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Ideal observability for bilinear discrete-time systems
with and without delays in observation

MUSTAPHA LHOUS, MOSTAFA RACHIK and EL MOSTAFA MAGRI

An ideal observability subspace expression is stated for bilinear abstract system with
bounded operator in Hilbert spaces. The case of finite dimentional space is also treated. How-
ever, it’s noticed that the state ideal observability can never be fulfilled within an infinite dimen-
sional phase space in the case of scalar output. The case of bilinear discrete-time system with
delays in observation is also described. To illustrate this work some examples are presented.

Key words: bilinear systems, Hilbert spaces, ideal observability, observability subspace,
delayed observation

1. Introduction

In control theory, observability is how well the states of a system can be
deduct from knowledge of its outputs. The concept of observability was intro-
duced by Kalman, R. E. in [10] for linear dynamic systems.

The ideal terminology was initially introduced by [15] who defined the finite
dimensional precess as an ideally observable system if and only if its initial state
x(0) can be determined only from the output y(.). This ideal concept was revis-
ited afterward by [12] and [9], in [12] the notion of relative ideal observability is
concerned with the determination of the whole trajectory x(.), the criterion giv-
ing the rebuilding of x(0) of an autonomous system is enough to largely recover
all the state trajectory x(.) of such a system.

The extension to Hilbert spaces of the finite dimensional approach is devel-
oped in [4]. In [1] the characterization of the Lack ideal observability is given
and the ideal observability subspace is described as the intersection of a family of
Kalman observability subspaces. A criteria of ideal observability and conditional
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ideal observability of linear stationary regular differential-algebraic systems are
proved in [14].

Bilinear systems was introduced into control theory in the 1960s. This type
of system is simpler and better understood than most other nonlinear systems.
Among the examples of bilinear systems found in the control of industrial pro-
cesses we cite a switched circuits, mechanical brakes, controlled suspension sys-
tems and in biology such as population growth, immunological systems, enzy-
matic kinetics, etc.

The observability of bilinear systems was tackled in many works among
which we can cite [19] and [8]. The necessary and sufficient conditions to achieve
the property of observability for bilinear systems have been established using es-
sentially geometric or algebraic tools. Many studies deal with the observability
of bilinear systems using generally either geometric tools or linear time-varying
system theory [6, 7] and [17].

Discrete systems is one of the most important fields in the theory of systems.
However, it seems that the study of ideal observability for such systems was
neglected and hence their applicability is severely limited. We suggest in this
paper to develop the ideal observability concept for discrete-time bilinear system
described by





xi+1 = Axi +B0 fi +
p

∑
j=1

e
j
i B jxi , 0 ¬ i ¬ N−1,

x0

(1)

the corresponding output is

yi =Cxi , 0 ¬ i ¬ N, (2)

where xi ∈ X is the state of system (1) and fi ∈ U , ei = (e
j
i )1¬ j¬p ∈ Rp are

unknown perturbations which affect the system because of it’s connection with
his environment, yi ∈ Y is the output variable (X , U and Y are Hilbert spaces).
Moreover we suppose that A, B j ∈ L (X), B0 ∈ L (U,X), and C ∈ L (X ,Y)
where L (E,F) is the bounded linear operator spaces defined from E to F and
L (E) = L (E,E).

The notation (S) will design the observed system (1), (2) and we write (S0)
instead of (S) in the particular case where X = Rn, U = Rm, and Y = Rk.

Ideal observability problem consists in collect the maximum of information
on the system trajectory in the state space X where the parameters A, B0, B1, . . .,
Bp, C and the output yi, i ∈ {0, . . . ,N} are knows while the perturbations fi, ei

and the initial state x0 are unknowns.
Then we devote this paper to the construction of the maximal subspaces

E0, E1, . . . , EN of X such that we can identify the projection of the state xi

of system (S) on Ei when i ∈ {0, . . . ,N}.
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The determination of the ideal observability spaces E0, E1, . . . , EN is pro-
cessed in the section 3. In the section 4 we give the necessary and sufficient
conditions under which the systems S and S0 are ideally observable, the notion
of G-ideal observability is also treated. To illustrate this work some examples
are presented in section 5. In section 6 we described the case of bilinear discrete-
time system with delays in observation. Finally a conclusion is summarized in
section 7.

2. Preliminary

In this paragraph we define the ideal observability subspaces, the ideal ob-
servability and the G-ideal observability.

Definition 1 The ideal observability subspaces associated to system (S) and de-
noted by E0, E1, . . . , EN are the maximal closed subspaces, in the senses of
the inclusion, such that the orthogonal projection of the state xi on Ei can be
recognized for each i ∈ {0, . . . ,N} with the help of the observation (yi)0¬i¬N in
presence of the perturbation ( fi,ei)1¬i¬N .

Definition 2 The system (S) will be told ideally observable if we can determine
the state xi, i ∈ {0, . . . ,N} from the observation (yi)i. In the other term (S) is
ideally observable if E0 = E1 = . . . = EN = X where E0, E1, . . . , EN are the
ideal observability subspaces.

Definition 3 If G ∈ L (X ,Z) where Z is a Hilbert space, the system (S) is said
to be G-ideally observable if we can determine the vector Gxi ∈ Z for each
i ∈ {0, . . . ,N} from the output (yi)i and in the presence of the perturbation
( fi,ei)1¬i¬N .

Remark 1

i) If (S) is ideally observable, B0 = 0 and B1 = . . .= Bp = 0 then it is obvious
that (S) is observable in the sense of Kalman;

ii) It is clear that if G = idX , we have the equivalence

(S) is G-ideally observable ⇐⇒ (S) is ideally observable.

3. Ideal observability subspace

Now we present a series of lemmas which will be used in the sequel

Lemma 1 Let V and W Hilbert spaces, v an element of V and D ∈L (V,W). The
two following propositions are equivalent
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a) we know the vector Dv;

b) we know the orthogonal projection of the vector v on the subspace ranD∗,
where ranD∗ is the closure of range of D∗ and D∗ is the adjoint of D.

Proof. see [2].

Lemma 2 If we denote Zi ∈L (X ,Y2i
), for i∈ {0, . . . ,N} the family of operators

given by 



Z0 = C,

Zi+1 =

[
Zi

Qi+1ZiA

]
, i ∈ {0, . . . ,N−1},

where Qi is the orthogonal projection operator on the subspace (ran(Zi−1B0)∪
ran(Zi−1B1)∪ . . .∪ ran(Zi−1Bp))

⊥ we have

z j(i) = Z jxi, i ∈ {0,1, . . . ,N− j}, (3)

where z j is the map defined from {0,1, . . . ,N− j} to Y 2i
by





z0(i) = yi, ∀i ∈ {0,1, . . . ,N},
z j+1(i) =

[
z j(i)

Q j+1z j(i+1)

]
, j ∈ {0, . . . ,N−1}.

Proof. It is clear that property (3), cited in lemma (2), is verified for j = 0. Let’s
suppose that

z j(i) = Z jxi, ∀i ∈ {0, . . . ,N− j} for every j ∈ {0, . . . ,N−1} (4)

and prove that z j+1(i) = Z j+1xi, i ∈ {0,1, . . . ,N− j−1} where

z j(i) =

[
z j−1(i)

Q jz j−1(i+1)

]
, ∀i ∈ {0,1, . . . ,N− j} and Z j =

[
Z j−1

Q jZ j−1A

]
.

Using equations (4) and (1) we have

z j(i+1) = Z jxi+1 = Z jAxi +Z jB0 fi +
p

∑
j=1

e
j
i Z jB jxi, ∀i ∈ {0, . . . ,N− j−1}

and by projecting on the subspace (ran(Z jB0)∪ ran(Z jB1)∪ . . .∪ ran(Z jBp))
⊥

we obtain

Q j+1z j(i+1) = Q j+1Z jAxi, i ∈ {0, . . . ,N− j−1} (5)
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which implies that

z j+1(i) =

[
z j(i)

Q j+1z j(i+1)

]
=

[
Z jxi

Q j+1Z jAxi

]
= Z j+1xi.

Then we deduce that

z j+1 = Z j+1xi, ∀i ∈ {0, . . . ,N− j−1},

consequently we have z j = Z jxi, i ∈ {0, . . . ,N− j}.

It is easy to establish that the adjoint operator Z∗
j of Z j, defined from Y 2 j

to X ,
are given by






Z∗
0 = C∗,

Z∗
j+1 = [Z∗

j , A∗Z∗
j Q

∗
j+1] : Y 2 j+1 −→ X , ∀ j ∈ {0, . . . ,N−1},(

y1
y2

)
−→ Z∗

j y1 +A∗Z∗
j Q∗

j+1y2 .

The next result, gives a characterization of (ranZ∗
j )0¬ j¬N .

Lemma 3 Under the above assumption, we have

ranZ∗
j+1 = ranZ∗

0 +A∗(ranZ∗
j ∩Ker B∗

0 ∩Ker B∗
1 ∩ . . .∩Ker B∗

p).

Proof. Since the operator Q j+1 is self-adjoint, we have

ranQ j+1 = ranQ∗
j+1 = (ran(Z jB0)∪ ran(Z jB1)∪ . . .∪ ran(Z jBp))

⊥

so
ranZ∗

j Q
∗
j+1 = Z∗

j [ranQ∗
j+1]

= Z∗
j [(ran(Z jB0)∪ ran(Z jB1)∪ . . .∪ ran(Z jBp))

⊥]
= ranZ∗

j ∩Ker B∗
0 ∩Ker B∗

1 ∩ . . .∩Ker B∗
p

then

ranZ∗
j+1 = ranZ∗

j + ranA∗Z∗
j Q∗

j+1
= ranZ∗

j +A∗(ranZ∗
j ∩Ker B∗

0 ∩Ker B∗
1 ∩ . . .∩Ker B∗

p).

Consequently, it is easy to see that

ranZ∗
j+1 = ranZ∗

0 +
j

∑
i=0

A∗(ranZ∗
i ∩Ker B∗

0 ∩Ker B∗
1 ∩ . . .∩Ker B∗

p). (6)
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On the other hand the equality ranZ∗
j+1 = ranZ∗

j +ranA∗Z∗
j Q∗

j+1 implies that
ranZ∗

j ⊂ ranZ∗
j+1. Consequently, for all i ∈ {0, . . . ,N}, we have the following

inclusion

A∗(ranZ∗
i−1 ∩Ker B∗

0 ∩Ker B∗
1 ∩ . . .∩Ker B∗

p)

⊂ A∗(ranZ∗
i ∩Ker B∗

0 ∩Ker B∗
1 ∩ . . .∩Ker B∗

p) (7)

combining (6) and (7), we deduce that we have

ranZ∗
j+1 = ranZ∗

0 +A∗(ranZ∗
j ∩Ker B∗

0 ∩Ker B∗
1 ∩ . . .∩Ker B∗

p).

The results developed in lemma 2 and lemma 3 allow us to state the following
theorem.

Theorem 1 The ideal observability subspaces, E0,E1, . . . ,EN , are given by

Ei = XN−i, 0 ¬ i ¬ N,

where

X0 = ranC∗, Xi =X0+A∗(Xi−1∩Ker B∗
0∩Ker B∗

1∩ . . .∩Ker B∗
p), 0¬ i¬N.

Proof. Since X0 = ranC∗ = ranZ∗
0 , we deduce from the equalities






ranZ∗
j+1 = ranZ∗

0 +A∗(ranZ∗
j ∩Ker B∗

0 ∩Ker B∗
1 ∩ . . .∩Ker B∗

p)
and

Xi = X0+A∗(Xi−1∩Ker B∗
0 ∩Ker B∗

1 ∩ . . .∩Ker B∗
p), 0 ¬ i ¬ N

that
X j = ranZ∗

j , ∀ j ∈ {0,1, . . . ,N}. (8)

On the other hand, according to lemma 1 and lemma 2 the equation (2)
allows to determine the projection Pjxi of xi on the subspace ranZ∗

j when
i ∈ {0, . . . ,N− j} and j ∈ {0, . . . ,N}.

Then the ideal observability subspace Ei on which the orthogonal projection
of xi is completely determined, is given by

Ei =
⋃

0¬ j¬N−i

ranZ∗
j

i.e., Ei =
⋃

0¬ j¬N−i

ranZ∗
j . As it is obvious to see that X0 ⊂ X1 ⊂ . . . ⊂ XN we

deduce that
Ei = XN−i for i ∈ {0, . . . ,N}.
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On the other hand, the subspaces Ei are maximal in the sense of definition 1.
Indeed, if we suppose that exist i ∈ N such that Ei is not maximal knowing that
the solution xi can be under the forme xi = x1(i)+ x2(i), where x1(i) ∈ Ei and
x2(i) ∈ E⊥

i , the fact that Ei is not maximal implies exists a subspace G that con-
tains Ei, such that x2(i)= y1(i)+y2(i), y2(i) 6= 0 where x1(i)+y1(i) is the orthog-
onal projection of xi on the subspace G and which is recognized with the help of
the observation (yi)0¬i¬N and in presence of the perturbation ( fi,ei)1¬i¬N . Thus
x1(i)+ y1(i) is known with the help of equation (3) and we deduce that it is
known with the help of system

zN−i(i) = ZN−ixi.

Then, by lemma 1 we have

x1(i)+ y1(i) = Z
−1
N−izN−i ,

where ZN−i is the restriction of ZN−i on KerZN−i which is invertible on the left.
On the other hand, we have

zN−i(i) = ZN−ixi = ZN−ix1(i)

because x2(i) ∈ E⊥
i , then

x1(i)+ y1(i) = Z
−1
N−izN−i = Z

−1
N−iZN−ix1(i) = x1(i)

which implies that y1(i) = 0, that contradicted the hypothesis.

Remark 2 For the case of linear systems with B0 = B and Bi = 0 for all
i ∈ {1, . . . , p}, the ideal observability spaces are given by Ei = XN−i,
i∈{0, . . . ,N} where X0 = ranC∗ and Xi =X0+A∗(Xi−1∩Ker B∗), i∈{0, . . . ,N}.

4. Ideal observability criteria

We obtain in this paragraph a criterion of ideal observability, and a result
concerning finite dimension spaces.

Corollary 1 The system (S) is ideally observable if and only if X = ranC∗.

Proof. The system (S) is ideally observable if and only if E0 = E1 = . . . =
EN = X , as X0 ⊂ X1 ⊂ . . . ⊂ XN and Ei = XN−i for i ∈ {0, . . . ,N} then
EN ⊂ EN−1 ⊂ . . . ⊂ E1. Consequently the system (S) is ideally observable if
and only if X = EN = X0 = ranC∗.
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Remark 3 We see that the ideal observability depend only of the injection of the
operator C.

We can give a necessary and sufficient conditions to establish the G-ideally ob-
servable

Corollary 2 Let G ∈ L (X ,Z), where Z is a Hilbert space. The system (S) is

G-ideally observable if and only if ranG∗ ⊂ ranC∗.

Proof. If the system is G-ideally observable, the output (yi)i allows to identify
Gxi, then by virtue of lemma 1, we know the projection of xi on ranG∗, for all
i ∈ {0, . . . ,N}. Since Ei are the maximal subspaces such that a projection of xi

on Ei can be identified with the help of output (yi)i, we has therefore ranG∗ ⊂

Ei for all i ∈ {0, . . . ,N} what implies that ranG∗ ⊂
N⋂

i=0

Ei = EN . Consequently

ranG∗ ⊂ ranC.
Conversely, if ranG∗ ⊂ ranC∗, then the projection of xi on ranG∗ is known

for all i ∈ {0, . . . ,N} which implies that Gxi is known.

Remark 4 If the space X is infinite dimensional, separable and Y = R, the
system (S) will not be ideally observable because otherwise we will have
X = ranC∗ = lin(h), (where lin(h) is the linear envelope of h and h ∈ X is the
vectorial representation of the function C : X −→ R deriving of the Riesz repre-
sentation theorem), and this contradicted the made hypothesis assumption. Thus,
if the output is scalar and the system is submitted to a non null perturbation, there
can be ideally observable.

In the finite case, we determine the ideal observability subspaces in the fol-
lowing corollary

Corollary 3 The ideal observability subspaces E0,E1, . . . ,EN associate to the
system (S0) are given by

i) If N ¬ n−1 then, Ei = XN−i, ∀i ∈ {0, . . . ,N},
where X0 = ranC∗

and Xi = X0 +A∗(Xi−1 ∩Ker B∗
0 ∩Ker B∗

1 ∩ . . .∩Ker B∗
p), i ∈ {0, . . . ,N};

ii) If N > n−1 then, Ei =

{
XN−i ∀i ∈ {N−n+2, . . . ,N},
Xn−1 ∀i ∈ {0, . . . ,N−n+1}.

Proof. The space X being finished dimension, we has Ei = XN−i, 0 ¬ i ¬ N, on
the other hand, we see that if Xi = Xi+1 for some i, then Xi+ j =Xi for all integer j.
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Then seen that dimX = n and rangC ­ 1, we has necessarily Xn−1+ j = Xn−1,
j ∈ N, otherwise X j = Xn−1, j ­ n−1. Consequently we deduces that

If N ¬ n−1 we have, Ei = XN−i, ∀i ∈ {0, . . . ,N}.

If N > n−1 we have, Ei =

{
XN−i ∀i ∈ {N−n+2, . . . ,N},

Xn−1 ∀i ∈ {0, . . . ,N−n+1}.
In the separable phase spaces case, the ideal propriety allows the reconstruc-

tion of the state xi in the form of Fourier series decomposition according to an
orthonormal base, as shown by the following example.

Examples

1) We consider the system
{

xi+1 = Axi +B0 fi + eiB1xi, 0 ¬ i ¬ N−1
x0

(9)

the corresponding output is

yi =Cxi, 0 ¬ i ¬ N (10)

with the following parameter: X = l2 =

{
x = (xi)

∞
i=1, xi ∈ R,

∞

∑
i=1

x2
i < ∞

}
;

the operators A and B1 are defined by: A : x → Ax = (x2,x3, . . .); B1 : x →
B1x = (x1,0,0, . . .). C and B0 are given under the matrix form

C =

[
1 0 0 . . . . . .

0 1 0 . . . . . .

]
, B0 =




1
0
0
...
...



.

Let (ei)
∞
i=1 the canonical basis of l2, we have then Ae1 = 0 and Aei = ei−1,

i = 2,3, . . . a simple calculation allows to obtain from analogous ex-
pression for A∗ : A∗ei = ei+1, for i = 1,2, . . ., and B∗

1 = B1. Otherwise,
ranB0 = lin(e1) and Ker B∗

1 = Ker B∗
0 = lin(e2,e3, . . .). The calculate of

the H∗ allows to obtain ranC∗ = lin(e1,e2).

We deduce

X0 = ranC∗ = lin(e1,e2)

X1 = X0 +A∗(X0 ∩Ker B∗
0 ∩Ker B∗

1) = lin(e1,e2,e3);
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and the same manner we have

Xi = lin(e j, j = 1,2, . . . , i+2), i = 0, . . . ,N.

Consequently it is clear that

EN = lin(e1,e2),

Ei = lin(e j, j = 1, . . . ,N−i+2), i = 0, . . . ,N−1.

The system considered is not ideally observable, in this case we can give
the expression of the N−i+2 first component of xi in l2 for i ∈ {0, . . . ,N}.

Let y1(i) and y2(i) the component of the vector yi, we have then

〈e1,xi〉= y1(i)

and

〈e j,xi〉= y2(i+ j−2) where i∈ {0, . . . ,N− j+2} and j ∈ {2, . . . ,N}.

2) If we consider now the operator C described by

C : l2 −→ l2

x −→ Cx = ((Cx)i)i­1

where (Cx)1 = x1 and (Cx)i = xi + xi−1.

In this case we deduce that ranC∗ = l2 and consequently the system (S)
is ideally observable. We can in this case give the explicit expression of xi

according to yi

〈ek,xi〉=
k

∑
j=1

(−1)k− j < e j,yi >, 0¬ i ¬ N, k ­ 1

consequently the vector xi allows in the form

xi =
∞

∑
k=1

k

∑
j=1

(−1)k− j < e j,yi > ek, 0 ¬ i ¬ N.

5. Discrete system with delays in observation

We suggest to develop the concept of ideal observability for a system defined
by equation

{
xi+1 = Axi +B0 fi +∑

q
j=1 e

j
i B jxi, 0 ¬ i ¬ N−1,

x0,
(11)
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where A, B j ∈L (X) for j ∈ {1, . . . ,q}, B0 ∈L (U,X), ei = (e
j
i )1¬ j¬q ∈R

q and
fi ∈U are the unknown perturbations, X and U are the Hilbert spaces. The output
is defined by 




yi =
p

∑
j=0

C jxi− j, 0 ¬ i ¬ N,

xr = er = 0, pour r < 0.
(12)

yi ∈ Y , C j ∈ L (X ,Y), ∀ j ∈ {0, . . . , p} and Y is a Hilbert space. We consider
operators (Qi, j)0¬i¬N for 0 ¬ j ¬ p defined by

for i = 0,
{

Q0,0 is the identity function on Y,

Q0, j is the projection on (ranC0 ∪ . . .∪ ranC j−1)
⊥, 1¬ j ¬ p;

for 1 ¬ i ¬ N−p,




Qi,0 the orthogonal projection operator on (ranC1 ∪ . . .∪ ranCi)
⊥,

Qi,k projection on (ranC0 ∪ . . .∪ ranCk−1 ∪ ranCk+1 ∪ . . .∪ ranCi+k)
⊥,

for 1 ¬ k ¬ p− i,

Qi,k projection on (ranC0 ∪ . . .∪ ranCk−1 ∪ ranCk+1 ∪ . . .∪ ranCp)
⊥,

for p− i+1 ¬ k ¬ p−1,

Qi,p the orthogonal projection operator on (ranC0∪ . . .∪ ranCp−1)
⊥;

for N−p+1 ¬ i ¬ N−1,




Qi,0 the orthogonal projection operator on (ranC1∪ . . .∪ ranCp)
⊥,

Qi,k projection on (ranC0∪ . . .∪ ranCk−1 ∪ ranCk+1 ∪ . . .∪ ranCp)
⊥,

for 1 ¬ k ¬ N−i;

for i = N,

QN,0 is the orthogonal projection operator on (ranC1∪ . . .∪ ranCp)
⊥.

We applies for i ∈ {0, . . . ,N−p} the operator Qi, j on two member of the (i+ j)-
equation of the equation (12) for j ∈ {0, . . . , p}, and similarly we applies for
i ∈ {N−p+1, . . . ,N} the operator Qi, j on the two member of the (i+ j)-equation
(12) for j ∈ {0, . . . ,N−i}, we obtains then the following equation

zi,0 = Ki,0xi , 0 ¬ i ¬ N, (13)

where (zi,0)i and (Ki,0)i are described by

zi,0 =




Qi,0yi

Qi,1yi+1
...

Qi,pyi+p


, Ki,0 =




Qi,0C0
Qi,1C1

...
Qi,pCp


 for i ∈ {0, . . . ,N−p}, (14)
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and

zi,0 =




Qi,0yi
...

Qi,N−iyN


, Ki,0 =




Qi,0C0
...

Qi,N−iCN−i


 for i ∈ {N−p+1, . . . ,N}.

In the same way as lemmas (2) and (3), were proved, we obtain two following
lemmas

Lemma 4 If we consider the operator zi,0 and Ki,0 defined by equation (14) for
i ∈ {0, . . . ,N}, we define the family of operators

Ki, j =

[
Ki, j−1

Wi, jKi+1, j−1A

]
, i ∈ {1, . . . ,N},

where Wi, j+1 is the orthogonal projection operator on the subspace

(ran(Ki+1, jB0) ∪ ran(Ki+1, jB1) ∪ . . .∪ ran(Ki+1, jBq))
⊥ we have

zi, j = Ki, jxi, i ∈ {0, . . . ,N− j} (15)

where z j is the signal given by

zi, j =

[
zi, j−1

Wi, jzi+1, j−1

]
, j ∈ {1, . . . ,N}.

Lemma 5 Under the above assumption, we have

ranK∗
i, j = ranK∗

i,0+A∗(ranK∗
i+1, j−1∩Ker B∗

0 ∩Ker B∗
1 ∩ . . .∩Ker B∗

q).

The determination of ideal observability subspace E0,E1, . . . ,EN what allows
identify the trajectory xi of system (S) will be given in the following theorem.

Theorem 2 The observability subspaces associate to (S) are given by the fol-
lowing expression

Ei = X i,N−i, 0 ¬ i ¬ N

where for j ∈ {1, . . . ,N} and i ∈ {0, . . . ,N− j} we have

Xi, j = Xi,0+A∗(Xi+1, j−1∩Ker B∗
0 ∩Ker B∗

1 ∩ . . .∩Ker B∗
q),

and

Xi,0 = ranK∗
i,0, ∀i ∈ {0, . . . ,N}.
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Proof. According to the lemma 4, the equation (13) allows to determine the
projection Pjxi of xi on the subspace Xi, j = ranK∗

i, j when i ∈ {0, . . . ,N− j} and
j ∈ {0, . . . ,N}.

Thus by lemma 5, we can easily verified that the subspace Xi, j verifies for
1 ¬ j ¬ N, 0 ¬ i ¬ N− j

Xi, j = Xi,0+A∗(Xi+1, j−1∩Ker B∗
0 ∩Ker B∗

1 ∩ . . .∩Ker B∗
q),

Xi,0 = ranK∗
i,0.

Then we deduce that the subspace Ei on which we can determine complitely
the projection of xi is defined by

Ei =
⋃

0¬ j¬N−i

Xi, j

and as the (Xi, j) j are fit together then

Ei = Xi,N−i pour i ∈ {0, . . . ,N}.
On the other hand, the subspaces Ei are maximal in the sense of definition 1.
Indeed, suppose that exist i∈ {0, . . . ,N} such that Ei is not maximal knowing that
the solution xi can be in the form xi = x1(i)+ x2(i) where x1(i) ∈ Ei and x2(i) ∈
E⊥

i . The supposition that we have made implies that the componant x2(i) affect
the output (yi)i¬ j¬i+ j is i∈ {0, . . . ,N−p}, and (yi)i¬ j¬N if j ∈ {N−p+1, . . . ,N},
then affect zi,0, and that it can be identified on a part of E⊥

i . As we can easily to
see that E⊥

i is contained in Ker K∗
i,0 thus zi,0 = Ki,0xi = Ki,0x1(i).

Example We consider the system (9) with the output described by

yi =Cxi−1, 0 ¬ i ¬ N.

The orthogonal projection operators are defined by

i = 0 {
Q0,0 is the identity function on Y

Q0,1 is the identity function on Y

1 ¬ i ¬ N−1
{

Qi,0 the ortrhogonal projection operator on (ranC)⊥ = KerC∗

Qi,1 is the identity function on Y

i = N
{

QN,0 the orthogonal projection operator on (ranC)⊥ = KerC∗
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then we deduce that




Ki,0 =

[
Qi,0C

Qi,1C

]
=

[
0

Qi,1C

]
∀i ∈ {0, . . . ,N−1},

KN,0 = QN,0C,

then
ranK∗

i,0 = ranC∗ = lin(e1,e2), i ∈ {0, . . . ,N−1},
ranK∗

N,0 = {0},

then we obtain

Xi,0 =

{
Ki,0 = lin(e1,e2),

KN,0 = {0};

and

Xi,1 = Xi,0+A∗(Xi+1,0∩Ker B∗
0 ∩Ker B∗

1), i ∈ {0, . . . ,N−1},

=

{
lin(e1,e2)+A∗(lin(e1,e2)∩ lin(e2,e3, . . .)), i ∈ {0, . . . ,N −2},
lin(e1,e2),

=

{
lin(e1,e2,e3), i ∈ {0, . . . ,N −2},
lin(e1,e2)

and the same way we deduce that for i ∈ {1, . . . ,N} we have

Xi, j =

{
lin(e1,e2, . . . ,e j+2), i ∈ {0, . . . ,N− j−1},
lin(e1,e2, . . . ,e j+1), i ∈ {0, . . . ,N− j}

it is easily to see that

{
EN = {0},
Ei = lin(e j, j = 1,1, . . . ,N−i+2), i = 0, . . . ,N−1.

We can give the expression of N−i+2 first component of xi in l2 for
i ∈ {0, . . . ,N}.

Indeed let y1(i) the vector components of yi, then we have

〈e1,xi〉= y1(i)

and

〈e j,xi〉= y2(i+ j−2) where i∈{0, . . . ,N− j+2} and j ∈{2, . . . ,N−1}.
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6. Conclusion

In this work, we give an explicit expression of the ideal observability sub-
spaces. A criterion of ideal observability is established and a result concerning
finite dimension spaces are also given. In the separate spaces case, the property
of ideal observability allows the rebuilding of the state in the form of a decompo-
sition in Fourier series along an orthonormal basis. The case of bilinear discrete-
time with delays in observation is also described. Finally some examples are
presented to illustrate this work.
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