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LIMIT CYCLE OSCILLATION PREDICTION BASED ON
FINITE ELEMENT-MODAL APPROACH

The central theme of this work was to analyze high aspect ratio structure hav-
ing structural nonlinearity in low subsonic flow and to model nonlinear stiffness
by finite element-modal approach. Total stiffness of high aspect ratio wing can be
decomposed to linear and nonlinear stiffnesses. Linear stiffness is modeled by its
eigenvalues and eigenvectors, while nonlinear stiffness is calculated by the method
of combined Finite Element-Modal approach. The nonlinear modal stiffness is cal-
culated by defining nonlinear static load cases first. The nonlinear stiffness in the
present work is modeled in two ways, i.e., based on bending modes only and based on
bending and torsion modes both. Doublet lattice method (DLM) is used for dynamic
analysis which accounts for the dependency of aerodynamic forces and moments
on the frequency content of dynamic motion. Minimum state rational fraction ap-
proximation (RFA) of the aerodynamic influence coefficient (AIC) matrix is used to
formulate full aeroelastic state-space time domain equation. Time domain dynamics
analyses show that structure behavior becomes exponentially growing at speed above
the flutter speed when linear stiffness is considered, however, Limit Cycle Oscillations
(LCO) is observed when linear stiffness along with nonlinear stiffness, modeled by
FE-Modal approach is considered. The amplitude of LCO increases with the increase
in the speed. This method is based on cantilevered configuration. Nonlinear static
tests are generated while wing root chord is fixed in all degrees of freedom and it
needs modification if one requires considering full aircraft. It uses dedicated com-
mercial finite element package in conjunction with commercial aeroelastic package
making the method very attractive for quick nonlinear aeroelastic analysis. It is the
extension of M.Y. Harmin and J.E. Cooper method in which they used the same equa-
tions of motion and modeled geometrical nonlinearity in bending modes only. In the
current work, geometrical nonlinearities in bending and in torsion modes have been
considered.
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Nomenclature
M, K, F structural physical mass/stiffness/force vectors
M,K, F structural modal mass/stiffness/force vectors
X physical displacement (bending and twist) vector
by physical bending displacement vector
0 physical twist displacement vector
6o initial twist vector
q modal displacement vector
A, nonlinear stiffness coefficients
AIC aerodynamic influence matrix
A, Karpel’s rational fraction approximation aerodynamic matrices
V,L, M velocity, lift, pitching moment
N number of DOF in FE model
NA number of nonlinear stiffness coefficients
NR number of DOF in reduced modal model
NT number of nonlinear static test cases
Ay lift curve slope
semi-chord
chord

reduced frequency
dynamic pressure
semi wing span
air density
circulation

number of aerodynamic lag terms

B I 1O Le = O

eigenvectors/mode shapes

Ap, A1, Ap  Karpel’s minimum state approximation matrices of order NR X NR

D, E rectangular Karpel’s minimum state approximation matrices or order NR X m
and m X NR respectively

p =sL/V  non dimensional complex Laplace

1. Introduction

Extensive work has been done on aeroelastic performance of high aspect ra-
tio wings. Notably, Hodges and Patil [1-5] have used geometrically exact, fully
intrinsic theory [6] to model structure and Peters and Johnson in-flow theory [7]
to model aerodynamics and complete the aeroelastic formulation of high aspect
ratio wing. In their work, they have shown to have drastic change in the struc-
tural and aeroelastic characteristics of high-aspect-ratio wings under nominal wing
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loading. The type of nonlinear aeroelastic behavior is intimately connected with
the distribution of modal frequencies relative to each other and the corresponding
normal mode shapes including flap-wise bending, torsion and edgewise bending
modes. Geometrical nonlinearities appear because of large tip deflection under
normal flight condition. Aeroelastic behavior changes because of bending—torsion
coupling and because of the changes in unsteady aerodynamic loading. Moreover,
three dimensional effects of aerodynamics are quite small for the high-aspect ratio
wings. The structural nonlinear effects were quite small for the steady state calcu-
lations. In pioneering work [8], high aspect ratio wing problem was studied. Using
linear finite element analysis (FEA) and 2D unsteady strip theory aerodynamics,
authors indicated that including flexible deformation modes has an obvious effect
on predicted aircraft stability. Aeroelastic characteristics of highly flexible aircraft
was investigated in [9]. The complete aircraft was modeled using 16 modes of
vibration, including rigid-body modes. In [10] the authors theoretically and exper-
imentally investigated flutter and limit cycle oscillations using a nonlinear beam
model and ONERA stall model. Authors of [11] have presented nonlinear aeroelas-
tic analysis using geometrically exact structural theory and a non-planar, fixed-wake
aerodynamic theory. The results presented shed light on the importance of various
types of geometrical nonlinearities on the aeroelastic behavior of high-aspect-ratio
wings. There is negligible difference between the air-loads calculated using the cor-
rect non-planar wing geometry as compared to loads calculated assuming a planar
wing. In further work [12] they have presented analysis with material anisotropy,
geometrical nonlinearities of the structure, unsteady flow behavior, and dynamic
stall. In [13] structural equations of motion based on nonlinear beam theory [14]
along with original ONERA aerodynamic stall model [15] have been used to study
the effects of geometric structural nonlinearity on flutter of high-aspect-ratio wings.
Large static pre-flutter deformations in the vertical direction were considered. Other
reserchers used a combined FE-Modal approach to handle nonlinear structural stiff-
ness in aeroelastic problems [16]. The output from a series of static finite element
test cases is transformed into modal coordinates using the mode shapes of the un-
derlying linear system. Regression analysis is then performed in order to extract the
nonlinear stiffness coeflicients in the modal co-ordinate system. In the extension
to their previous work, authors in [17] have used FE-Modal approach to model
nonlinear stiffness and to predict limit cycle oscillation of high aspect ratio wing
for un-deflected and deflected wing. How flutter speed is decreased in high aspect
ratio wing with tip deflection has been demonstrated by Kamran et al [18]. In their
further work [19], authors demonstrated Finite Element-Modal approach to predict
tip deflection and tip twist using bending and torsional modes nonlinearities both.

The main contributions of the present work include:

1) development of the elastic beam and elastic shell model and to perform

modal analysis using finite element method;
2) development of the nonlinear structure model using FE-Modal approach in
bending only and in bending—torsion both;
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3) identification of LCO in high aspect ratio wing structure using nonlinear
structural stiffness.

2. Formulation

2.1. Finite Element-Modal approach

The equation of motion of dynamic system in physical coordinate system
including geometrical nonlinearity is given as

[M] {7} + [C1{¥} + [KLIY) + (Kno (V) = {F). (1)

Here, M, C and K, are the 2N X 2N mass, damping and linear stiffness matri-
ces, while Kyz, F and Y are the 2N X 1 nonlinear stiffness, nodal applied force
and spatial displacement vectors, respectively. The physical to modal coordinate
transformation is given as

{Y(x, 6,0} = [O(x,0){q(®)}, (2)

where, g(t) is the NR x 1 vector of generalized modal coordinates. This vector is
time dependent. ®(x, 0) is the 2N X NR matrix. The number of degree of freedom in
reduced order model (VR) is dependent on the frequency range of interest. However,
NR is much less than N. Transforming the equation (1) into modal coordinates using
equation (2) and pre-multiplying with ®”

(@7 | MI[@] {4} + [@7] [CI[@] (g} + [@ | [KLI[@]{q)+

+[@"] (RKne (X)) [@Hg) = [@ | (F). (3)

The advantage of transforming them into modal coordinates is that the system of
equations becomes uncoupled because of orthogonality of the modes. Hence we get

[M]{g} + [Cl{q} + [KL1{q} + {KnL(q)} = {F}. “4)

Here, M, C and K|, are the diagonal matrices of order NR X NR. The order of modal
coordinate vector ¢, nonlinear modal stiffness vector Ky; and modal force vector
F is NR x 1. Nonlinear stiffness vector is the function of modal coordinate g.

2.2. Methodology for generating nonlinear static cases

The implementation of the finite element-modal approach is based on nodal
deflections obtained from a number of prescribed static non-linear load cases.
Thus, when a static system is considered and damping term ignored, the equations
of motion, given by equation (4) reduces to

[Krl{q} + {Kne(q)} = {F}. )
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The total stiffness is considered to be composed of linear and nonlinear stiff-
ness. Hence left-hand side may be considered as stiffness restoring force whiles
the right-hand side in equation (5) is the statically applied load. If there exist a
vector of static loads/moments and corresponding displacements/rotations, then
there should exist stiffness matrix, relating the applied load to the corresponding
displacements, whose coeflicients need to be determined.

Two factors are important while generating nonlinear static load cases, the
spatial distribution of the load over the structure and the magnitude of the load.
Variation in the spatial distribution of a static case will result in a different level of
modal inclusion. While magnitude of overall load would change the corresponding
displacements and these displacements may or may not be in nonlinear region.
Rearranging equation (5), one gets

{F} = [KL]{q) = {Kne(q)} . (6)

It is assumed here that nonlinear cross coupling is important and hence load
applied purely in the shape of one mode may induce a displacement response
that is combination of more than one mode. Physical load/moment cases may be
generated as the weighted sum of mode shapes and is given as

NR

(F} = ) a (@), +a-M, (7)

r=1

here {FF} is the total force applied on the structure which is the sum of bending load
and twisting moment and it is 2N X 1, a, is the scalar weighting factors and are
selected so that the deflection is in the nonlinear region. Eigenvector matrix can
be obtained from normal mode analysis by using any proprietary FE package. Its
order is 2N X NR containing vertical deflection and twist along the span axis. The
transformation of nodal load/moment and displacement/rotation into the modal
space can be calculated as

(F) = [0 (B) = {q) = ([0 ]1@1)" [07] i¥). ®)
2.3. Regression analysis

Upon completion of the static nonlinear test cases and with the acquired data
of load/moment and displacement/rotation in modal space, the nonlinear restoring
force for each of the test cases can now be fitted to find the unknown nonlinear modal
stiffness coeflicients in a least squares sense. An ordinary polynomial approach is
selected here for curve fitting. Simultaneous coupling of two modes is considered.
This coupling includes bending—bending and bending—torsion. Authors of [20]
have shown that simultaneous couplings of more than two modes for the symmetric
structure are very weak and can safely be omitted. The nonlinear restoring forces
in matrix form for a certain mode ‘r’ is given as



www.czasopisma.pan.pl P N www.journals.pan.pl
N
S
POLSKA AKADEMIA NAUK

502 KAMRAN AHMAD, ZHIGANG WU, HAMMAD RAHMAN
3 3 3
Fi - Krinhaqi q1(1) Q1) A3y Ay
3 3
F-Krng 912 9 2) VET N A
For— K 1 3 3 3 Al oa
NT L(r)4NT qQynry  Dwvry v NA
= {F v = [Dr A, )

here, {F,}yz is a NT x 1 vector of nonlinear modal stiffness restoring forces, [D, ]
is NT x NA design matrix and {A,} is NA x 1 vector having the unknown values
of nonlinear stiffness coeflicients. Each row in matrix [D] refers to an evaluation
using one of the NT data sets available. The subscripts in the bracket refer to the
test load case that the data value originated from. NT should be greater than NR
for exact solution.

2.4. Backward elimination of redundant terms

When all possible terms have been included in the design matrix [D], there
is a possibility that matrix becomes singular or near to singular. Hence equation
(9) becomes ill conditioned and cannot be solved directly. Singular value decom-
position (SVD) is one of the methods to solve such ill conditioned problem. SVD
allows writing an ill conditioned matrix in the form of three matrices which are
given as

[D,] = [UTIWIIVT, (10)

here, [U] is an NT x NA and [V] is NA X NA matrix, and both are orthogonal. [W] is
NA x NA diagonal matrix and all the diagonal elements are positive. It is important
to note here that some of the elements in [W] may be zero in case it is singular or
near to zero in case of near to singular matrix. Therefore, noncontributing elements
are removed such that

1
- — if o; > tolerance,
(W] =1 o (11)
0 otherwise.

Nonlinear stiffness coefficients can be found by solving equation given as
{Ar) = [VIIWTT UT {F b - (12)

To solve equation (12), the [U] and [V] matrices are also modified depending
upon the number of columns removed from [W]. Backward elimination methodol-
ogy is used to remove terms which are less significant to the overall solution. Root
mean square method may be used to find the contribution of each polynomial term
and is given as
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NT
2
HG ) =\ o7 2(prticiy ) (13)

Situation would be ideal if all terms in the design matrix are used, however
numerical solution may become unstable. Therefore, a pre-selected threshold value
is chosen. Say, a particular term is eliminated if its contribution is less than 1%.
Total contribution of retained terms should be near to 100%. During the backward
elimination process, if all terms are exhausted, then the model in question is
certainly a linear system and non non-linear stiffness terms are required. On the
other hand, if this procedure stops at the first iteration, the numbers of polynomial
terms considered are not sufficient to model restoring force and more terms should
be added.

Significant terms for a particular non-linear modal restoring force once iden-
tified, the entire process is repeated for the next mode until the entire multi-mode
model has been identified. The inertial and damping terms can be added to complete
the governing equation in modal form.

2.5. Structural model verification

Verification process starts by performing linear and nonlinear static analyses
through a commercial FEM code by applying a set of wing tip forces at the quarter
chord and noting the tip deflection and twist at the three quarter chord. In vortex
lattice method, vortices are places at the quarter chord and zero normal flow
boundary condition is achieved at the control points, which is midway span-wise
and at three quarter chord chord-wise. This constraint ensures that Kutta condition
is met [21]. Using the nonlinear stiffness calculated through equation (9), and using
same set of wing tip forces, FE-modal approach was used to calculate tip deflection
and tip twist. Results have been plotted in Fig. 1 and Fig. 2 Wing tip deflection

8

—— Deflection (m)-Linear (ANSYS)
- Deflection (m)-Nonlinear (ANSYS
- - - - Deflection (m)-FE Approach

Tip Deflection (m)

T T
0.0 0.2 0.4 0.6 0.8 1.0
Load (normalized)

Fig. 1. Wing tip force vs. tip deflection comparison
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25

—— Twist (Deg)-Linear (ANSYS)
Twist (Deg)-Nonlinear (ANSYS)
204 |- - - Twist (Deg)-FE Approach

Tip Twist (Degree)

T
0.0 0.2 0.4 0.6 0.8 1.0
Load (Normalized)

Fig. 2. Wing tip force vs. tip twist comparison

and wing tip twist calculated through FE-modal approach agrees well with the
nonlinear results of FEM commercial code. This verifies that nonlinear stiffness
calculated through equation (9) is valid and may be used for further analysis.

2.6. Linear aerodynamic model and Karpel’s minimum state approximation

A good description of panel method has been given in [21] and [22]. Lift in
this method is computed by the following equation
pV?

L=pVST = T[AIC] {6+ 6y}, (14)
where AIC is aerodynamic influence coeflicient matrix. Each term of AIC (that is
AIC;;) relates the lift on each panel to the aerodynamics and angle of incidence of
each element and also the aerodynamic pressure converting the equation (14) into
modal coordinates, so one gets
3 pV? pV b pV?

5AICRh +iw = AICth = =—[011q + qo) (15)

Here, [Q] is generalized aerodynamics force matrix. Each term in [Q] matrix
has real part and imaginary part. Unsteady aerodynamic effects can be included by
allowing the aerodynamic influence coefficient matrix to become complex function
of reduced frequency and is given as

L

wb
v
Harmonic motion of the lifting surface is assumed while deriving the equation

(15). Karpel’s minimum state approximation [23] for Q is given by the following
the equation

k= (16)

[Q(p)] = Ao + Aip + Ayp® + DIpI = RI"'Ep. (17)
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Here, Ag, A} and A, are NR X NR matrices, R is the diagonal matrix containing
m lag term coefficients, D and E are rectangular matrices of NR X m and m X NR
respectively, p the non-dimensional complex Laplace variable. The minimum state
problem for a given R is nonlinear. It is solved iteratively by starting with an initial
guess of D in which at least one term in each row and each column is nonzero.
For a given D, Ag, A1 and A; and E are calculated. The calculated E is then used
to update Ag, A1, A> and D. The entire sequence of least-square solutions forms a
D — E — D iteration which is repeated until the specified maximum number of
iterations is reached. Combining equation (15) and equation (17) gives state space
equations in which unsteady lift force is approximated using Karpel’s minimum
state approximation.

2.7. Computational aeroelastic model

Combining equations (4), (15) and (17) and writing the equations of motion
in augmented state we get

(] td1 + [C] 41 + [Ke] ) + (K@) = 5oV IDT(xa) . (1)

where x, is a vector due to aerodynamic lag terms and [M], [6] and [EL] are
defined as

— 1
[M] = (M1~ 5 pb* [42],
— 1
[C] =1C1- 5PV 1AL, (19)
— 1
[KL] =[KL] - EPVZ [Ao] .
Equation (18) can be written in state space form as

(7] el [ [F] oseviei[]

q
g ¢ = 1 0 0 q
Xa K Xa
E 0 b [R]
[M] " {kne(@))
- 0 , (20)
0
q ' q

Y=2gq t=>Y=2 ¢t 2D
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[ e] - R] osovion[
1 0 0 . (22)
E 0 %[R]

A=

The final form of equation is given as

(3] k(@)
y =AY - 0 . (23)

0

Methodology of FE-Modal approach presented in [16, 17,23] and [24] has been
used here to model geometrical nonlinearity in this work. Nonlinearity has been
modeled in bending as well in torsion modes and hence this work is the extension
of [16, 17] in which only bending nonlinearity was considered and torsion was
taken as linear. Bending modes cross coupling is considered. Bending—bending
and bending—torsion cross coupling has been considered in this work. 4™ order
Runge Kutta method is used to solve equation (23).

3. Computational model

A high aspect ratio straight wing [1] is analyzed. Its structural properties
are given in Table 1. Finite element wing model and its first five mode shapes
are shown in Fig. 3. For the cantilever shell model, the first, second and fifth are

Table 1.
Wing tip force vs. tip deflection comparison

S. No Structural characteristics Value
1 Half span 16 m
2 Chord 1 m
3 Mass per unit length 0.75 kg/m
4 Moment of inertia (50% chord) 0.1 kgm
5 Spanwise elastic axis 50% chord
6 Center of gravity 50% chord
7 Bending rigidity 2 x 10* Nm?
8 Torsional rigidity 1 x 10* Nm?
9 Edge wise bending rigidity 5x 10° Nm?

Flight condition
1 Altitude 20 km
2 Air density 0.0889 kg/m>
Lift curve slope 5.58
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bending modes, while the third and fourth are torsion and flap-wise bending modes.
The higher modes are difficult to excite and are expected to have few effects on
the dynamic analysis. It is important to mention that these frequencies values are
for straight wing configuration. However, there is variation in torsion and flap-wise

Finite element wing model 0.35 Hz (1st bending) 2.24 Hz (2nd bending)

S A A A S P I R i -

5.02 Hz (1st torsion) 5.72 Hz (1st in-plane bending) 6.31 Hz (3rd bending)

Fig. 3. Wing tip force vs. tip deflection comparison
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bending frequencies when wing is deflected. This variation is shown in Fig. 2.
This implies that the dynamic behavior of the straight undeflected wing would be
different from that of deflected wing. However, analysis presented in this work is
for the straight undeflected wing model. It is obvious from Fig. 4 that nonlinear
behavior is distinct when vertical deflection is more than 2.5 m for the particular
structure considered. Therefore, in order to model geometrical nonlinearity, forces
are selected in such a way that the corresponding displacements should be more
than 2.5 m for the considered configuration. For a realistic upper bound for vertical
deflection could be 6 m. Similarly, nonlinear stiffness in torsion becomes obvious
when flexible twist is more than 1°. Hence, moments values should be selected
such that twist value should be greater than this threshold value.

8 4
7
6 -
£ 5 — Bending
= N .
9 N - - - Torsion
G N - Inplane bending
c 44
()] N
g_ N
~
(9]
3 T
N
\\
2 -
14 T -aa
T T T T T
0 1 2 3 4 5

Tip Deflection (m)

Fig. 4. Frequencies variation vs. wing tip deflection

4. Results and discussion

Small initial deflection was given at the tip to initiate the disturbance. Tip
twist time history below the flutter is shown in Fig. 5, while linear stiffness is
considered. However, diverging response is obtained above flutter speed for linear
structural system and is shown in Fig. 6. In the next step, nonlinear stiffness,
calculated from the FE-modal approach is taken in calculation and the time history
below the flutter speed is decaying as shown in Fig. 7. It is the same response as
was the case with linear stiffness. However, a limit cycle oscillation is obtained
above flutter speed as shown in Fig. 8. This was not the case when linear stiffness
was considered. Hence nonlinear stiffness contains the vibration to a certain level.
However, the amplitude of vibration increases with the speed above flutter speed



www.czasopisma.pan.pl P N www.journals.pan.pl
N

LIMIT CYCLE OSCILLATION PREDICTION BASED ON FINITE ELEMENT-MODAL APPROACH 509

1.0
4
— Linear L’
- - - - Nonlinear| L’
0.8 4
4
4
— e
Z 7’
~ 7
B 061 I
S .
- 4
N %
= .
_ .

g 0.4 ,
S ,’
2

0.2

0.0 —_—

0 1 2 3 4 5 6 7 8

Tip Deflection (m)
Fig. 5. Linear and nonlinear wing tip deflection of high aspect ratio wing

x10°

Tip Twist,deg

2 4 6 8 10 12 14 16 18 20
Time, sec

Fig. 6. Decaying behavior of Patil wing before flutter speed with linear stiffness

as shown in Fig. 9. Limit cycle oscillation is typical characteristic of nonlinear
system. If the initial disturbance is sufficiently small, a stable LCO is expected
above flutter speed. However, LCO may also arise below the flutter speed if the
initial disturbance is sufficiently large. Majority of researchers attributed LCO to
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Fig. 7. Diverging behavior of Patil wing after flutter speed with linear stiffness

nonlinear aerodynamics. This nonlinear aerodynamics could be because of shocks

wave motion or stall. However, damping, free play or structural
also lead to initiation of LCO.

nonlinearity may

Tip Twist,deg

-10

12 I I
0

10 20

Time, sec

Fig. 8. Converging behavior of Patil wing before flutter speed with nonlinear stiffness
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Tip Displacement,m

-0.05 :
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Time, sec

Tip Twistdegee
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Time, sec

Tip Twist rad

Tip Displacement, m

Fig. 9. Limit cycle oscillation of Patil wing above flutter speed

24

LCO amplitude (degree)

34 35 36 37 38 39 40
Velocity (m/sec)

Fig. 10. Limit cycle oscillation twist amplitude vs. velocity
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Fig. 11. Limit cycle oscillation bending amplitude vs. velocity

5. Conclusions

In this work, the geometrical nonlinearity encountered in High Altitude Long
Endurance (HALE) aircraft wing is numerically investigated in time domain. Non-
linear structure is modeled by FE-Modal approach and aerodynamics forces are cal-
culated by the generalized aerodynamic force from ZAERO package and Karpel’s
rational fraction approximation for linear unsteady aerodynamics prediction. Linear
structure was simulated by eigenvalues and eigenvectors, while nonlinear structure
was simulated by FE-Modal approach. High aspect ratio wing aeroelastically ana-
lyzed in cantilevered configuration. Commercial FEM package ANSYS is used for
free vibration analysis and to get the natural frequencies along with mode shapes
to be ultimately used in aeroelastic analysis. Equations of motion are solved using
state-space model in modal coordinates. The time histories of the generalized modal
coordinates show that at speed below the flutter speed, wing tip deformations expe-
rience decaying oscillation and finally approach steady state. Non-decaying motion
is observed at the critical speed. At the flutter speed, all modes are responding at
the same frequency value. Moreover, wing tip oscillations are increasing when
linear stiffness is considered above flutter speed, an LCO is observed when non-
linear stiffness is also added. LCO is a typical characteristic of nonlinear system.
It is the geometrical nonlinearity which is responsible for this LCO. A stable LCO
is expected above flutter speed when the initial disturbance is sufficiently small.
However, LCO may also arise below the flutter speed if the initial disturbance is
sufficiently large. In stable LCO the motion returns the same LCO at larger time
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while unstable LCO are those for which any disturbance causes the motion to move
away from the unstable LCO and moves towards a stable LCO. From the study, it
is evident that LCO could be identified with bending nonlinearity only; however,
the amplitude in twist may/may not be correct. Moreover, bending nonlinearity
is more important than torsional nonlinearity. No LCO is obtained when bending
modes are kept linear and using torsional nonlinearity only.
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6. Future work

Work will certainly be extended to, but not limited to the following topics:
1. Gust response.

2. Employing nonlinear structural models for full span configuration.

3. Incorporation of stall model.

4. Inclusion of rigid body modes.

Manuscript received by Editorial Board, March 17, 2018;
final version, September 10, 2018.
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