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Development of dual hesitant fuzzy prioritized
operators based on Einstein operations
with their application to multi-criteria

group decision making

ANIMESH BISWAS and ARUN SARKAR

The purpose of this article is to develop a multicriteria group decision making (MCGDM)
method in dual hesitant fuzzy (DHF) environment by evaluating the weights of the decision
makers from the decision matrices using two newly defined prioritized aggregation operators
based on score function to remove the inconsistencies in choosing the best alternative. Pri-
oritized weighted averaging operator and prioritized weighted geometric operator based on
Einstein operations are described first for aggregating DHF information. Some of their desir-
able properties are also investigated in details. A method for finding the rank of alternatives in
MCGDM problems with DHF information based on priority levels of decision makers is de-
veloped. An illustrative example concerning MCGDM problem is considered to establish the
application potentiality of the proposed approach. The method is efficient enough to solve dif-
ferent real life MCGDM problems having DHF information.

Key words: multi-criteria group decision-making, aggregation operator, dual hesitant
fuzzy numbers, Einstein operations, prioritized weighted averaging operator, prioritized
weighted geometric operator

1. Introduction

Theory of Fuzzy sets (FSs) [31] are widely and successfully applied in all
areas of real life decision making problems to handle vagueness or possibilistic
imprecisions. After introduction of FSs, several extensions are developed, such
as type-2 FSs (T2FSs) [1–3, 8, 10], fuzzy multisets [10], interval-valued FSs
[32], etc. As a generalization of FSs, Atanassov presented the concept of intu-
itionistic FS (IFS) [17] using two characteristic functions representing the degree
of membership and the degree of non-membership of elements of the universal
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set to the IFS. As like FSs, in IFSs several variants are also found in the form of
intuitionistic linguistic FSs [7], interval-valued IFSs [3, 4, 12, 22], etc.

In real-life applications, when decision makers are confused with assign-
ing exact preference information using FSs or IFSs, the concept of hesitant FSs
(HFSs) came into the literature [15, 16] as a new generalization of FSs as well as
IFSs. HFSs deal with the difficulties of establishing a common membership de-
gree not because of a margin of error (IFSs), or some possibility distribution val-
ues (T2FS), but have a set of possible values. Torra [15] provided a definition cor-
responding to the envelope of HFSs. HFS has received a considerable attention
to the researchers and is applied to various fields of decision-making [14, 23].
Xia and Xu [21] developed several series of aggregation operators for hesitant
fuzzy information and discussed the relationships among them. In the context
of multi-criteria decision-making (MCDM), Wei et al., [20] proposed hesitant
fuzzy linguistic arithmetic aggregation operators. Based on the idea of priori-
tized aggregation operators [26] Wei [19] defined some prioritized aggregation
operators for aggregating hesitant fuzzy information and then applied them to
develop models for hesitant fuzzy multiple attribute decision making (MADM)
problems in which the attributes are in different priority level.

Zhu et al. [34] proposed dual hesitant fuzzy (DHF) set (DHFS) by consid-
ering several possible values for the membership as well as non-membership
degrees. Thus, DHFSs can take much more information than HFSs given by de-
cision makers into account in MADM. Wei and Lu [18] developed Dual hesitant
Pythagorean fuzzy Hamacher aggregation operators in MADM. Inspired by gen-
eralized ordered weighted average operator [25], Yu and Li [29] proposed some
generalized aggregation operators for DHFEs. Different MADM theories and
methods under DHF environments are developed using those aggregation oper-
ators. All the developed methods are under the assumption that the attributes are
at the same priority level. However, in real and practical MADM situation, the
attributes may have different priority levels. To overcome this drawback, in this
paper, DHF prioritized weighted average (DHFPWA) operator and DHF priori-
tized weighted geometric (DHFPWG) operator are proposed and some of their
properties have been discussed.

2. Some basic concepts and operations

In this section, some basic concepts, which are essential to develop the pro-
posed methodology, are described.

Definition 1 [1] Let a set X be fixed. An IFS α on X is represented in terms
of two functions µα : X → [0,1] and να : X → [0,1], and having the form α =
{〈x,µα ,να(x)〉|x ∈ X} with the condition 0 6 µα(x)+να(x) 6 1, for all x ∈ X,
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where µA(x) and νA(x) represent, respectively, the membership degree and the
non-membership degree of x in α .

For convenience, Xu and Yager [24] called α = (µα ,να) an intuitionistic
fuzzy number (IFN), where µα ∈ [0,1], να ∈ [0,1] and 0 6 µα +να 6 1.

For any IFN α = (µα ,να), a score of α can be evaluated by a score function
s [6] as

s(α) = µα −να where s(α) ∈ [−1,1]. (1)

Definition 2 [15–16] Let X be a universal set. A HFS A defined on X is repre-
sented by a function hA that returns a subset of [0,1] when it is applied to X.

For convenience, Xia and Xu [21] represented the HFS A by using the math-
ematical symbol:

A = {〈x,hA(x)〉 |x ∈ X} , (2)

where hA(x) is a set of several different values in [0,1], denoting the possible
membership degrees of the element x ∈ X to the set A. Xia and Xu [21] called
h = hA(x) a hesitant fuzzy element (HFE).

Definition 3 [34] Let X be a fixed set, a DHFS D defined on X is represented as:

D = {〈x,h(x),g(x)〉 |x ∈ X} , (3)

where h(x) and g(x) are hesitant fuzzy elements, denoting respectively the mem-
bership and non-membership degree of the element x to D, with the conditions:

0 6 γ, τ 6 1 with 0 6 γ++ τ+ 6 1,

where γ ∈ h(x)⊆ [0,1], τ ∈ g(x)⊆ [0,1] and γ+ = max{h(x)}, τ+ =max{g(x)}.

For convenience 〈h(x),g(x)〉 is called the DHF element (DHFE) and is de-
noted as

α̃ = (h,g).

2.1. Einstein operations

The set theoretical operators play an important role to aggregate different
fuzzy information. Since the inception of fuzzy set theory, starting from Zadeh’s
operator, min and max, many other operators introduced in the literature. All
types of the operators were included in the general concepts of the t-norms and
t-conorms, which satisfy the requirement of the conjunction and disjunction op-
erators, respectively.

There are various t-norm and t-conorm families available in the literature.
Einstein operators include the Einstein product ⊗ε and Einstein sum ⊕ε , which
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are examples of t-norm and t-conorm, respectively. The Einstein operators are
defined as follows [11]:

a⊕ε b =
a+b

1+a ·b , a⊗ε b =
a ·b

1+(1−a)(1−b)
for all (a,b) ∈ [0,1]2. (4)

Based on the concepts of Einstein operators Zhao et al. [33] introduced dif-
ferent operations on DHFEs as follows:

Definition 4 [33] Let α̃1 = (h1,g1), α̃2 = (h2,g2) and α̃ = (h,g) be three
DHFEs. Then

(i) α̃1 ⊕ε α̃2 =


 ⋃

γ1∈h1,γ2∈h2

γ1 + γ2

1+ γ1γ2
,

⋃

τ1∈g1,τ2∈g2

τ1τ2

1+(1−τ1)(1−τ2)


;

(ii) α̃1 ⊗ε α̃2 =



 ⋃

γ1∈h1,γ2∈h2

γ1γ2

1+(1− γ1)(1− γ2)
,

⋃

τ1∈g1,τ2∈g2

τ1 + τ2

1+ τ1τ2



;

(iii) λα̃ =


⋃

γ∈h

(1+ γ)λ − (1− γ)λ

(1+ γ)λ +(1− γ)λ
,
⋃

τ∈g

2τλ

(2− τ)λ + τλ


 , λ > 0;

(iv) α̃λ =


⋃

γ∈h

2γλ

(2− γ)λ + γλ
,
⋃

τ∈g

(1+ τ)λ − (1−τ)λ

(1+ τ)λ +(1−τ)λ


 , λ > 0.

2.2. Prioritized operators

The prioritized operators play also an important role in solving many MCDM
problems. The prioritized averaging (PA) operator, introduced by Yager [26], is
defined in the following manner:

Definition 5 [26] Let C = {C1,C2, . . . ,Cn} be a collection of criteria and that
there is a prioritization between the criteria expressed by the linear ordering
C1 ≻ C2 ≻ . . . ≻ Cn, indicate criteria C j has a higher priority than Ck if j < k.
The value C j(x) is the performance of any alternative x under criteria C j, and
satisfies C j(x) ∈ [0,1]. If

PA(C j(x)) =
n

∑
j=1

w jC j(x), (5)

where w j =
Tj

∑n
j=1 Tj

, Tj =
j−1

∏
k=1

Ck(x) ( j = 2, . . . , n), T1 = 1. Then PA is called the

PA operator.
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In the following Sections, the methodological development of the paper is
incorporated.

At first a new score function of DHFEs is introduced. In this context it is to
be pointed out that a score function defined by Zhu et al. [34] is already exist in
the literature. But, the drawback of that approach is that the score value becomes
negative when average of membership degree is less than the average of non-
membership degree.

Based on the concepts of score functions of DHFEs, Einstein operators and
prioritized operators, dual hesitant fuzzy aggregation operators are defined. The
defined operators are then used to solve a MCDM problem.

The methodological developments are described subsequently.

3. Score function of a dual hesitant fuzzy element (DHFE)

A new score function is defined in this section to find the ordering of DHFEs.

Definition 6 Score function of DHFE is defined as

s(α) =

1+∑γ∈h

γ

l(h)
−∑τ∈g

τ

l(g)

2
(6)

and the accuracy function of DHFE is described as follows

a(α) = ∑
γ∈h

γ

l(h)
+ ∑

τ∈g

τ

l(g)
. (7)

where l(h) and l(g) represents the number of elements in h and g, respectively.

For comparison of DHFEs the following conditions are to be satisfied.
Let α1 and α2 be two DHFEs

1. If s(α1)> s(α2) then α1 > α2;

2. If s(α1) = s(α2) then
if a(α1)> a(α2) then α1 > α2; if a(α1) = a(α2) then α1 = α2.

4. Development of Dual Hesitant fuzzy aggregation operator

based on prioritized operators

Based on the score function, Einstein operations and prioritized operators as
defined above, a dual hesitant fuzzy prioritized Einstein aggregation operator is
defined as follows.
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Definition 7 Let α̃i = (hi,gi) (i = 1,2, . . . ,n) be a collections of DHFEs and
w = (w1,w2, . . . ,wn) be the weight vectors of α̃i, where

wi =
Ti

∑
n

i=1 Ti

and Ti =
i−1

∏
k=1

s(α̃k) (i = 2, . . . ,n), T1 = 1, (8)

and s(α̃i) is the score of DHFE α̃i. If DHFPEWA(α1,α2, . . . ,αn) = ⊕ε
n
i=1wiαi

then DHFPEWA is called a dual hesitant fuzzy prioritized Einstein weighted
averaging operator.

Theorem 1 Let α̃i = (hi,gi) (i = 1,2, . . . ,n) be a collections of DHFEs, then the
aggregated value by using DHFPEWA operator is also a DHFE and

DHFPEWA (α̃1, α̃2, . . . , α̃n) =⊕ε
n
i=1

(
Ti

∑
n

i=1 Ti

α̃i

)

=




⋃

γ1∈h1,γ2∈h2,...,γn∈hn

∏
n

i=1 (1+ γi)
Ti

∑n
i=1 Ti −∏

n

i=1 (1− γi)
Ti

∑n
i=1 Ti

∏
n

i=1 (1+ γi)
Ti

∑n
i=1 Ti +∏

n

i=1 (1− γi)
Ti

∑n
i=1 Ti

,

⋃

τ1∈g1,τ2∈g2,...,τn∈gn

2∏
n

i=1 (τi)
Ti

∑n
i=1 Ti

∏
n

i=1 (2− τi)
Ti

∑n
i=1 Ti +∏

n

i=1 (τi)
Ti

∑n
i=1 Ti


. (9)

Proof. Using the mathematical induction method, the theorem will be proved.
The theorem is obvious for n = 1.
We assume that theorem is true for n = p, we shall prove that it is true for

n = p+1.
For n = p, we have

DHFPEWA (α̃1, α̃2, . . . , α̃p) =⊕ε
p
i=1

(
Ti

∑
n

i=1 Ti

α̃i

)

=




⋃

γ1∈h1,γ2∈h2,.....,γp∈hp

∏
p

i=1 (1+ γi)
Ti

∑n
i=1 Ti −∏

p

i=1 (1− γi)
Ti

∑n
i=1 Ti

∏
p

i=1 (1+ γi)
Ti

∑n
i=1 Ti +∏

p

i=1 (1− γi)
Ti

∑n
i=1 Ti

,

⋃

τ1∈g1,τ2∈g2,...,τp∈gp

2∏
p

i=1 (τi)
Ti

∑n
i=1 Ti

∏
p

i=1 (2− τi)
Ti

∑
p
i=1 Ti +∏

p

i=1 (τi)
Ti

∑n
i=1 Ti


.
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Now when n = p+1,

DHFPEWA(α̃1, α̃2, . . . , α̃p, α̃p+1)

= DHFPEWA(α̃1, α̃2, . . . , α̃p)⊕ε

(
Tp+1

∑
n

i=1 Ti

α̃p+1

)

= DHFPEWA(α̃1, α̃2, . . . , α̃p)⊕ε




⋃

γp+1∈hp+1

(
1+γp+1

) Tp+1
∑n

i=1 Ti −
(
1−γp+1

) Tp+1
∑n

i=1 Ti

(
1+γp+1

) Tp+1
∑n

i=1 Ti +
(
1−γp+1

) Tp+1
∑n

i=1 Ti

,

⋃

τp+1∈gp+1

2τ

Tp+1
∑n

i=1 Ti

p+1

(
2− τp+1

) Tp+1
∑n

i=1 Ti + τ

Tp+1
∑n

i=1 Ti

p+1




=




⋃

γ1∈h1,γ2∈h2,...,γp∈hp

∏
p
i=1 (1+ γi)

Ti
n
∑

i=1
Ti −∏

p
i=1 (1− γi)

Ti
∑n

i=1 Ti

∏
p
i=1 (1+ γi)

Ti
∑n

i=1 Ti +∏
p
i=1 (1− γi)

Ti
∑n

i=1 Ti

,

⋃

τ1∈g1,τ2∈g2,...,τp∈gp

2∏
p
i=1 (τi)

Ti
∑n

i=1 Ti

∏
p
i=1 (2− τi)

Ti
∑n

i=1 Ti +∏
p
i=1 (τi)

Ti
∑n

i=1 Ti


⊕ε




⋃

γp+1∈hp+1

(
1+ γp+1

) Tp+1
∑n

i=1 Ti −
(
1− γp+1

) Tp+1
∑n

i=1 Ti

(
1+ γp+1

) Tp+1
∑n

i=1 Ti +
(
1− γp+1

) Tp+1
∑n

i=1 Ti

,

⋃

τp+1∈gp+1

2
(
τp+1

) Tp+1
∑n

i=1 Ti

(
2− τp+1

) Tp+1
∑n

i=1 Ti +
(
τp+1

) Tp+1
∑n

i=1 Ti




=




⋃

γ1∈h1,
γ2∈h2,...,
γp∈hp,

γp+1∈hp+1

p

∏
i=1

(1+γi)

Ti
n
∑

i=1
Ti−

p

∏
i=1

(1−γi)

Ti
n
∑

i=1
Ti

p

∏
i=1

(1+γi)

Ti
n
∑

i=1
Ti
+

p

∏
i=1

(1−γi)

Ti
n
∑

i=1
Ti

+
(1+γp+1)

Tp+1
n
∑

i=1
Ti −(1−γp+1)

Tp+1
n
∑

i=1
Ti

(1+γp+1)

Tp+1
n
∑

i=1
Ti
+(1−γp+1)

Tp+1
n
∑

i=1
Ti

1+

p

∏
i=1

(1+γi)

Ti
n
∑

i=1
Ti−

p

∏
i=1

(1−γi)

Ti
n
∑

i=1
Ti

p

∏
i=1

(1+γi)

Ti
n
∑

i=1
Ti
+

p

∏
i=1

(1−γi)

Ti
n
∑

i=1
Ti

.
(1+γp+1)

Tp+1
n
∑

i=1
Ti −(1−γp+1)

Tp+1
n
∑

i=1
Ti

(1+γp+1)

Tp+1
n
∑

i=1
Ti
+(1−γp+1)

Tp+1
n
∑

i=1
Ti

,
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⋃

τ1∈g1,
τ2∈g2,

...,τp∈gp,
τp+1∈gp+1

2
p

∏
i=1

(τi)

Ti
n
∑

i=1
Ti

p

∏
i=1

(2− τi)

Ti
n
∑

i=1
Ti
+

p

∏
i=1

(τi)

Ti
n
∑

i=1
Ti

.
2τ

Tp+1
n
∑

i=1
Ti

p+1

(2− τp+1)

Tp+1
n
∑

i=1
Ti
+(τp+1)

Tp+1
n
∑

i=1
Ti

1+




1−
2

p

∏
i=1

(τi)

Ti
n
∑

i=1
Ti

p

∏
i=1

(2−τi)

Ti
n
∑

i=1
Ti
+

p

∏
i=1

(τi)

Ti
n
∑

i=1
Ti





1− 2(τp+1)

Tp+1
n
∑

i=1
Ti

(2−τp+1)

Tp+1
n
∑

i=1
Ti
+(τp+1)

Tp+1
n
∑

i=1
Ti







=




⋃

γ1∈h1,γ2∈h2,...,
γp∈hp,γp+1∈hp+1

p+1
∏
i=1

(1+ γi)

Ti
n
∑

i=1
Ti −

p+1
∏
i=1

(1− γi)

Ti
n
∑

i=1
Ti

p+1
∏
i=1

(1+ γi)

Ti
n
∑

i=1
Ti
+

p+1
∏
i=1

(1− γi)

Ti
n
∑

i=1
Ti

,

⋃

τ1∈g1,τ2∈g2,...,
τp∈gp,τp+1∈gp+1

2
p+1
∏
i=1

(τi)

Ti
n
∑

i=1
Ti

p+1
∏
i=1

(2− τi)

Ti
n
∑

i=1
Ti
+

p+1
∏
i=1

(τi)

Ti
n
∑

i=1
Ti




=⊕ε
p+1
i=1

(
Ti

∑
n

i=1 Ti

α̃i

)
= DHFPEWA(α̃1, α̃2, . . . , α̃p+1).

Hence the theorem is proved for p+1 and thus true for all n.
Hence DHFPEWA(α̃1, α̃2, . . . , α̃n) is a DHFE.
This completes the proof of the theorem.

Theorem 2 (Idempotency) Let α̃i = (hi,gi) (i = 1,2, . . . ,n) be a collections of
DHFEs. If all α̃i (i = 1,2, . . . ,n) are equal, i.e., α̃i = α̃ for all i, where α̃ = (h,g)
then

DHFPEWA(α̃1, α̃2, . . . , α̃n) = α̃ . (10)
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Proof. We have

DHFPEWA(α̃1, α̃2, . . . , α̃n) =⊕ε
n
i=1

(
Ti

∑
n

i=1 Ti

α̃i

)

=



⋃

γ∈h

n

∏
i=1

(1+ γ)
Ti

∑n
i=1 Ti −

n

∏
i=1

(1− γ)
Ti

∑n
i=1 Ti

n

∏
i=1

(1+ γ)
Ti

∑n
i=1 Ti +

n

∏
i=1

(1− γ)
Ti

∑n
i=1 Ti

,
⋃

τ∈g

2
n

∏
i=1

(τ)
Ti

∑n
i=1 Ti

n

∏
i=1

(2− τ)
Ti

∑n
i=1 Ti +

n

∏
i=1

(τ)
Ti

∑n
i=1 Ti




=



⋃

γ∈h

(1+ γ)
T1

∑n
i=1 Ti

+
T2

∑n
i=1 Ti

+...+ Tn
∑n

i=1 Ti − (1− γ)
T1

∑n
i=1 Ti

+
T2

∑n
i=1 Ti

+...+ Tn
∑n

i=1 Ti

(1+ γ)
T1

∑n
i=1 Ti

+
T2

∑n
i=1 Ti

+...+ Tn
∑n

i=1 Ti +(1− γ)
T1

∑n
i=1 Ti

+
T2

∑n
i=1 Ti

+...+ Tn
∑n

i=1 Ti

,

⋃

τ∈g

2τ
T1

∑n
i=1 Ti

+
T2

∑n
i=1 Ti

+...+ Tn
∑n

i=1 Ti

(2− τ)
T1

∑n
i=1 Ti

+
T2

∑n
i=1 Ti

+...+ Tn
∑n

i=1 Ti +(τ)
T1

∑n
i=1 Ti

+
T2

∑n
i=1 Ti

+...+ Tn
∑n

i=1 Ti




= (h,g) = α̃ .

Hence the theorem is proved.

Theorem 3 (Boundary) Let α̃i = (hi,gi) (i = 1,2, . . . ,n) be a collections of
DHFEs, and let

γ∗ = min{γ ∈ hi | i = 1,2, . . . ,n} , γ∗ = max{γ ∈ hi | i = 1,2, . . . ,n} ,
τ∗ = min{τ ∈ gi | i = 1,2, . . . ,n} , τ∗ = max{τ ∈ gi | i = 1,2, . . . ,n} ,

α̃− = (γ∗,τ∗) , α̃+ = (γ∗,τ∗) .

then
α̃−

6 DHFPEWA(α̃1, α̃2, . . . , α̃n)6 α̃+. (11)

Proof. We have

DHFPEWA(α̃1, α̃2, . . . , α̃n) =⊕ε
n
i=1

(
Ti

∑
n

i=1 Ti

α̃i

)

=




⋃

γ1∈h1,
γ2∈h2,
...,

γn∈hn

n

∏
i=1

(1+γi)

Ti
n
∑

i=1
Ti −

n

∏
i=1

(1−γi)

Ti
n
∑

i=1
Ti

n

∏
i=1

(1+γi)

Ti
n
∑

i=1
Ti
+

n

∏
i=1

(1−γi)

Ti
n
∑

i=1
Ti

,
⋃

τ1∈g1,
τ2∈g2,
...,

τn∈gn

2
n

∏
i=1

(τi)

Ti
n
∑

i=1
Ti

n

∏
i=1

(2−τi)

Ti
n
∑

i=1
Ti
+

n

∏
i=1

(τi)

Ti
n
∑

i=1
Ti



.
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By the definition of γ∗, γ∗, τ∗, τ∗

γ∗ 6 γi 6 γ∗ for all i, then

Thus
1− γ∗

1+ γ∗
6

1− γi

1+ γi

6
1− γ∗
1+ γ∗

for all i

i.e.,
n

∏
i=1

(
1− γ∗

1+ γ∗

) Ti
∑n

i=1 Ti

6

n

∏
i=1

(
1− γi

1+ γi

) Ti
∑n

i=1 Ti

6

n

∏
i=1

(
1− γ∗
1+ γ∗

) Ti
∑n

i=1 Ti

for all i

i.e.,
1− γ∗

1+ γ∗
6

n

∏
i=1

(
1− γi

1+ γi

) Ti
∑n

i=1 Ti

6
1− γ∗
1+ γ∗

for all i

i.e.,
2

1+ γ∗
6 1+

n

∏
i=1

(
1− γi

1+ γi

) Ti
∑n

i=1 Ti

6
2

1+ γ∗
for all i

i.e., γ∗ 6
2

1+
n

∏
i=1

(
1− γi

1+ γi

) Ti
∑n

i=1 Ti

−1 6 γ∗ for all i

i.e., γ∗ 6

n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti −

n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti

n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti +

n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti

6 γ∗ for all i. (12)

Similarly,
Since τ∗ 6 τi 6 τ∗ and 2− τ∗ 6 2− τi 6 2− τ∗ then

i.e.,
n

∏
i=1

(
2−τ∗

τ∗

) Ti
∑n

i=1 Ti

6

n

∏
i=1

(
2−τi

τi

) Ti
∑n

i=1 Ti

6

n

∏
i=1

(
2−τ∗

τ∗

) Ti
∑n

i=1 Ti

for all i

i.e.,
2
τ∗

6

n

∏
i=1

(
2−τi

τi

) Ti
∑n

i=1 Ti

+1 6
2
τ∗

for all i

i.e., τ∗ 6
2

n

∏
i=1

(
2−τi

τi

) Ti
∑n

i=1 Ti

+1

6 τ∗ for all i

i.e., τ∗ 6

2
n

∏
i=1

(τi)
Ti

∑n
i=1 Ti

n

∏
i=1

(2−τi)
Ti

∑n
i=1 Ti +

n

∏
i=1

(τi)
Ti

∑n
i=1 Ti

6 τ∗ for all i. (13)
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Then from inequalities (12) and (13), and using (6) we obtain

s
(
α̃−)

6 s(DHFPEWA(α̃1, α̃2, . . . , α̃n))6 s
(
α̃+
)
.

Therefore from the comparative laws of DHFE, it is clear that

α̃−
6 DHFPEWA(α̃1, α̃2, . . . , α̃n)6 α̃+.

This completes the proof of the theorem.

Theorem 4 (Additivity) Let α̃i = (hi,gi) (i = 1,2, . . . ,n) be a collections of
DHFEs, and if α̃ = (h,g) be another DHFE, then

DHFPEWA(α̃1⊕ε α̃ , α̃2⊕ε α̃, . . . , α̃n⊕ε α̃) = DHFPEWA(α̃1, α̃2, . . . , α̃n)⊕ε α̃.

Proof. Based on the operational laws of DHFEs, we have

α̃i ⊕ε α̃ =



 ⋃

γi∈hi,γ∈h

γi + γ

1+ γiγ
,

⋃

τi∈gi,τ∈g

τiτ

1+(1−τi)(1−τ)



 .

According to theorem 1, we have

DHFPEWA(α̃1 ⊕ε α̃, α̃2 ⊕ε α̃, . . . , α̃n ⊕ε α̃)

=




⋃

γ1∈h1,γ2∈h2,
...,

γn∈hn,γ∈h

n

∏
i=1

(
1+

γi + γ

1+ γiγ

) Ti
∑n

i=1 Ti −
n

∏
j=1

(
1− γi + γ

1+ γiγ

) Ti
∑n

i=1 Ti

n

∏
j=1

(
1+

γi + γ

1+ γiγ

) Ti
∑n

i=1 Ti

+
n

∏
j=1

(
1− γi + γ

1+ γiγ

) Ti
∑n

i=1 Ti

,

⋃

τ1∈g1,τ2∈g2,
...,

τn∈gn,τ∈g

2
n

∏
i=1

(
τiτ

1+(1−τi)(1−τ)

) Ti
∑n

i=1 Ti

n

∏
i=1

(
2− τiτ

1+(1−τi)(1−τ)

) Ti
∑n

i=1 Ti

+
n

∏
i=1

(
τiτ

1+(1−τi)(1−τ)

) Ti
∑n

i=1 Ti




=




⋃

γ1∈h1,γ2∈h2,
...,

γn∈hn,γ∈h

n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti (1+ γ)

Ti
∑n

i=1 Ti −
n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti (1− γ)

Ti
∑n

i=1 Ti

n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti (1+ γ)

Ti
∑n

i=1 Ti −
n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti (1− γ)

Ti
∑n

i=1 Ti

,
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⋃

τ1∈g1,τ2∈g2,
...,

τn∈gn,τ∈g

2
n

∏
i=1

(τi)
Ti

∑n
i=1 Ti (τ)

Ti
∑n

i=1 Ti

n

∏
i=1

(2− τi)
Ti

∑n
i=1 Ti (2− τ)

Ti
∑n

i=1 Ti +
n

∏
i=1

(τi)
Ti

∑n
i=1 Ti (τ)

Ti
∑n

i=1 Ti




=




⋃

γ1∈h1,γ2∈h2,
...,γn∈hn,γ∈h

(1+ γ)
n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti − (1− γ)

n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti

(1+ γ)
n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti +(1− γ)

n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti

,

⋃

τ1∈g1,τ2∈g2,
...,

τn∈gn,τ∈g

τ.2
n

∏
i=1

(τi)
Ti

∑n
i=1 Ti

(2− τ)
n

∏
i=1

(2− τi)
Ti

∑n
i=1 Ti + τ

n

∏
i=1

(τi)
Ti

∑n
i=1 Ti


.

Again from the operational laws of DHFE

DHFPEWA(α̃1, α̃2, . . . , α̃n)⊕ε α̃

=




⋃

γ1∈h1,γ2∈h2,...,γn∈hn

n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti −

n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti

n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti +

n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti

,

⋃

τ1∈g1,τ2∈g2,...,τn∈gn

2
n

∏
i=1

(τi)
Ti

∑n
i=1 Ti

n

∏
i=1

(2− τi)
Ti

∑n
i=1 Ti +

n

∏
i=1

(τi)
Ti

∑n
i=1 Ti


⊕ε (h,g)

=




⋃

γ1∈h1,γ2∈h2,...,γn∈hn,γ∈h

(1+ γ)
n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti − (1− γ)

n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti

(1+ γ)
n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti +(1− γ)

n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti

,

⋃

τ1∈g1,τ2∈g2,
...,

τn∈gn,τ∈g

τ.2
n

∏
i=1

(τi)
Ti

∑n
i=1 Ti

(2− τ)
n

∏
i=1

(2− τi)
Ti

∑n
i=1 Ti + τ

n

∏
i=1

(τi)
Ti

∑n
i=1 Ti


 .
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Thus,

DHFPEWA(α̃1⊕ε α̃ , α̃2⊕ε α̃, . . . , α̃n⊕ε α̃) = DHFPEWA(α̃1, α̃2, . . . , α̃n)⊕ε α̃.

This completes the proof.

Theorem 5 Let α̃i = (hi,gi) (i = 1,2, . . . ,n) be a collections of DHFEs, then
the aggregated value by using DHFPEWG operator is also a DHFE and

DHFPEWG(α̃1, α̃2, . . . , α̃n) =⊗ε
n
i=1 (α̃i)

Ti
∑n

i=1 Ti and

DHFPEWG(α̃1, α̃2, . . . , α̃n) =⊗ε
n
i=1 (α̃i)

Ti
∑n

i=1 Ti

=




⋃

γ1∈h1,γ2∈h2,...,γn∈hn

2
n

∏
i=1

(γi)
Ti

∑n
i=1 Ti

n

∏
i=1

(2− γi)
Ti

∑n
i=1 Ti +

n

∏
i=1

(γi)
Ti

∑n
i=1 Ti

,

⋃

τ1∈g1,τ2∈g2,...,τn∈gn

n

∏
i=1

(1+ τi)
Ti

∑n
i=1 Ti −

n

∏
i=1

(1−τi)
Ti

∑n
i=1 Ti

n

∏
i=1

(1+ τi)
Ti

∑n
i=1 Ti +

n

∏
i=1

(1−τi)
Ti

∑n
i=1 Ti


 ,

where Ti =
i−1

∏
k=1

S (α̃k) (i = 2,3, . . . ,n), T1 = 1, and S (α̃k) is the score value of

DHFEα̃k.

Proof. The proof of this theorem is similar to the proof of Theorem 1.

5. An approach to solve MCDM problems with DHFEs

Let X = {x1,x2, . . . ,xm} be the set of alternatives and let C = {c1,c2, . . . ,cn}
be a collection of criteria and there prioritization is given as c1 ≻ c2 ≻ . . . ≻ cn

in such a manner that criteria c j has a higher priority than ci, if j < i. Now
E = {e1,e2, . . . ,ep} represents a set of decision makers and the linear ordering
e1 ≻ e2 ≻ e3 ≻ . . .≻ ep represents prioritization between the decision makers in
such a manner that decision maker eη has a higher priority than decision maker

eξ if η < ξ . Suppose that the decision matrix R(q) =
(

r̃
(q)
i j

)
m×n

(q = 1,2, . . . , p)

is in the form of dual hesitant fuzzy matrix. The elements of this matrix are
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represented by DHFEs as r̃
(q)
i j =

(
h
(q)
i j , g

(q)
i j

)
which designates the value of the

alternative xi ∈ X on the criteria c j ∈C provided by the decision maker eq, where

h
(q)
i j designates the membership degree of the alternative xi satisfies the criteria C j

expressed by the decision maker eq; where as g
(q)
i j indicates the non-membership

degree of the same alternative corresponding to the same criteria.
Now utilizing the DHFPEWA and DHFPEWG operators to develop an ap-

proach to multi-criteria group decision making under dual hesitant fuzzy envi-
ronment, the main steps are described as follows:
Step 1. Calculate the value of T

(q)
i j (q = 1,2, . . . , p)with the following equations.

T
(q)

i j =
q−1

∏
k=1

S
(

r̃
(k)
i j

)
(q = 1,2, . . . , p), (14)

T
(1)

i j = 1. (15)

Step 2. To aggregate all the individual dual hesitant fuzzy decision matrix

R(q) =
(

r̃
(q)
i j

)
m×n

(q = 1,2, . . . , p).

Thus using the DHFPEWA operator

r̃i j = DHFPEWA
(

r̃
(1)
i j , r̃

(2)
i j , . . . , r̃

(p)
i j

)

=




⋃

γ
(q)
i j ∈h

(q)
i j

p

∏
q=1

(
1+ γ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j −

p

∏
q=1

(
1− γ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j

p

∏
q=1

(
1+ γ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j +

p

∏
q=1

(
1− γ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j

,

⋃

τ
(q)
i j ∈g

(q)
i j

2
p

∏
q=1

(
τ
(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j

p

∏
q=1

(
2− τ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j +

p

∏
q=1

(
τ
(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j




(16)

or using the DHFPEWG operator
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r̃i j = DHFPEWG
(

r̃
(1)
i j , r̃

(2)
i j , . . . , r̃

(p)
i j

)

=




⋃

γ
(q)
i j ∈h

(q)
i j

2
p

∏
i=1

(
γ
(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j

p

∏
q=1

(
2− γ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j +

p

∏
q=1

(
γ
(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j

,

⋃

τ
(q)
i j ∈g

(q)
i j

p

∏
q=1

(
1+ τ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j −

p

∏
q=1

(
1−τ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j

p

∏
q=1

(
1+ τ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j +

p

∏
q=1

(
1−τ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j




. (17)

Step 3. Calculate the values of Ti j as follows:

Ti j =
j−1

∏
k=1

S (r̃ik) , i = 1,2, . . . ,m, j = 1,2, . . . ,n); (18)

Ti1 = 1, i = 1,2, . . . ,m. (19)

Step 4. Aggregate the DHFEs r̃i j for each alternative xi using the DHFPEWA (or
DHFPEWG) operator as follows:

r̃i = DHFPEWA (r̃i1, r̃i2, . . . , r̃in)

=




⋃

γi j∈hi j

n

∏
j=1

(
1+ γi j

) Ti j

∑n
j=1 Ti j −

n

∏
j=1

(
1− γi j

) Ti j

∑n
j=1 Ti j

n

∏
j=1

(
1+ γi j

) Ti j

∑n
j=1 Ti j +

n

∏
j=1

(
1− γi j

) Ti j

∑n
j=1 Ti j

,

⋃

τi j∈gi j

2
n

∏
j=1

(
τi j

) Ti j

∑n
j=1 Ti j

n

∏
j=1

(
2− τi j

) Ti j

∑n
j=1 Ti j +

n

∏
j=1

(
τi j

) Ti j

∑n
j=1 Ti j




(20)

or
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r̃i = DHFPEWG (r̃i1, r̃i2, . . . , r̃in)

=




⋃

γi j∈hi j

2
n

∏
j=1

(
γi j

) Ti j

∑n
j=1 Ti j

n

∏
j=1

(
2− γi j

) Ti j

∑n
j=1 Ti j +

n

∏
j=1

(
γi j

) Ti j

∑n
j=1 Ti j

,

⋃

τi j∈gi j

n

∏
j=1

(
1+ τi j

) Ti j

∑n
j=1 Ti j −

n

∏
j=1

(
1−τi j

) Ti j

∑n
j=1 Ti j

n

∏
j=1

(
1+ τi j

) Ti j

∑n
j=1 Ti j +

n

∏
j=1

(
1−τi j

) Ti j

∑n
j=1 Ti j



. (21)

Step 5. Rank all the alternatives by the proposed score function S(r̃i) described
in the above, then the highest value of S(r̃i), the larger the overall r̃i, and thus the
best alternative xi, is determined.

Based on the methodology developed in this paper, the following illustrative
example is considered and solved.

6. An illustrative example

To illustrate the efficiency of the developed DHFPEW operators a practical
example, studied earlier by Yu [27] in intuitionistic fuzzy context, is adopted in
dual hesitant fuzzy environment. The problem is then solved using the ranking
process developed in this article and is compared with the process developed by
Yu [27] and Yu et al. [30].

The problem under consideration is presented in summarised form as fol-
lows:

For enriching academic environment of a Chinese university, three decision
makers viz., e1, e2 and e3 in order of priority levels e1 > e2 > e3, wants to appoint
outstanding teachers among five candidates, xi (i = 1, 2, . . . , 5) based on four
criteria C1, C2, C3, C4. The criteria possesses the prioritization relationship as
C1 > C2 > C3 > C4. After evaluating the five candidates with respect to their
criteria, the decision makers constructed the following three decision matrices
R(n) = (r

(n)
i j )5×4 (n = 1, 2,3) using DHFEs as follows:
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R(1) =



〈{0.55,0.9},{0.0,0.1}〉 〈{0.6},{0.3}〉 〈{0.75,0.85},{0.15}〉 〈{0.9},{0.0,0.1}〉
〈{0.7,0.9},{0.0,0.1}〉 〈{0.75},{0.15,0.25}〉 〈{0.75},{0.15}〉 〈{0.75},{0.15}〉

〈{0.9},{0.0}〉 〈{0.75,0.85},{0.0,0.15}〉 〈{0.75,0.85},{0.15}〉 〈{0.45},{0.1,0.45}〉
〈{0.5,0.75},{0.15}〉 〈{0.6,0.75},{0.15,0.25}〉 〈{0.7,0.9},{0.0,0.1}〉 〈{0.3},{0.6}〉

〈{0.4,0.75},{0.15,0.25}〉 〈{0.4,0.6},{0.3,0.4}〉 〈{0.75},{0.15}〉 〈{0.5,0.6},{0.3}〉



,

R(2) =



〈{0.75,0.85},{0.15}〉 〈{0.75},{0.15}〉 〈{0.9},{0.0,0.1}〉 〈{0.3,0.4},{0.6}〉
〈{0.85,0.75},{0.05,0.15}〉 〈{0.9},{0.0,0.1}〉 〈{0.75,0.85},{0.15}〉 〈{0.75,},{0.15}〉
〈{0.7,0.9},{0.0,0.05}〉 〈{0.9},{0.0,0.1}〉 〈{0.75},{0.05,0.15}〉 〈{0.6,0.7},{0.1,0.3}〉
〈{0.3,0.9},{0.0,0.1}〉 〈{0.3,0.4},{0.6}〉 〈{0.75,0.85},{0.15}〉 〈{0.6},{0.3}〉
〈{0.45},{0.45,0.55}〉 〈{0.6},{0.3}〉 〈{0.9},{0.0,0.1}〉 〈{0.7,0.9},{0.0,0.1}〉



,

R(3) =



〈{0.75},{0.15,0.25}〉 〈{0.9},{0.0,0.1}〉 〈{0.65,0.75},{0.15}〉 〈{0.3},{0.4,0.6}〉
〈{0.6},{0.1,0.3}〉 〈{0.75,0.85},{0.15}〉 〈{0.9},{0.0,0.1}〉 〈{0.6},{0.3}〉
〈{0.9},{0.0}〉 〈{0.6},{0.3}〉 〈{0.75},{0.15}〉 〈{0.8,0.9},{0.0,0.1}〉

〈{0.5,0.9},{0.0,0.1}〉 〈{0.75},{0.15}〉 〈{0.75},{0.15}〉 〈{0.75},{0.15,0.25}〉
〈{0.75},{0.15}〉 〈{0.75},{0.15}〉 〈{0.7,0.9},{0.0,0.1}〉 〈{0.45},{0.45,0.55}〉



.

To select the most preferable candidate the developed process is applied on
the above matrices and the following steps are performed.

It is worthy to mention here that Step 1 is common for both the DHFPEWA
and DHFPEWG operators.

Step 1. Calculate the value of T
(i)

i j (i = 1, 2, 3) using equations (16) and (17).

T
(1)

i j =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 , T

(2)
i j =




0.8375 0.65 0.825 0.925
0.875 0.775 0.8 0.8
0.95 0.8625 0.825 0.5875

0.7375 0.7375 0.875 0.35
0.6875 0.575 0.8 0.625


 ,

T
(3)

i j =




0.6909 0.52 0.7631 0.3469
0.7438 0.7169 0.66 0.64
0.8431 0.7978 0.6806 0.4259
0.5716 0.2766 0.7219 0.2275
0.3266 0.3738 0.74 0.5469


 .
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Step 2. Aggregate the three given decision matrices R(k) (k = 1,2,3) by using
DHFPEWA operator to aggregate the overall decision matrix R which is shown
below:

R =



〈{
0.6819,0.7290,
0.8244,0.8522

}
,

{
0.0,0.1279,
0.0,0.1478

}

〉 〈{
0.7459

}
,

{
0.0,

0.1894

}

〉 〈{
0.7909,0.8117,
0.8285,0.8459

}
,

{
0.0,

0.1320

}

〉 〈 {
0.6758,
0.7002

}
,

{
0.0,0.0,0.2711,

0.2910

}

〉

〈 {
0.6927,0.7388,
0.7947,0.8271

}
,

{
0,0.0795,0,0.1103,
0,0.1146,0,0.1579

}

〉 〈 {
0.8104
0.8366

}
,

{
0.0,0.1324,
0.0,0.1634

}

〉 〈{
0.8030,
0.8333

}
,

{
0.0,

0.1347

}

〉 〈{
0.7161

}
,

{
0.1809

}

〉

〈{
0.8528,
0.9000

}
,

{
0.0,
0.0

}

〉 〈{
0.7822,
0.8202

}
,

{
0,0,0,
0.1634

}

〉 〈{
0.7500,
0.7954

}
,

{
0.1052,
0.1500

}

〉 〈 {
0.5885,0.6378,
0.6207,0.6670

}
,

{
0,0.1000,0,0.1394,
0,0.2189,0,0.2978

}

〉

〈




0.4404,0.6051,0.6880,
0.7904,0.5758,0.7087,

0.7729,0.8500




 ,

{0,0,0,0.1194}

〉〈{
0.5307,0.5600,
0.6231,0.6480

}
,

{
0.2596,
0.3300

}

〉〈{
0.7317,0.7730,
0.8227,0.8512

}
,

{
0.0,

0.1285

}

〉 〈{
0.4545

}
,

{
0.4336,
0.4620

}

〉

〈 {
0.4881,
0.6675

}
,

{
0.2227,0.2414,
0.2848,0.3078

}

〉 〈{
0.5431,
0.6332

}
,

{
0.2639,
0.3076

}

〉 〈{
0.8003,
0.8553

}
,

{
0,0,0,
0.1175

}

〉 〈{
0.5543,0.6633,
0.5985,0.6987

}
,

{
0,0,0.2475,

0.2625

}

〉




.

Step 3. To calculate the value of Ti j use the equation (20) and (21).

Ti j =




1 0.8515 0.7030 0.6162
1 0.8528 0.7460 0.6530
1 0.9382 0.8258 0.6793
1 0.8245 0.5341 0.4621
1 0.6568 0.4277 0.3846


.

Step 4. Utilize DHFPEWA operator to aggregate all DHFEs r̃i j (i = 1, 2, 3, 4, 5;
j = 1, 2, 3, 4) for each alternative xi to reduce it in DHFE r̃i (i = 1, 2, 3, 4, 5).

Step 5. By the definition 3, calculate the score values S(ri) (i = 1, 2, 3, 4, 5) of
the alternative xi . The values are as follows:

S(r1) = 0.8770,S(r2) = 0.8846,S(r3) = 0.9223,S(r4) = 0.8162,S(r5) = 0.8091.

Since S3 > S2 > S1 > S4 > S5, the ordering of alternatives are found as

x3 > x2 > x1 > x4 > x5 .
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Now, the given problem is solved using DHFPEWG operator, for finding the
preference ordering of the candidates. The following steps are performed:
Step 1. Same as above step 1.

Step 2. Utilize the DHFPEWG operator to aggregate the given dual hesitant

fuzzy decision matrix R(q) =
(

r̃
(q)
i j

)
5×4

(q = 1, 2, 3)

R =



〈{
0.6671,0.6981,
0.8083,0.8418

}
,

{
0.0911,0.1193,
0.1303,0.1582

}

〉 〈{
0.7126

}
,

{
0.1857,
0.2088

}

〉 〈{
0.7660,0.7969,
0.8044,0.8358

}
,

{
0.1026,
0.1341

}

〉 〈 {
0.5148,
0.5709

}
,

{
0.3336,0.3697,
0.3723,0.4072

}

〉

〈 {
0.6870,0.7188,
0.7607,0.7939

}
,





0.0452,0.1043,0.0788,
0.1375,0.0833,0.1420,

0.1168,0.1749





〉 〈 {
0.7957,
0.8246

}
,

{
0.1038,0.1345,
0.1450,0.1754

}

〉 〈{
0.7894,
0.8220

}
,

{
0.1101,
0.1366

}

〉 〈{
0.7091

}
,

{
0.1903

}

〉

〈
{0.8302,0.9000},

{0,0.0170}

〉
〈 {

0.7498,
0.7869

}
,

{
0.0926,0.1247,
0.1485,0.1802

}

〉 〈{
0.7500,
0.7894

}
,

{
0.1173,
0.1500

}

〉 〈 {
0.5589,0.5765,
0.5861,0.6042

}
,

{
.0789, .1, .1392, , .2636,
.16, .2833, .3195, .3384

}

〉

〈


0.4277,0.5072,0.615,
0.7135,0.5195,0.6094,

0.7284,0.8341




 ,

{
0.0654,0.09,

0.0972,0.1217

}

〉〈{
0.4898,0.5385,
0.5542,0.6067

}
,

{
0.3360,
0.3811

}

〉〈{
0.7306,0.7635,
0.8068,0.8408

}
,

{
0.0927,
0.1308

}

〉 〈{
0.4081

}
,

{
0.4853,
0.4967

}

〉

〈 {
0.4653,
0.6379

}
,

{
0.2590,0.3010,
0.3066,0.3473

}

〉 〈{
0.5149,
0.6275

}
,

{
0.2721,
0.3254

}

〉 〈 {
0.7813,
0.8400

}
,

{
0.0594,0.0885,
0.0909,0.1198

}

〉 〈{
0.5397,0.5884,
0.5865,0.6376

}
,

{
0.2586,0.2897,
0.2853,0.3159

}

〉




.

Step 3. Calculate the value of Ti j (i = 1, 2, 3, 4, 5), ( j = 1, 2, 3, 4)

Ti j =




1 0.8146 0.6172 0.5192
1 0.8149 0.6806 0.5725
1 0.9283 0.7574 0.6196
1 0.7629 0.4534 0.3794
1 0.6241 0.3971 0.3417


.

Step 4. Utilize the DHFPEWG operator to aggregate all DHFEs r̃i j (i = 1, 2, 3,
4, 5; j = 1, 2, 3, 4) for each alternative xi to reduce in DHFE r̃i (i = 1, 2, 3, 4, 5).

Step 5. By Definition 3, calculate the score values S(ri) (i = 1, 2, 3, 4, 5) of the
alternative xi. The score values are found as

S(r1) = 0.7739,S(r2) = 0.8154,S(r3) = 0.8240,S(r4) = 0.6742,S(r5) = 0.6479.
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Since S3 > S2 > S1 > S4 > S5 the ordering is found as

x3 > x2 > x1 > x4 > x5 .

It is evident that the ordering of the candidates are the same for both the opera-
tors.

Now, if the problem is considered in a hesitant fuzzy environment and is
solved using hesitant fuzzy prioritized Einstein weighted averaging operator de-
veloped by Yu et al. [30] the score value of the candidates are found as

S(r1) = 0.7673,S(r2) = 0.7879,S(r3) = 0.8009,S(r4) = 0.6570,S(r5) = 0.6367

with the ordering x3 > x2 > x1 > x4 > x5.
But, if the problem is solved using hesitant fuzzy prioritized Einstein

weighted geometric operator developed by Yu et al. [30] the score value of the
candidates changed and are found as

S(r1) = 0.7185,S(r2) = 0.7681,S(r3) = 0.7623,S(r4) = 0.5896,S(r5) = 0.5922

with the ordering x2 > x3 > x1 > x5 > x4.
So, the methods developed by Yu et al. [30] are not found consistent in this

context.
Further, if the problem under consideration is solved in intuitionistic fuzzy

environment using the technique developed by Yu [27], the same inconsistencies
are observed as in the case of Yu et al. [30]. In this context the solutions are
found as

S(r1) = 0.8901,S(r2) = 0.8940,S(r3) = 0.9003,S(r4) = 0.8737,S(r5) = 0.8574

using intuitionistic fuzzy prioritized averaging operator with the rank of the al-
ternatives

x3 > x2 > x1 > x4 > x5

and using intuitionistic fuzzy prioritized geometric operator

S(r1) = 0.7586,S(r2) = 0.8127,S(r3) = 0.7983,S(r4) = 0.6956,S(r5) = 0.7097

with the rank
x2 > x3 > x1 > x5 > x4 .

Thus the proposed method is consistent than the previous approaches and pro-
vides efficient solutions in the decision making context.
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7. Conclusions

Most of the traditional hesitant fuzzy aggression operators are based on al-
gebraic operations. However, algebraic sum and algebraic product are not only
the operations for aggregation of HFS. Many aggression operators are available
to solve group decision making problems in DHF environment. But those op-
erators did not provide consistent satisfactory solution in the decision making
environment. In this paper DHFPEWA and DHFPEWG are proposed which es-
tablishes their capabilities to provide efficient solution in the decision making
process. A new score function for DHFEs is proposed to remove the drawback
of earlier methods [28]. It is also to be noted here that this process evaluates
the weights of the decision makers from the decision matrix not by assigning
arbitrary weights to them. Thus the influence of outside values cannot affect the
decision of the proposed model. The proposed method can be extended to solve
MCDM problems in interval valued DHF as well as dual hesitant probabilistic
fuzzy environment without any computational complexities. However, it is hoped
that the developed method can add an extra dimension in the process of making
decision in hesitant fuzzy contexts.
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