cuf cpk? )

where ¢, is the usual model constant (¢, = 0.09), and f. is a damping
function given by [20]
1

fc: 1+ CCRit '

An additional model constant is ¢, = 0.1. The restriction 0.02 < c.c, <
0.15 is also employed. The turbulent Richardson number, Ri;, is defined as

21,22
Riy=4-(b- ﬂ><%>_2 ,

where ¢ is the velocity magnitude, € is the vorticity, R, is the local radius
of curvature of stream line, and b is the unit vector of bi-normal to the
stream line.
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2.4 Coupling procedure

Coupled thermal analysis is normally run transiently. Cycle parameters are
defined at discrete time points (ramp points) throughout the time span of
the transient, to form the cycle definition. If a value of a cycle parameter
changes from one ramp point to the next, the parameter is linearly inter-
polated with respect to time between those two ramp points. An example
of a cycle definition for rotation speed is shown in Fig. 1 (nodal points
correspond to different time moments when rotation speed changes).

, rad/s

a)

b)

W, Wy,
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Figure 1: Cycle definition (a) and linear interpolation of cycle parameter (b).

In the engine cycle models, the FEA calculations are unsteady to repro-
duce the relatively slow response of metal heat conduction to a change in
operating conditions over a given transient flight cycle. Compared to this,
the fluid flow timescales are much shorter, as they are determined by the
fast convection of the flow. As a result, the influence of unsteadiness of
fluid flow is expected to be negligible, and steady CFD calculations may be
employed. In other words, the flow is assumed to adjust instantaneously
to changes in the flow boundary conditions, as the time taken for such
adjustments is much smaller than other time scales for the problem con-
sidered. This saves considerable computing time for a FEA/CFD thermal
coupling computations, as it avoids expensive unsteady CFD simulation in
fluid regions and allows much larger time steps for unsteady FEA simula-
tion of the metal heat conduction in solid regions, which means fewer time
steps are needed to resolve a given transient cycle. Further approximation
is usually involved in modelling engine accelerations or decelerations when
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the rotation speed is changing.

The coupling is realized through an iterative loop between the FEA
and CFD simulations using under relaxation procedure, with communica-
tions ensuring continuity of temperature and heat flux across the coupled
boundaries between the FEA and CFD models. Convergence of the ther-
mal coupling at a thermal time point is recognized when the difference
of coupled wall temperature between two adjacent successive thermal cou-
pling iterations is reduced to a required tolerance. In the coupling process,
intermediate individual FEA and CFD solutions are obtained in turn with
dynamically updated boundary conditions. On coupling walls, the temper-
ature distributions obtained in FEA simulations are used to define temper-
ature boundary conditions for CFD models, and the heat flux distributions
obtained in CFD simulations are used to define heat flux boundary con-
ditions for the FEA model. Convergence of the individual FEA and CFD
solutions is recognized when their governing equations residuals are reduced
to a required tolerance. To avoid exceptional dead lock of the individual
CFD simulations, appropriate maximum numbers of iterations are assigned
for each CFD model. The practice is implemented in a similar way to that
for ordinary isolated CFD calculations.

3 Numerical method

To simulate the fluid flow and calculate the thermal loads in a system, the
FEA solver is used for calculation of temperature field in a solid domain
and the CFD solver is used for calculation of fluid flowfield. The com-
munication procedure is employed in order to exchange boundary values
between FEA model and CFD model.

To discretize the Eq. (1), the finite element method and the implicit
time scheme described in [23] are used. In order to solve the system of
algebraic equations, different iterative methods are used. Newton-Raphson
method is applied to solve the system of algebraic equations. To simplify
its realization, the derivatives of thermophysical parameters with respect
to the temperature are neglected in calculation of the Jacobian. As the ini-
tial approximation of the solution, linear extrapolation of the temperature
from the previous time step is used. Iterations terminate if the residual
does not exceed the given accuracy (in the calculations 1073). To update
the solution, the lower relaxation procedure with relaxation factor of 0.5 is
used.
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The numerical calculations of fluid flow are based on an unstructured
hybrid code, using the finite volume method and an edge-based data struc-
ture to give the flexibility to run on meshes composed of a variety of cell
types. This has the advantage that hexahedral or prismatic elements can
be used to capture velocity gradients through the boundary layer adjacent
to a surface. At the same time, hybrid meshes can incorporate pyramid
and tetrahedral cells in the free stream regions to provide greater flexibility
to represent complex geometries.

The non-linear solver works in an explicit time-marching technique,
based on a five-step Runge-Kutta stepping procedure. Convergence to a
steady state is accelerated by the use of multigrid techniques, and by the
application of block-Jacobi preconditioning for high-speed flows, together
with a separate low Mach number preconditioning method for use with low-
speed flows. The sequence of meshes is created using an edge-collapsing
algorithm. Preconditioning improves the rate at which in formation prop-
agates through the flow domain during the solution iterations.

Convergence acceleration becomes the key issue for enabling practical
use of higher-order discretizations of the fluid flow equations on unstruc-
tured meshes. Multigrid and GMRES (generalized minimal residual) meth-
ods are used to solve energy conservation equation in the fluid domain [24].
The GMRES method is an iterative method for the numerical solutionof
a system of linear equations. The method approximates the solution by
the vector in a Krylov subspace with a minimal residual. The Arnoldi it-
eration uses the stabilized Gram-Schmidt process to produce a sequence of
orthonormal vectors. Arnoldi method reduces a dense matrix into Hessen-
berg form. The eigenvalues of the Hessenberg matrix are obtained from
a number of steps smaller than could provide accurate approximations to
some eigenvalues of the original matrix. Modified Gram-Schmidt (MGS)
procedure is used to find orthonormal basis at each step of Arnoldi iteration.

4 Results

A disc rotating in a viscous fluid is the simplest configuration for which
rotating must be taken into account.

4.1 Model

A system consisting of a rotating disc having 24 holes spaced at regular
intervals and a shaft is considered. The solid components are represented
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in a 2D axisymmetric solid model, and the fluid domain is treated as 2D
axisymmetric model or 3D model with periodic boundary conditions in
circumferential direction.

In the calculations, an axisymmetric model, presented in Fig. 2a, or
3D sector model (15 degrees), shown in Fig. 2b, are used. The inner and
outer radii of the shaft are a; = 0.1 m and as = 0.12 m, and the inner and
outer radii of the disc are by = 0.14 m and by = 0.3 m, respectively. The
radius of the hole and the radial coordinate of its centre are d; = 0.01 m
and do = 0.26 m, and the thickness of the disc and the length of the
computational domain are s = 0.03 m and [ = 0.23 m, respectively.
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Figure 2: 2D model (a) and 3D model (b).

The 3D regions occupied by the fluid are shown in Fig. 3. Region I, pre-
sented in Fig. 3a, takes into account the fluid flow in the gap between the
rotor and the shaft, and region II, presented in Fig. 3b, takes into account
the influence of the external flow on the heat transfer of the rotating disc
and the flow in the hole. The location of control points on the disc and the
shaft at which the temperature is measured is shown in Fig. 4.

4.2 Cycle definition

The loading cycles used for the 2D or 3D thermal simulations and coupled
calculations are shown in Fig. 5. The cycle parameters are the rotation
speed of the disc (line 1) and the rotation speed of the shaft (line 2).

For thermal simulation, the length of the cycle is 3000 s, as shown in Fig. 5a,
including two regions of the rotation acceleration of the disc and the shaft
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Figure 3: CFD models in region I (a) and region II (b).
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Figure 4: Location of control points.

(regions between ramp points 1 and 2, 3 and 4), the rotation slowing down
region (region between ramp points 5 and 6), and three regions character-
ized by a constant rotation speed of the disc and the shaft (regions between
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Figure 5: Cycle definition for thermal modelling (a) and coupled calculations (b).

ramp points 2 and 3, 4 and 5, 6 and 7).

For coupled thermal analysis, the rotor and the shaft, still at the initial
time moment, accelerated to a velocity of 1000 rad/s and 700 rad/s in 60 s
(region between ramp points 1 and 2) as shown in Fig. 5b. The total tem-
perature in the inlet section of region I decreases from 500 K at time t = 0
to 450 K at time ¢ = 60 s, and the total temperature in the inlet section of
region IT increases from 500 K at time ¢ = 0 to 700 K at time t = 60 s. A
long time interval (£; = 2000 s) is used to let the metal temperature reach
a steady-state condition (region between ramp points 2 and 3). The use of
a modified loading cycle in coupled calculations is due to the necessity of
reducing the computational time.

4.3 Boundary conditions

At the initial time moment ¢ = 0 the metal has a uniform temperature
distribution at 300 K. The formulation of the boundary conditions for the
thermal simulation is explained in Fig. 2a. The thermal boundary condi-
tions are identical in the 2D and 3D cases (in the 2D case the boundary
conditions are applied to the edges and in the 3D one to faces). During
simulation, boundary conditions on fluid/solid interface are defined by cou-
pling procedure.

At boundaries 1, 2, and 3, the fluid convection at a known temperature
of the wall derived from the loading cycle for a given time moment is taken
into account. The heat transfer coefficient is calculated from empirical cor-
relation for a free rotating disc derived in [25,26]. It is assumed that laminar
flow conditions are realized at Re < 2.4 x 10°, and turbulent conditions are



Fluid/solid coupled heat transfer analysis of a free rotating disc 183

realized at Re > 3 x 10°. In the interval between the limiting values, linear
interpolation is used. The correlation parameter is the rotation speed of
the disc.

In formulating the boundary conditions at boundaries 4 and 5, the for-
mation mechanism of an adequate fluid flow in the rotating horizontal layer
in the presence of a temperature gradient along the boundary is taken into
account. The mass flow rate of the fluid in the annular gap between the
disc and the shaft, the temperature and pressure are taken from the cycle
definition. The heat transfer coefficient is calculated from the empirical
correlation for the forced convection of the fluid in the annular gap, whose
parameters are the cross-sectional area, hydraulic diameter and channel
length.

At boundary 6, the heat transfer coefficient is found from empirical
correlation for free convective fluid flow on a vertical plate. A correlation
parameter is the plate length. As a wall temperature, the temperature ob-
tained at boundary 10 is given.

The heat transfer coefficient at boundary 7 is calculated from empir-
ical correlation for a free rotating disc [26] (as at boundaries 1-3). The
boundary temperature is obtained as a result of mixing of the flows along
boundaries 4 and 5, and boundary 6 (the heat balance condition is used).

To formulate the boundary conditions on the inner surface of a hole
(boundaries 8 and 9) and calculate the heat transfer coefficient, the empir-
ical correlation for the forced convection of fluid in the horizontal channel
is used. Correlation parameters are the flow area, the hydraulic diameter,
the channel length, and the mass flow rate of the fluid. The mass flow rate
of the fluid (1/24 of the total rate of flow for the 2D model), the temper-
ature and the pressure are derived from the loading cycle for a given time
moment.

In formulation of boundary conditions at boundary 10, it is assumed
that the fluid flowing past a given surface has a negligibly small heat ca-
pacity. The heat transfer coefficient is calculated from empirical correlation
for free convection of the fluid in a horizontal cylinder. A correlation pa-
rameter is the Grashoff number calculated with characteristic diameter and
rotation speed.

In the coupled thermal analysis, on the inner and outer surfaces of the
rotor, on the surface of the shaft, as well as on the left and right surfaces
of the disc (boundaries 1, 4-9), coupled boundary conditions are specified.
The boundary conditions remain unaltered on the other walls of the model.
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For the velocity on the shaft and disc surfaces (in regions I and II),
no-slip and no-penetration boundary conditions are specified, as shown
in Fig. 2. At the inflow boundaries, the mass flow rate (m = 0.63 kg/s
for region I and m = 2.25 kg/s for region II) and the total temperature
(T = 500 K for region I and T' = 700 K for region II) are specified, and a
static pressure (p = 5 x 10° Pa for region I and p = 10° Pa for region II) is
fixed on the outlet boundaries. The flow direction is assumed to be normal
to the inlet boundary. The turbulent kinetic energy and its dissipation rate
are specified on the inlet boundaries (k = 1073 m?/s? and ¢ = 1072 m2/s3).
In the circumferential direction, periodic boundary conditions are used. To
transfer data from the 3D CFD model to the 2D FEA model, averaging of
the flow parameters in the circumferential direction is performed.

Wall functions are used to specify the turbulent kinetic energy and its
dissipation rate near solid walls. The standard wall functions implementa-
tion in the CFD code sets the velocity at nodes on the wall to the velocity
of the wall. The required walls hear stress from the log-law is achieved by
modifying the turbulent viscosity on edges which are connected to the wall.
This utilizes the assumption that the wall shear stress is uniform over the
cell adjacent to the wall.

The linear and rotational Reynolds numbers calculated with the param-
eters in the inlet boundary and the rotation speed of the disc are 8.89 x 103
and 1.51 x 10* for region I, and 4.12 x 10* and 5.98 x 10* for region II,
which corresponds to turbulent flow conditions.

4.4 Mesh

The FEA mesh contains 2170 elements and 4804 nodes. The structured
CFD mesh, used in region I and presented in Fig. 6a, contains 12768 cells
and 14,820 nodes (the inner surface of the rotor and the shaft surface hold
741 faces each, the inflow and outflow boundaries contain 228 faces each).
The structured CFD mesh, used in region II and shown in Fig. 6b, contains
303471 cells and 320512 nodes (1862 faces on the outer surface of the rotor,
the left and right surfaces of the disc contain 3162 faces each, and the inflow
and outflow boundaries contain 3591 faces each).

On all the surfaces that are of interest for coupled thermal analysis (the
inner and outer surfaces of the rotor and the shaft surface) the near-wall
coordinate yT varies over a range acceptable for the application of the wall
functions (35 < y* < 175). On the left and right surfaces of the disc, the
coordinate yT has uniform distribution (y* ~ 120).
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Figure 6: Structured meshes in domain I (a) and domain II (b).

A typical approach to determine the mesh independent solution for
a given scenario is to perform the simulation with progressively smaller
mesh cells, and then apply the Richardson extrapolation method. Mesh
sensitivity tests are run in order to obtain a mesh independent solution.
The results computed show that a mesh independent solution is obtained
with the given mesh, therefore a further refinement of the mesh would not
lead to significant improvements for this type of analysis.

4.5 Coupling procedure

A maximum number of iterations for each CFD model is 100. This number
of CFD iterations are performed per CFD analysis if no other convergence
criteria are satisfied within the CFD model. The convergence condition is
controlled by the temperature difference at the interface which equals 1 K.

It has long been recognized that there are situations where fluid proper-
ties are essentially independent of temperature, and the flow energy equa-
tion has no influence on the flow field. Selection of the energy equation
only option assumes that the flow regime does not alter significantly from
the original converged model.
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4.6 Stand-alone calculations

The temperature distributions along the outer surface of the shaft (line
1), and on the inner and outer surfaces of the disc (line 2 and line 3) are
shown in Fig. 7, where [ is the distance along the wall calculated from the
left boundary. The kink of the line corresponds to a nodal point of the
model. The temperature on the disc surface increases by about 100 K with

increasing radial coordinate.
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Figure 7: Temperature distributions on disc and shaft at time ¢ = 2000 s.

The time histories of the metal temperatures are shown in Figs. 8 and 9
(the results of calculations at points s1-s3, d1 and d2, d8 and d9, b3 and
b4 are very similar and, therefore, are not shown in the figures). There is
a good agreement between the results obtained in 2D and 3D formulations
of the problem. The maximum difference between the metal temperatures
at control points does not exceed 2 K (lines 3 and 4 in Fig. 9).

The flow in a hole is symmetric. Weak asymmetry of the flow takes place
only in the upper and lower regions. In the lower part of the cavity located
behind the hole, a recirculation zone occupying the entire volume of the
computational domain is formed, as presented in Fig. 10. The secondary
vortex is visible in the upper part of the domain.

Except for the small initial portion that is due to the influence of the
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Figure 8: Time histories of metal temperatures at control points in 2D case (a) and 3D
case (b) for non-coupled analysis.
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Figure 9: Time histories of metal temperatures at control points in 2D case (a) and 3D
case (b) for non-coupled analysis.

flow conditions at the inlet boundary of the computational domain, the
temperature distribution is uniform over the cross-section. This permits
using the 2D model for simulation of coupled heat transfer in domain I.
The time histories of the metal temperatures at control points obtained
with the 2D and 3D coupled thermal analysis are given in Figs. 11 and 12
(the results of calculations at point s1-s3, d1 and d2, d4 and d5, d8 and
d9, b3 and b4 coincide and, therefore, are not presented). There is fairly
good agreement between the calculations in the 2D and 3D calculations.
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Figure 10: Streamlines in the meridional section of region II.

The largest discrepancy between the calculation results are observed at
points bl and b2 (see Fig. 12). The results of simulation, presented in
Fig. 11 and 12, agree with the data obtained for the complete loading
cycle. These results are shown in Figs. 8 and 9 for a time internal from
1000 s to 2000 s. The temperature calculation error corresponding to the
steady-state conditions (horizontal region of the loading cycle) does not
exceed 1 K.
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Figure 11: Time histories of metal temperatures at control points in 2D case (a) and 3D
case (b) for coupled analysis.

5 Discussion

For the initial temperature field, the distribution obtained for the case of
adiabatic walls is used. The temperature distributions along the outer
surface of the shaft, and the inner and outer surfaces of the disc obtained
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Figure 12: Time histories of metal temperatures at control points in 2D case (a) and 3D
case (b) for coupled analysis.

in the coupled formulation agree fairly well with the data presented in
Fig. 7 obtained with thermal boundary conditions based on the empirical
correlations for the heat transfer coefficient. However, the increase in the
disc surface temperature given by the coupled thermal analysis is somewhat
smaller and equals 90 K.

Speed-up of computational procedure and number of time steps are
presented in Tab. 1 for different number of iterations for computation of
temperature field on every time step. The results are obtained for multigrid
and GMRES solvers applied to solve energy conservation equation in the
fluid domain (frozen flowfield).

Using GMRES method for solution of temperature equation and de-
creasing number of iterations per time step from 50 to 1, the metal tem-
perature in control points changes less than 0.5 K.

6 Conclusion

An efficient FEA /CFD thermal coupling technique has been developed and
demonstrated. The thermal coupling is realized through an iterative proce-
dure between FEA and CFD calculations. The FEA simulation is treated
as transient and the CFD calculations are regarded as steady. Communica-
tion between FEA and CFD calculations ensures continuity of temperature
and heat flux.
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Table 1: Speed-up of coupling procedure.

Method Number Numbsigposf time
No. | of solution of iterations Speed-up N 5
1 Multigrid 10 3.23 30 26
2 Multigrid 25 1.78 22 24
3 Multigrid 50 1.56 18 21
4 GMRES 1 6.26 25 24
5 GMRES 2 3.15 28 25
6 GMRES 5 1.91 17 22
7 GMRES 10 1.18 15 23

To speed up the thermal coupling, steady CFD calculations are employed,
considering that fluid flow timescales are much shorter than those for the
solid heat conduction and therefore the influence of unsteadiness in fluid
regions is negligible. To facilitate the thermal coupling, the procedure is de-
signed to allow a set of CED models to be defined at key time points/intervals
in the transient cycle and to be invoked during the coupling process at spec-
ified time points. To further enhance computational efficiency, a frozen flow
or energy equation only coupling option was also developed, where only the
energy equation is solved while the flow is frozen in CFD simulation during
the thermal coupling process for specified time intervals. Comparison of
different methods, Multigrid and GMRES, shows that GMRES solver is
more efficient in terms of number of computational step allowing to save
computational time.

The results obtained are useful for design and optimisation of gas tur-
bines and rotating disc cavity systems allowing an accurate prediction of
fluid and metal temperatures.
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