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A comparative study of 2DOF PID and
2DOF fractional order PID controllers

on a class of unstable systems
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VIVEKANANDA RAJAH HARINDRAN

The proportional-integral-derivative (PID) controllers have experienced series of structural
modifications and improvements. Example of such modifications are set-point weighting and
fractional ordering. While the former is to achieve two-degree-of-freedom (2DOF) ability of
set-point tracking and disturbance rejection, the latter is to ensure smooth control action. There-
fore, this paper reviews various forms of PID controllers and provides a comparative analysis of
2DOF PID and 2DOF fractional order PID (FOPID) controllers. The paper also discusses the
conversion of one PID form to another. For the comparative analysis of the various controllers, a
class of unstable systems are considered. Simulation result shows that in most cases the conver-
sion from one form to another does not significantly affect the performance of the system. It is
also observed that the 2DOF controllers (2DOF PID and 2DOF FOPID) improved significantly
the performance of the ordinary PID controllers.

Key words: fractional order controller, set-point weighting, 2DOF PID, process control;
unstable systems

1. Introduction

PID controllers are the most widely used for low-level control in the process
industry. The main aim of these controllers is to achieve good set-point tracking
and disturbance rejection response. PID controllers gain this popularity owing
to their simple structure and ease of tuning [1–6]. Over the time, many modifi-
cations of PID are proposed by various researchers. This is due to the failure of
conventional PID structure to achieve robust performance under conditions such
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as the change in process dynamics, variation in set-point, high external distur-
bance, long deadtime etc. Among the various modifications of PID are fractional
order PID (FOPID), Two-degree-of-freedom (2DOF) PID, Predictive PI, Smith
predictor, Non-linear PID, PI-PD, Enhanced PID, etc. Of these PID variants, the
2DOF PID and FOPID received the most attention recently. This is because,
compared to conventional PIDs, the 2DOF PIDs have the advantage of handling
both set-point tracking and load regulation while the fractional order controllers
provide robust control performance [7–14].

Currently, there are a few reported works on 2DOF FOPID controllers. For
example, Fabrizio Padula et al. [15], proposed an analytical set-point weight tun-
ing rules for FOPID controllers. The proposed tuning rules are used to optimize
the disturbance rejection performance of the first order plus deadtime (FOPDT),
integrator plus dead time (IPDT), unstable first order plus dead time (UFOPDT)
and higher order systems. In another work by Richa Sharma et al. [8], a parallel
2DOF FOPID controller was implemented for a two-link robotic manipulator.
The parameters of the controller are tuned using cuckoo search (CS) algorithm.
Similarly, the authors of [9] and [10] implemented 2DOF FOPID controller for
the underactuated rotary single inverted pendulum and magnetic levitation sys-
tem respectively. In both papers, the authors used frequency domain analysis to
tune fractional order parameters while the set-point weighting parameters are
tuned using pole placement method. Kishore Bingi et al. [7] designed a frac-
tional order set-point weighted PID controller (SWPIλ Dµ ) for pH neutralization
process plant. The parameters of the controller are tuned using accelerated par-
ticle swarm optimization algorithm. A common feature of the works in [8, 9, 15]
and [10] is the use of standard configuration of 2DOF FOPID while [7] used both
standard and industrial forms.

The pre-filter configuration of the 2DOF FOPID have also been considered
by Sanjoy Debbarma et al. in [12–14]. The controller was designed for automatic
generation control of three area thermal power system. Here, the controller pa-
rameters are tuned using CS and firefly algorithms. Using similar configuration,
Roohallah Azarmi et al. [11] implemented the controller on a laboratory scale CE
150 twin rotor helicopter. Here, the authors tuned the controller using an analyt-
ical method. This type of tuning method for the 2DOF FOPID is also reported
in [16] where it is used to control vertical magnetic flux in Denmavand tokamak
using component separated configuration. In a related development, Mingjie Li
et al. [17] designed 2DOF FOPID controllers for fractional order processes with
dead-time using internal model control (IMC) based design. However, the an-
alytical tuning method considered here is based on maximum sensitivity (Ms)
function instead of pole placement methods considered in [11, 16]. Thus, this
paper presents a comprehensive analysis of various PID structures and compara-
tive study of various forms of FOPID, 2DOF PID and 2DOF FOPID controllers.
It should be noted that the 2DOF FOPID structures are developed based on our
earlier work reported in [7].



A COMPARATIVE STUDY OF 2DOF PID AND 2DOF FRACTIONAL ORDER
PID CONTROLLERS ON A CLASS OF UNSTABLE SYSTEMS 637

The rest of the paper is organized as follows: Section 2 gives the basic
definitions of fractional differintegral operator, fractional derivative and refined
Oustaloup filter. In Section 3, various forms of PID controllers with block dia-
grams and conversion formulas to get the controller parameters from one specific
PID to another are provided. In Section 4, the 2DOF forms of PID controllers
derived from Section 3 with conversion formulas and the books related to these
2DOF PID are presented. The fractional order forms of PID controllers and the
MATLAB based toolboxes for implementing these controllers are given in Sec-
tion 5. In Section 6, the fractional forms of 2DOF PID controllers derived from
Section 4, equivalent configurations of 2DOF FOPID and the parameters of vari-
ous controllers are presented. A comparative study on a class of unstable systems
with all the controllers considered are given in Section 7. Finally, concluded in
Section 8. The complete content organization of the article is shown in Figure 1.
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Figure 1: Content organization of the article

2. Preliminaries

2.1. Differintegral operator (D
q
t )

The fractional order differintegral operator (a combined differentiator/inte-
grator) D

q
t for the function f (t) of order q ∈R, that generalizes the notations for

derivatives (q > 0) and integrals (q < 0) according to [2, 18, 19] is defined as

D
q
t ( f (t)) =





dq f (t)

dtq
q > 0,

f (t) q = 0,
t∫

0

f (τ)dτq q < 0.

(1)
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2.2. Definitions of fractional derivative

The fractional derivative in (1) can be defined in many forms such as
Liouville, Riemann-Liouville, Weyl, Marchaud, Cauchy, Marchaud, Fourier,
Davidson-Essex, Coimbra, Canavati, Jumarie, Riesz, Cossar, Osler, Hadamard,
Grünwald-Letnikov, Abel, Chen, Caputo, [2, 19–22] etc. However, the Caputo
definition is the most widely used in control engineering applications [11,23,24]
and is defined as follows

D
q
t ( f (t)) =

1
Γ(n−q)

t∫

0

f (n)(τ)

(t − τ)q−n+1 dτ, (2)

where f (n)(.) is the nth derivative of the function f (t), such that n−1 < q < n,
n ∈ N and the gamma function, Γ(n) is defined as

Γ(n) =

t∫

0

τn−1e−τdτ = (n−1)! . (3)

The Laplace transform of (2) at zero initial conditions is given as

L {Dq
t ( f (t));s}= sqF(s). (4)

2.3. Refined oustaloup filter

The fractional order operator sq in (4) can be approximated to integer order
using various techniques such as continued fraction expansions, power series ex-
pansions, Carlson, Chareff, Wang, SC Dutta Roy, Matsuba, Oustaloup recursive
approximation, refined Oustaloup filter, least square method, Prony, Euler, Tustin
etc [25,26]. However, the refined Oustaloup filter technique is a very flexible and
most reliable approximation method [19, 27, 28] which is defined in a frequency
range (ωl , ωh) as follows

sq ≈ K

(
bs2+aωhs

b(1−q)s2+aωhs+bq

)
N

∏
k=−N

s+ω ′
k

s+ωk

, (5)

where

• q ∈ (0,1) is the fractional order parameter,

• N is the order of approximation,

• ωl , ωh are the lower and higher order frequency bounds,

• a, b ∈ Z+ are performance improvement constants chosen for good re-
sponse as 10 and 9 respectively [29].
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The gain (K), zeros (ω ′
k) and poles (ωk) of sq in (5) are given as follows:

K =

(
bωh

a

)q

ω ′
k = ωl

(
ωh

ωl

) k+N+0.5(1−q)
2N+1

ωk = ωl

(
ωh

ωl

) k+N+0.5(1+q)
2N+1

(6)

3. PID controllers

Consider the block diagram of a single loop feedback control system of Fig-
ure 2, P(s) is the process plant, C(s) is a controller, D(s) and N(s) are external
disturbance and noise respectively [1, 30–34]. In the figure, R(s) is the reference
signal, Y (s) is the output signal and E(s) is the error signal given as

E(s) = R(s)− (Y(s)+N(s)). (7)

+- C(s) +-
P(s)

++

R(s) E(s) U(s) Y (s)

D(s)

N(s)

Figure 2: General closed loop block diagram of a control system

Assuming the controller C(s) is a PID controller that is widely used in process
industries [6,35–39] for the control of temperature, flow, level, pressure, pH, etc.
The main objectives of such controller is [1, 40]:

• To keep Y (s) as close to R(s) (i.e., set-point tracking).

• To ensure Y (s) follows variations in R(s) (i.e., variable set-point tracking
or servo-control).

• To ensure quick recovery of Y (s) from effect of D(s) (i.e., disturbance re-
jection or regulatory control).

• To generate U(s) that is free from undesired oscillations and immune to
N(s) (i.e., smoother control action).
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The PID controller comes in different forms such as standard (or textbook),
ideal, parallel (or independent) and industrial (or interacting or series) [3, 6, 31,
36]. The control action of these structures and the conversion formula to get
the controller parameters from one specific PID form to another is given in the
subsequent subsections.

3.1. Standard PID controller

The control action of standard or textbook version of PID controller is
given as

U(s) = Kp

(
1+

1
Tis

+
Tds

αTds+1

)
E(s), (8)

where

• Kp is proportional gain,

• Ti is integral time constant,

• Td is derivative time constant and

• α is the derivative filter constant.

Thus, we denote the controller parameters as θcp = {Kp, Ti, Td & α}. The
block diagram of the PID based on (8) is shown in Figure 3. The list of possible
controllers obtainable from (8) are given in Table 1 [41]. For α = 0, the standard
PID reduces to ideal PID with control action given as follows

U(s) = Kp

(
1+

1
Tis

+Tds

)
E(s). (9)

Table 1: PID control family

Controller Control signal (U(s))
Controller

parameters (θcp)

P KpE(s) Kp

I
1

Tis
E(s) Ti

D
(

Tds

αTds+1

)
E(s) Td & α

PI Kp

(
1+

1
Tis

)
E(s) Kp & Ti

PD Kp

(
1+

Tds

αTds+1

)
E(s) Kp, Td & α
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1
Tis

Tds

αTds+1

++
+

Kp

E(s) U(s)

Figure 3: Standard PID controller structure

3.2. Ideal PID controller with filter

The control action of an ideal PID controller with external filter is given as

U(s) = K∗
p

(
1+

1
T ∗

i s
+T ∗

d s

)(
1

Tf s+1

)
E(s), (10)

where Tf is the filter time constant.
Thus, the controller parameters θcp = {K∗

p, T ∗
i , T ∗

d & Tf }1. The implementa-
tion of PID based on (10) is shown in Figure 4. The filter is essentially to filter
the control signal of the ideal PID [6, 42–44].

1
T ∗

i s

T ∗
d s

++
+ K∗

p

1
Tf s+1

E(s) U(s)

Figure 4: Ideal PID controller structure with filter

3.3. Parallel PID controller

The control action of parallel or independent PID controller is given as

U(s) =

(
Kp +

Ki

s
+

Kds

αpKds+1

)
E(s), (11)

where

• Kp proportional gain,

• Ki integral gain,
1The * notation is to differentiate the various parameters of PID and it is for analysis purpose only.
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• Kd is derivative gain and

• αp is the derivative filter constant.

It should be noted that, unlike the standard PID where the Kp appears in all
actions, here, Kp is independent of integral and derivative actions. Therefore, the
controller parameters is given as θcp = {Kp, Ki, Kd & αp}2. The implementation
of (11) is shown in Figure 5.

Ki

s

Kds

αpKds+1

++
+

Kp

E(s) U(s)

Figure 5: Parallel PID controller structure

3.4. Industrial PID controller

The control action of industrial or interacting or series PID controller is
given as

U(s) = K′
p

(
1+

1
T ′

i s

)(
T ′

ds+1
α ′T ′

ds+1

)
E(s). (12)

In (12), it can be seen that this type of controller is synonymous to having
PI and PD in series for easy implementation in industry. Thus, the controller
parameters is given as θcp = {K′

p, T ′
i , T ′

d & α ′}3. The implementation of PID
based on (12) is shown in Figure 6.

T ′
ds

α ′T ′
ds+1

++

1
T ′

i s

++ K′
p

E(s) U(s)

Figure 6: Industrial PID controller structure

2The p notation for parallel is used to differentiate the various parameters of PID and it is for analysis
purpose only.

3The ′ notation is to differentiate the various parameters of PID and it is for analysis purpose only.
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3.5. Conversion of one PID form to another

The conversion of one PID form to another including formulas is given in
Figure 7 [3, 6, 45, 46]. In the figure, F denotes the conversion factor and all the
conversions are based on standard PID structure. Furthermore, it can also be
seen from the figure that the conversion from ideal PID to standard PID holds if
T ∗

d > F∗Tf . Similarly, the conversion from standard to industrial and vice versa

is only possible if 1− (4+2α)Td

Ti
+

α2T 2
d

T 2
i

> 0 and α ′ < 1+
T ′

i

T ′
d

respectively.

Standard PID
Kp, Ti, Td & α

Parallel PID
Kp, Ki, Kd & αp

Industrial PID
K′

p, T ′
i , T ′

d & α ′

Ideal PID with Filter
K∗

p, T ∗
i , T ∗

d & Tf

Kp = Kp, Ki = Kp/Ti,
Kd = KpTd, αp = α/Kp

Kp = Kp, Ti = Kp/Ki,
Td = Kd/Kp, α = αpKp

K′
p = FKp,

T ′
i = FTi,

T ′
d = (1+α)Td

F
,

α ′ = αF
1+α ,

F = 1
2

(
1+ αTd

Ti
+

√
1− (4+2α)Td

Ti
+

α2T 2
d

T 2
i

)
,

1− (4+2α)Td

Ti
+

α2T 2
d

T 2
i

> 0

Kp = F ′K′
p,

Ti = F ′T ′
i ,

Td =
(1−α ′F ′)T ′

d

F ′ ,

F ′ = 1+ (1−α ′)T ′
d

T ′
i

,

α = F ′α ′
1−F ′α ′ ,

α ′ < 1+ T ′
i

T ′
d

K∗
p = F ′′Kp,

T ′
i = F ′′Ti,

T ∗
d =

(
1+α
F ′′
)
Td,

Tf = αTd,
F ′′ = 1+ αTd

Ti

Kp = F∗K∗
p,

Ti = F∗T ∗
i ,

Td =
T ∗

d

F∗ −Tf ,

α =
F∗Tf

T ∗
d
−F∗Tf

,

F∗ = 1− Tf

T ∗
i

,
T ∗

d > F∗Tf

Figure 7: Conversion of PID controller parameters

4. 2DOF PID controllers

In this section, the 2DOF versions of PID controllers given in Section 3 are
derived. The section will also give the conversion formula for converting one
form of 2DOF PID to another.

In PID controller, the proportional and derivative actions in the forward paths
causes rapid changes in the control signal during set-point change. These effects
are called proportional and derivative kick effects [30–32, 34, 47, 48]. In order
to avoid these effects, 2DOF PID or set-point weighted PID (SWPID) structures
are used in the industry [49–60]. The advantage of these controllers is that they
respond to set-point changes and load disturbances separately.

The four forms of 2DOF PID controllers [3, 6, 61, 62] are given below.
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4.1. Standard 2DOF PID controller

The control action of standard 2DOF PID controller is achieved by weighting
the reference signal of the proportional and derivative actions of standard PID in
(8) as follows

U(s) = Kp

(
Ep(s)+

1
Tis

Ei(s)+
Tds

αTds+1
Ed(s)

)
. (13)

The error terms associated with each of the proportional, integral and deriva-
tive actions of (13) are given as follows:

Ep(s) = bR(s)−Y (s), (14)

Ei(s) = R(s)−Y (s), (15)

Ed(s) = cR(s)−Y (s), (16)

where b and c are the proportional and derivative set-point weighting parameters
respectively. These weights are both chosen between 0 and 1. As shown in (15),
to avoid steady-state control error the error associated with the integral action
is not weighted. Substituting (14), (15) and (16) in (13), the control action is
written as

U(s) = Kp

(
b+

1
Tis

+
cTds

αTds+1

)
R(s)−Kp

(
1+

1
Tis

+
Tds

αTds+1

)
Y (s). (17)

Thus, 2DOF PID is synonymous to having two PID controllers; one for
set-point tracking and the other for disturbance rejection. The block diagram
implementation of (17) is given in Figure 8. Here, for small values of b re-

+-
1

Tis
++

+
Kp

+-
c

Tds

αTds+1

+-b

R(s)

Y (s)

U(s)

Figure 8: Standard 2DOF PID controller structure
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duces overshoot but results in a slower response to set-point changes. Further-
more, the weight c is usually set to zero in order to avoid derivative kick ef-
fect [31, 32, 34, 47, 48]. In this case (17) reduces to

U(s) = Kp

(
b+

1
Tis

)
R(s)−Kp

(
1+

1
Tis

+
Tds

αTds+1

)
Y (s). (18)

Therefore, (18) is implemented in a closed loop control structure of Figure 9.

Csp(s)

+
-

Cy(s)

P(s)

R(s)

Y (s)U(s)

2DOF PID Controller

Figure 9: Implementation of 2DOF PID controller

The parameters of this 2DOF PID controller are now θcp={Kp, Ti, Td , α , b
and c = 0}. In the figure, Csp(s) and Cy(s) are the respective controllers applied
to R(s) for set-point tracking and Y (s) for disturbance rejection given as

Csp(s) = Kp

(
b+

1
Tis

)
, (19)

Cy(s) = Kp

(
1+

1
Tis

+
Tds

αTds+1

)
. (20)

4.2. Ideal 2DOF PID controller with filter

The control action of an ideal 2DOF PID controller with external filter de-
rived from (10) is given as

U(s) = K∗
p

(
b∗+

1
T ∗

i s
+ c∗T ∗

d s

)(
1

Tf s+1

)
R(s)

−K∗
p

(
1+

1
T ∗

i s
+T ∗

d s

)(
1

Tf s+1

)
Y (s). (21)
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The reduced form of the controller i.e. for c∗ = 0,

U(s) = K∗
p

(
b∗+

1
T ∗

i s

)(
1

Tf s+1

)
R(s)

−K∗
p

(
1+

1
T ∗

i s
+T ∗

d s

)(
1

Tf s+1

)
Y (s). (22)

Figure 9 can also be used for implementation of (22) with parameters
θcp={K∗

p, T ∗
i , T ∗

d , Tf , b∗ and c∗ = 0} in a similar way to the earlier considered
standard 2DOF PID. Thus, the controllers Csp(s) and Cy(s) are given as

Csp(s) = K∗
p

(
b∗+

1
T ∗

i s

)(
1

Tf s+1

)
, (23)

Cy(s) = K∗
p

(
1+

1
T ∗

i s
+T ∗

d s

)(
1

Tf s+1

)
. (24)

A key difference between Csp(s) and Cy(s) of standard 2DOF PID and the
ideal 2DOF PID is that in the former, the filter action is inbuilt with derivative
action while in the latter, the filter action is implemented through external filter.

4.3. Parallel 2DOF PID controller

In the same vein, the control action of parallel 2DOF PID controller derived
from (11) is given as

U(s) =

(
bpKp +

Ki

s
+

cpKds

αpKds+1

)
R(s)−

(
Kp +

Ki

s
+

Kds

αpKds+1

)
Y (s). (25)

For cp = 0, (25) is reduced to

U(s) =

(
bpKp +

Ki

s

)
R(s)−

(
Kp +

Ki

s
+

Kds

αpKds+1

)
Y (s). (26)

Similarly, the controller is implemented using Figure 9 with controller pa-
rameters θcp={Kp, Ki, Kd , αp, bp and cp = 0}. Thus, the controllers Csp(s) and
Cy(s) are given as

Csp(s) = bpKp +
Ki

s
, (27)

Cy(s) = Kp +
Ki

s
+

Kds

αpKds+1
. (28)

The set-point weighting parameters of various controllers derived from (25)
are given in Table 2 [54]. Graphically, the relationship between these controllers
can be shown on b− c plane in Figure 10.
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Table 2: Parameters of various controllers derived from (25)

Controller b c

I–PD 0 0

ID–P 0 1

PI–D 1 0

PID 1 1

PI–PD 0 < b < 1 0

b

c

PID

b = c = 1

ID−P

c = 1

I−PD

O

PI−D

2DOF PID

Plane

b = 1

Figure 10: Graphical representation of 2DOF
PID controllers on b− c plane

4.4. Industrial 2DOF PID controller

The 2DOF industrial PID can be derived in a similar way to all other con-
troller. Thus, the control action of this controller based on (12) is given as

U(s) = K′
p

(
b′+

1
T ′

i s

)(
c′T ′

ds+1
α ′c′T ′

ds+1

)
R(s)

−K′
p

(
1+

1
T ′

i s

)(
T ′

ds+1
α ′T ′

ds+1

)
Y (s). (29)

The same assumption of c′ = 0 is done here. Thus, the reduced form of the
controller is given in (30) while Figure 9 is used for its implementation. Conse-
quently, the parameters of the controller are given as θcp={K′

p, T ′
i , T ′

d , α ′, b′ and
c′ = 0}.

U(s) = K′
p

(
b′+

1
T ′

i s

)
R(s)−K′

p

(
1+

1
T ′

i s

)(
T ′

ds+1
α ′T ′

ds+1

)
Y (s). (30)
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Now, breaking the controller into its Csp(s) and Cy(s) as in the other con-
trollers gives (31) and (32) respectively.

Csp(s) = K′
p

(
b′+

1
T ′

i s

)
, (31)

Cy(s) = K′
p

(
1+

1
T ′

i s

)(
T ′

ds+1
α ′T ′

d
s+1

)
. (32)

4.5. Conversion of One 2DOF PID Form to Another

The relationships for converting the proportional set-point weighting param-
eter b from one specific structure of 2DOF PID to another is shown in Figure 11.
It can be seen from the figure that in order to avoid derivative kick effect, c is set
to zero for all configurations. The conversions factors F are available in Figure 7.

Standard 2DOF PID
b & c

Parallel 2DOF PID
bp & cp

Industrial 2DOF PID
b′ & c′

Ideal 2DOF PID
with filter b∗ & c∗

bp = b, cp = c = 0

b = bp, c = cp = 0

b′ = b/F

c′ = c = 0
b = b′/F ′,
c = c′ = 0

b = b∗/F∗,
c = c∗ = 0

b∗ = b/F ′′,
c∗ = c = 0

Figure 11: Conversion of 2DOF PID controller parameters

4.6. Books related to 2DOF PID controllers

Up to this moment, there is no single reported book specifically dedicated
to 2DOF PID controllers only. However, topics relating to these controllers are
covered extensively as part of general books on PID controllers. Thus, in order to
fully understand 2DOF PID one will have to consult these general books. Here,
we summarize the content of some of these books in Table 3.



A COMPARATIVE STUDY OF 2DOF PID AND 2DOF FRACTIONAL ORDER
PID CONTROLLERS ON A CLASS OF UNSTABLE SYSTEMS 649

Table 3: Books related to 2DOF PID controllers

No. Title Topics Ref

1 Advanced PID Control
Set-point weighting
Feedforward design
PI-PD controller structure

[34]

2
PID Controllers for
Time Delay Systems PI-PD controller structure [63]

3 Practical PID Control
Constant, variable and fuzzy set-point weighting
Causal and noncausal feedforward action [31]

4
Control of Dead-time
Processes

2DOF forms of PID, smith predictor and IMC
Filter configuration of 2DOF PID controller [64]

5
Control of Integral
Processes with
Dead Time

Noncausal feedforward action for continuous
and discrete time systems
PI-PD control structure
Filter configuration of 2DOF PID controller
Robust stability analysis

[65]

6
Feedback Systems:
An Introduction for
Scientists and Engineers

Set-point Weighting
Cruise control with set-point weighting of PID
controllers based on operational amplifiers

[66]

7

PID Control
in the Third Millennium:
Lessons Learned and
New Approaches

Set-point weighting PID (SWPID)
controllers unstable systems
Robustness in SWPID controllers
Feedforward, feedback and filter configurations
of 2DOF PID controllers

[32]

8
Model-Reference
Robust Tuning
of PID Controllers

2DOF PID controllers structures
2DOF PID controllers for integrating,
overdamped and unstable processes
Model reference robust tuning of 2DOF PID
controllers

[6]

9
PID Controller Tuning
Using Magnitude
Optimum Criterion

Filter configuration of 2DOF PID controller
Robust tuning of 2DOF PID controllers
using magnitude optimum criterion

[67]

5. FOPID controllers

The FOPID (or PIλ Dµ ) controller is an extension of classical or integer-
order PID discussed in Section 3. The FOPIDs have advantages of being robust
and stable even with varying process parameters. The FOPID performs better
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especially for higher order systems characterized by high nonlinearities and de-
lays [2, 19, 28, 29, 68–70]. Another benefit of using the controller is that it can
attain the property of iso-damping4 easily. Thus, this section discusses the frac-
tional order forms of the controllers presented in Section 3. Furthermore, MAT-
LAB based simulation toolboxes as well as books relating to FOPID will be
briefly discussed.

5.1. FOPID controller structures

The control action of standard FOPID controller is obtained by replacing the
integer-order of the integral and derivative actions of (8) with fractional orders
λ , µ as follows

U(s) = Kp

(
1+

1
Tisλ

+
Tdsµ

αTdsµ +1

)
E(s), (33)

where λ , µ ­ 0 are the order of integration and derivation respectively.
The λ and µ parameters of various forms of FOPID controllers derived from

(33) are given in Table 4. The relationship between these controllers can be
shown graphically on a λ −µ plane in Figure 12.

Table 4: Parameters of various controllers derived from (33)

Controller λ µ

P 0 0

PI 1 0

PD 0 1

PID 1 1

FOPI 0 < λ < 1 0

FOPD 0 0 < µ < 1

FOPID 0 < λ < 1 0 < µ < 1

Similarly, the control actions of ideal, parallel and industrial FOPID con-
trollers also derived from Eqs (10), (11) and (12) are given as follows:

U(s) = K∗
p

(
1+

1
T ∗

i sλ
+T ∗

d sµ

)(
1

Tf s+1

)
E(s), (34)

4A desirable property of the system referring to a state where the open-loop phase Bode plot is flat
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U(s) =

(
Kp +

Ki

sλ
+

Kdsµ

αpKdsµ +1

)
E(s), (35)

U(s) = K′
p

(
1+

1
T ′

i sλ

)(
T ′

dsµ +1
α ′T ′

dsµ +1

)
E(s). (36)

The difference between the controller parameters θcp of the FOPID and PID
controllers is addition of fractional order terms λ and µ .

λ

µ

PID

λ = µ = 1

PD

µ = 1

P

O

PI

FOPID

Plane

λ = 1

Figure 12: Graphical representation of FOPID
controllers on λ −µ plane

Other forms of FOPID controller besides the reported forms here are avail-
able in the literature. Example of such controllers include Fractional order PI-
PD [71–73], FO[PI] and FO[PD] [74], IMC based FOPID [75, 76], Modified
FO-PID with filter [77, 78] and Nonlinear FOPID [79, 80].

5.2. MATLAB Based Toolboxes and Books for FOPID Controller

For the implementation of FOPID controller, there are many MATLAB based
toolboxes are available in the literature. The most used among these toolboxes
are summarized in Table 5. A more detailed survey on these toolboxes can be
found in [2, 18]. Meanwhile, the related books on FOPID controllers including
topics are summarized in Table 6.
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Table 5: MATLAB based toolboxes for FOPID controllers

No. Toolbox Features Ref

1
Commande robuste
dórdre non entier
(CRONE)

Fractional order differentiation
Fractional order differential systems
Fractional order system identification
Laplace transforms and inverse

Laplace transforms
Fractional order CRONE control

[27, 81, 82]

2 Ninteger

Approximation methods of fractional
order derivative

Graphical user interface for controller
design

Fractional order system identification
Bode, Nyquist and Nichols plots

[83]

3
Fractional states-space
toolkit

Fractional order approximation methods
Step, Bode and Measurement noise plots
Performance analysis and criteria

[84]

4
Sysquake interactive
software tool

Analysis and design of FOPID controllers [85]

5
Fractional order
modeling and control
(FOMCON)

Fractional order System Identification
FOPID design, tuning and optimization

tools
Step, Bode, Nyquist and Nichols plots
Implementation of FOPID in digital and

analog
Approximation methods for the fractional

derivatives

[86–88]

6
Digital fractional order
differentiator/integrator

Finite impulse response (FIR) type
Infinite impulse response (IIR) type

[28, 69, 89]

7 FOPID tool

Tuning of FOPID controller
Step, Bode, Nyquist and Nichols plots
Approximation methods for fractional
orders systems

[84]
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Table 6: Books related to FOPID controllers

No. Title Topics Ref

1 Linear Feedback Control:
Analysis and Design with MATLAB

Fractional order calculus and its computations
Frequency and time domain analysis of fractional order systems
FOPID controller and its implementation using MATLAB
Oustaloup’s recursive filter approximation

[29]

2
Advances in Fractional Calculus:
Theoretical Developments and Applications
in Physics and Engineering

Fractional order derivatives
Tuning of FOPID controllers
Fractional order modeling and control of practical systems
Implementation of FOPID on field programmable gate arrays (FPGA)

[90]

3 Fractional-order Systems and Controls:
Fundamentals and Applications

Fundamentals of fractional order systems and control
FOPID controllers for time delay systems
Tuning of FOPID controllers
MATLAB implementation for fractional order controllers
Fractional order modelling and controller for real time applications

[19]

4 Fractional Order Systems:
Modeling and Control Applications

Numerical methods for calculations of fractional order operators
FOPID controller for delay systems
Implementation of FOPID using FPGA
Fractional order chaotic systems

[89]

5 Fractional Order Nonlinear Systems:
Modeling, Analysis and Simulation

Fractional order nonlinear systems and its stability analysis
Fractional order chaotic systems and its control [28]

6 Fractional Dynamics and Control
Fractional model predictive control
Neural network assisted FOPID control
Fractional order modeling
Stabilization of fractional order chaotic system

[91]

7 Intelligent Fractional Order Systems
and Control: An Introduction

Tuning of fractional order controllers using optimization algorithms
Gain and order scheduling of fractional order controllers
Fractional order fuzzy PID controllers

[92]

8
Fractional Order Control Systems:
Fundamentals and Numerical
Implementations

Computation algorithms of fractional order operators
Modelling and analysis of fractional order transfer function
FOPID controller design and tuning for delay systems
Design of fuzzy FOPID controllers

[93]

9 An Introduction to Fractional Control
Fractional calculus: real and complex order
Fractional order PID, Fractional order reset control
Fractional order H2 and H-infinity (H∞) control
Fractional order sliding mode control

[70]
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6. 2DOF FOPID controllers

This section discusses the fractional order forms of 2DOF PID controllers
presented in Section 4. Furthermore, the equivalent configurations of standard
2DOF FOPID as well as parameters of various controllers derived from 2DOF
FOPID will be briefly discussed.

6.1. 2DOF FOPID controller structures

In this subsection, the various controller structures are developed based on
our earlier work reported in [7].

6.1.1. Standard 2DOF FOPID

The control action of standard 2DOF FOPID controller is obtained by replac-
ing the integer-order integral and derivative actions of (13) with fractional orders
λ and µ as follows

U(s)=Kp

(
b+

1
Tisλ

+
cTdsµ

αTdsµ+1

)
R(s)−Kp

(
1+

1
Tisλ

+
Tdsµ

αTdsµ+1

)
Y (s), (37)

where the controller parameter term is given as θcp = {Kp, Ti, Td , α , b, c = 0, λ ,
and µ}. As mentioned earlier, c is set to zero to avoid derivative kick effect. In
this case, (37) reduces to

U(s) = Kp

(
b+

1
Tisλ

)
R(s)−Kp

(
1+

1
Tisλ

+
Tdsµ

αTdsµ +1

)
Y (s) (38)

Thus, (38) can be decomposed into two controllers Csp(s) and Cy(s) are
given as

Csp(s) = Kp

(
b+

1
Tisλ

)
, (39)

Cy(s) = Kp

(
1+

1
Tisλ

+
Tdsµ

αTdsµ +1

)
. (40)

6.1.2. Ideal 2DOF FOPID with Filter

Similarly, the control action of ideal 2DOF FOPID with filter derived from
(21) is given as follows

U(s) = K∗
p

(
b∗+

1
T ∗

i sλ
+ cT ∗

d sµ

)(
1

Tf s+1

)
R(s)

−K∗
p

(
1+

1
T ∗

i sλ
+T ∗

d sµ

)(
1

Tf s+1

)
Y (s), (41)

where the controller parameters are θcp={K∗
p, T ∗

i , T ∗
d , Tf , b∗ and c∗ = 0}.
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The reduced form of Csp(s) and Cy(s) for c = 0

Csp(s) = K∗
p

(
b∗+

1
T ∗

i sλ

)(
1

Tf s+1

)
, (42)

Cy(s) = K∗
p

(
1+

1
T ∗

i sλ
+T ∗

d sµ

)(
1

Tf s+1

)
(43)

6.1.3. Parallel 2DOF FOPID

In the same way as to standard and ideal 2DOF FOPID, the control action of
parallel 2DOF FOPID derived from (25) is given as follows

U(s) =

(
bpKp+

Ki

sλ
+

cpKdsµ

αpKdsµ+1

)
R(s)−

(
Kp+

Ki

sλ
+

Kdsµ

αpKdsµ+1

)
Y (s). (44)

The reduced form of Csp(s) and Cy(s) for c = 0

Csp(s) = bpKp+
Ki

sλ
, (45)

Cy(s) = Kp +
Ki

sλ
+

Kdsµ

αpKdsµ +1
, (46)

where the controller parameters θcp = {Kp, Ki, Kd , αp, bp, cp = 0, λ , & µ}. The
effect of variation of these parameters on the steady state and transient response
of the system is shown in Table 7 [5, 94].

Table 7: Effect of variation in controller parameters of parallel 2DOF FOPID

Parameter Variation Rise Time
Settling

Time
Overshoot

Steady
State
Error

Stability

Kp Increasing Reduces
Minor
Change

Increases Reduces Degrades

Ki Increasing Reduces Increases Increases Eliminates Degrades

Kd Increasing
Minor
Change

Reduces Reduces
Minor
Change

Improves

b Decreasing Increases
Minor
Change

Reduces Eliminates Improves

λ Decreasing
Minor
Change

Increases Reduces Increases Degrades

µ Decreasing
Minor
Change

Increases Reduces
Minor
Change

Improves
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6.1.4. Industrial 2DOF FOPID

The control action of industrial 2DOF FOPID controller derived from (25)
for an assumption of c = 0 is given as follows

U(s) = K′
p

(
b′+

1
T ′

i sλ

)
R(s)−K′

p

(
1+

1
T ′

i sλ

)(
T ′

dsµ +1
α ′T ′

dsµ +1

)
Y (s), (47)

where the controller parameters θcp = {K′
p, T ′

i , T ′
d , α ′, b′, c′ = 0, λ , & µ}. From

(47), the controllers Csp(s) and Cy(s) are given as

Csp(s) = K′
p

(
b′+

1
T ′

i sλ

)
, (48)

Cy(s) = K′
p

(
1+

1
T ′

i sλ

)(
T ′

dsµ +1
α ′T ′

dsµ +1

)
. (49)

6.2. Equivalent forms of 2DOF FOPID controllers

6.2.1. Standard form

The implementation of 2DOF PID controller shown in Figure 9 is similar to
the implementation of 2DOF FOPID. The difference between the two is that the
former is an integer-order while the latter is a fractional order. This type of im-
plementation, is a two input and one output controller which can be decomposed
into Csp(s) and Cy(s) controllers. However, these type of the structure is not
the only form that the 2DOF PID and 2DOF FOPID controllers can take. There
are other configurations such as feedforward, feedback, pre-filter and component
separated type [4,32,52,54,61,95–98]. These additional configurations take the
form of single input single output (SISO) controllers as explained subsequently.
Here, only the 2DOF FOPID will be considered since it has similar structure
with the 2DOF PID.

6.2.2. Feedforward configuration

In feedforward configuration, the 2DOF FOPID controller is decomposed
into a FOPID controller C(s) and a fractional order feedforward controller C f (s)
as shown in Figure 13. The corresponding equations for these controllers are
given as

C(s) = Kp

(
1+

1
Tisλ

+
Tdsµ

αTdsµ +1

)
, (50)

C f (s) = Kp

(
(b−1)+

(c−1)Tdsµ

αTdsµ +1

)
. (51)
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+- C(s)
++ P(s)

C f (s)

R(s) E(s) U(s) Y (s)

Figure 13: Feedforward type of 2DOF FOPID controller

For c = 0, (51) is reduced to

C f (s) = Kp

(
(b−1)− Tdsµ

αTdsµ +1

)
. (52)

6.2.3. Feedback configuration

The 2DOF FOPID controller is decomposed into FOPID controller C(s) and
a fractional order feedback controller Cb(s) in the feedback configuration as
shown in Figure 14. Thus, the corresponding controller equations for c = 0 are
given as

C(s) = Kp

(
b+

1
Tisλ

)
, (53)

Cb(s) = Kp

(
(1−b)+

Tdsµ

αTdsµ +1

)
. (54)

+- C(s) +- P(s)

Cb(s)

R(s) E(s) U(s) Y (s)

Figure 14: Feedback type of 2DOF FOPID controller

6.2.4. Pre-filter configuration

In this configuration, the 2DOF FOPID controller is decomposed into a
FOPID controller C(s) and a fractional order pre-filter F(s) on the reference



658 K. BINGI, R. IBRAHIM, M. NOH KARSITI, S. MIYA HASSAN, V. RAJAH HARINDRAN

signal as shown in Figure 15. From figure, the transfer functions of C(s) and
F(s) for c = 0 are given as

C(s) = Kp

(
1+

1
Tisλ

+
Tdsµ

αTdsµ +1

)
, (55)

F(s) =
bαTiTdsλ+µ +bTis

λ +αTdsµ +1
(α +1)TiTdsλ+µ +Tisλ +αTdsµ +1

. (56)

F(s) +- C(s) P(s)
R(s) E(s) U(s) Y (s)

Figure 15: Pre-filter configuration of 2DOF FOPID

6.2.5. Component separated type

In component separated type, the proportional, integral and derivative actions
are built separately as shown in Figure 16 [54, 58]. From figure, the controllers
Csp(s) and Cy(s) are given as

Csp(s) = Kp

(
(1−α)+

1
Tisλ

+(1−β )
Tdsµ

Tf s
µ +1

)
, (57)

Cy(s) = Kp

(
1+

1
Tisλ

+
Tdsµ

Tf sµ +1

)
, (58)

1−α

1−β

+-

+-

+-

++
+

1
Tisλ

Tdsµ

Tf sµ +1

Kp P(s)
R(s)

E(s)

U(s) Y (s)

Figure 16: Component-separated type of 2DOF FOPID controller
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where α and β are the proportional and derivative set-point weighting parame-
ters respectively. In order to avoid steady state error, β is set to one. Thus, the
controller parameters are θcp={Kp, Ti, Td , Tf , α , λ , µ and β = 1}. In this case
Csp(s) is reduced to

Csp(s) = Kp

(
(1−α)+

1
Tisλ

)
. (59)

6.3. Parameters of various controller configurations

A summary of the parameters of various controllers derived from (37) is
given in Table 8 [2,7,54]. Likewise, the graphical representation of these 2DOF
FOPID controllers on a b− c plane are shown in Figure 17.

Table 8: Parameters of various controllers derived from (37)

Controller Type b c λ µ

PID

P 1 1 0 0

PI 1 1 1 0

PD 1 1 0 1
PID 1 1 1 1

I-PD 0 0 1 1

ID-P 0 1 1 1

PI-D 1 0 1 1
PI-PD 0 < b < 1 1 1 1

2DOF PID

2DOF PD 0 < b < 1 0 < c < 1 0 1

2DOF PI 0 < b < 1 0 < c < 1 1 0

2DOF PID 0 < b < 1 0 < c < 1 1 1
2DOF PI-D 0 < b < 1 0 1 1

FOPID

FOI-PD 0 0 0 < λ < 1 0 < µ < 1

FOID-P 0 1 0 < λ < 1 0 < µ < 1

FOPI-D 1 0 0 < λ < 1 0 < µ < 1

FOPI-PD 0 < b < 1 0 0 < λ < 1 0 < µ < 1
FOPI 1 1 0 < λ < 1 0

FOPD 1 1 0 0 < µ < 1

FOPID 1 1 0 < λ < 1 0 < µ < 1

2DOF FOPID
2DOF FOPI-D 0 < b < 1 0 0 < λ < 1 0 < µ < 1

2DOF FOID-P 0 0 < c < 1 0 < λ < 1 0 < µ < 1
2DOF FOPID 0 < b < 1 0 < c < 1 0 < λ < 1 0 < µ < 1
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b

c

FOPID

b = c = 1

FOID−P

c = 1

FOI−PD

O

FOPI−D

2DOF FOPID

Plane

b = 1

Figure 17: Graphical representation of 2DOF
FOPID controllers on b− c plane

7. Results and discussions

In this section, to compare the performance of the various controllers dis-
cussed and their equivalent configurations, first, second and third order unsta-
ble systems as given in Table 9 are considered. These systems are reported
in [54, 99–102] and [103]. The table summarizes the system parameters.

Table 9: Class of unstable systems considered for simulation

Transfer Function Stable
Poles

Unstable
Poles

Dead
Time

G1(s) =
4

4s−1
e−2s – 0.25 2

G2(s) =
1

(2s−1)(0.5s+1)
e−s −2 0.5 1

G3(s) =
1

(5s−1)(0.5s+1)(2s+1)
e−0.5s −0.5, −2 0.2 0.5

For the first order system, comparison between ordinary PID controller struc-
tures will be given first. In the same way, the next comparison will be between
2DOF PID controllers. Then, another comparison between FOPID will be given.
Subsequently, the comparison between 2DOF FOPID and equivalent configura-
tions will also be given. Lastly, the standard configuration of each of the meth-
ods considered are compared. The PID parameters of the standard PID, as well
as those of other controllers, obtained using conversion formulas in Figure 7 are
given in Table 10. These parameters are used for all comparisons. Furthermore,
in all cases, a disturbance (D(s)) of 15% is injected at 100 sec. For the remaining
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systems, the comparison between various standard form of the controllers will
be given.

Table 10: Controller parameters of various PID configurations

Controller Controller parameters (θcp)

Standard PID Kp = 0.4238 Ti = 30.9598 Td = 0.4726 α = 0.0254

Parallel PID Kp = 0.4238 Ki = 0.0137 Kd = 0.2003 αp = 0.0600

Industrial PID K′
p = 0.4172 T ′

i = 30.4795 T ′
d = 0.4922 α ′ = 0.0244

Ideal PID with Filter K∗
p = 0.4420 T ∗

i = 30.9718 T ∗
d = 0.4844 Tf = 0.0120

7.1. UFOPDT

In this subsection, extensive comparison and analysis on the first order system
is given. This is because many real time process dynamics can be adequately
represented using first order system.

7.1.1. PID Controllers

The comparison of the response of the system with various controllers for
set-point tracking and disturbance rejection is shown in Figure 18 while that

Figure 18: Set-point tracking and disturbance rejection performance
comparison of various PID controllers
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of variable set-point tracking is shown in Figure 19. From the figures, it can
be observed that the responses are almost similar. Furthermore, the numerical
assessment of Figure 18 given in Table 11 shows that the rise time (tr), settling
time before and after the disturbance (ts1, ts2) and overshoot (%OS) of all the
controllers are within a very small margin.

Figure 19: Variable set-point tracking performance comparison of various
PID controllers

Table 11: Performance analysis of PID controllers

Controller tr ts1 ts2 %OS

Standard PID 3.6992 38.7670 133.1913 178.1526

Parallel PID 3.6189 38.5936 133.1689 177.7878

Industrial PID 3.7464 38.7881 133.1943 176.9530

Ideal PID with Filter 3.7994 41.3460 133.0575 177.8186

7.1.2. 2DOF PID Controllers

The additional proportional set-point weighted parameter b for the standard
2DOF PID controller is 0.2558. The b parameter for other controllers derived
using conversion formulas in Figure 11 are given in Table 12. As mentioned
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earlier, the parameter c is set to zero in all cases to avoid derivative kick effect
during set-point change.

Table 12: Set-point weighting parameter of various 2DOF PID configurations

Controller b

Standard 2DOF PID 0.2558

Parallel 2DOF PID 0.2558

Industrial 2DOF PID 0.2598

Ideal 2DOF PID with Filter 0.2557

In a similar way to Section 7.1.1, the comparison of the response of the sys-
tem with various controllers for set-point tracking with disturbance and vari-
able set-point tracking are shown in Figure 20 and Figure 21 respectively. From
both figures, it can be observed that the responses are almost similar except for
the ideal case where it has less overshoot of 1.8413% and less settling time of
12.3565 s as compared to the around 5% and 17 s of other controllers (see Ta-
ble 13). Furthermore, the control signals of all controllers for the two scenarios
are almost similar. However, the only difference is that the control signal of the

Figure 20: Set-point tracking and disturbance rejection performance
comparison of various 2DOF PID controllers
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industrial 2DOF PID signal is oscillatory. This is because the industrial PID is a
series form that multiplies the effect of PI and PD. Thus, the noise amplification
associated with the PD controller affects the final output. This type of structure
is only used for its easy implementation not because it is better.

Figure 21: Variable set-point tracking performance comparison of various
2DOF PID controllers

Table 13: Performance analysis of 2DOF PID controllers

Controller tr ts1 ts2 %OS

Standard 2DOF PID 4.9450 16.6458 137.5775 4.9966

Parallel 2DOF PID 4.9280 16.5741 137.5196 4.8496

Industrial 2DOF PID 5.0019 16.8929 137.5705 4.7265

Ideal 2DOF PID with Filter 5.0593 12.3565 139.9274 1.8413

7.1.3. FOPID controllers

The fractional order terms i.e., sλ and sµ are approximated using the refined
Oustaloup method discussed in Sect. 2.3. The approximation parameters are a =
10, b = 9, ωl = 10−3, ωh = 103 and N = 5. The fractional order parameters of
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standard FOPID controller are λ = 0.98 and µ = 0.65. These values have been
selected through MATLAB tuner and are used for all the FOPID variants.

In a similar fashion to Sections 7.1.1 and 7.1.2, the responses of the sys-
tem with various controllers for set-point tracking and disturbance rejection are
compared in Figure 22 while those of variable set-point tracking are shown in
Figure 23. From the figures, it can be observed that the responses are almost
similar to the other cases. Furthermore, the numerical assessment of Figure 22
given in Table 14 shows that the tr, ts1 , ts2 and %OS of all the controllers are
within a very small margin.

Figure 22: Set-point tracking and disturbance rejection performance
comparison of various FOPID controllers

Table 14: Performance analysis of FOPID controllers

Controller tr ts1 ts2 %OS

Standard FOPID 3.4294 48.3928 141.8261 176.8732

Parallel FOPID 3.4248 48.3528 141.7957 176.7757

Industrial FOPID 3.5302 50.3076 142.0789 180.2643

Ideal FOPID with Filter 3.3895 52.2939 143.4090 179.9968
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Figure 23: Variable set-point tracking performance comparison of various
FOPID controllers

7.1.4. 2DOF FOPID controllers

The controller parameters of Table 10 and 12 alongside fractional order pa-
rameters λ = 0.98 and µ = 0.65 are used for simulation in this section.

Subsequently, the responses of the system with various controllers for set-
point tracking and disturbance rejection are compared in Figure 24 while those
of variable set-point tracking are shown in Figure 25. From the figures, it is
observed that unlike in the previous cases, there is a slight difference in the re-
spective responses. While both standard and parallel produced similar control
signals and responses, the industrial and ideal configurations differ slightly with
ideal producing the slowest response. This is further corroborated in Table 15.
As shown in the table, the tr of the industrial and ideal are 12.65 and 13.67 s
respectively while the other two configurations are very close to each other at
5.15 and 5.16 s respectively. The %OS, ts1 and ts2 followed a similar pattern to
the tr.
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Figure 24: Set-point tracking and disturbance rejection performance
comparison of various 2DOF FOPID controllers

Figure 25: Variable set-point tracking performance comparison of various
2DOF FOPID controllers
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Table 15: Performance analysis of 2DOF FOPID controllers

Controller tr ts1 ts2 %OS

Standard 2DOF FOPID 5.1534 36.3904 141.6856 2.4008

Parallel 2DOF FOPID 5.1604 36.5544 141.6466 2.4145

Industrial 2DOF FOPID 12.6463 25.0293 143.6079 0.0630

Ideal 2DOF FOPID 13.6667 30.3422 151.2657 0.9903

7.1.5. Comparison between standard forms of PID, 2DOF PID, FOPID, 2DOF FOPID controllers

In this section, standard forms of all the controllers are compared. Similar
controller parameters are used as in the previous sections i.e., parameters given
in Table 10 and 12 alongside fractional order parameters λ = 0.98 and µ = 0.65.

The comparison of the responses of the system with various controllers for
set-point tracking and disturbance rejection are given in Figure 26. From the
figure, it can be clearly seen that the 2DOF based controllers (2DOF PID and
2DOF FOPID) produced responses with very little overshoots as compared to
the PID and FOPID. This can be evaluated numerically by considering results
in Table 16. The overshoot of the 2DOF based controllers ranges from 2 to 5%,

Figure 26: Set-point tracking and disturbance rejection performance
comparison of various standard form of controllers
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that of the other controllers ranges between 177 to 178%. While the 2DOF con-
trollers have slower tr of around 5 s each as compared to around 3.5 s of the
PID and FOPID, they settled faster at 16.65 s for 2DOF PID and 36.40 s for
2DOF FOPID. The disturbance rejection of all controllers was found to be sat-
isfactory with the standard PID having the fastest recovery with ts2 of 133.2 s.
Furthermore, the 2DOF controllers produced smoother control signals to curtail
the effect of overshoot.

Table 16: Performance analysis of various standard form of controllers

Controller tr ts1 ts2 %OS

Standard PID 3.6992 38.7669 133.1913 178.1548

Standard FOPID 3.4294 48.3983 141.8285 177.5317

Standard 2DOF PID 4.9447 16.6453 137.5773 4.9966

Standard 2DOF FOPID 5.1534 36.3903 141.6856 2.4008

To evaluate the performance of various controllers to variation in reference
signal, the plant is made to track variable set-point with various controllers as
shown in Figure 27. From the responses, it can be observed during set-point

Figure 27: Variable set-point tracking performance comparison of various
standard form of controllers
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change (at 100 s), the PID and FOPID produced high overshoot while the 2DOF
PID and 2DOF FOPID produced less overshoot. Observing the control signals
of the controllers, it can be seen that the PID and FOPID have derivative kick
effects. On the other hand, this effect is significantly reduced in the 2DOF PID
and 2DOF FOPID controllers.

7.2. Unstable Second Order Plus Dead Time (USOPDT) System

Following similar fashion as to UFOPDT in Section 7.1.5, the tuned param-
eters of the standard PIDs compared are given in Table 17.

The comparison of the responses of the second order system with various
standard form of PIDs for set-point tracking and disturbance rejection are given
in Figure 28. Furthermore, numerical analysis of the performance of these con-
trollers is given in Table 17. From both figure and table, it can be observed that
the 2DOF based controllers (i.e., 2DOF PID and 2DOF FOPID) produced re-
sponses with very least overshoots of 0.2633 and 0.0005% as compared to the
187.7207 and 199.3169% of PID and FOPID respectively. While the 2DOF con-
trollers have slower tr of around 7 s each as compared to around 0.8 s of the PID
and FOPID, they however settled faster at around 15 s compared to the respective
17.75 and 23.40 s of the PID and FOPID. Meanwhile, the disturbance rejection

Figure 28: Set-point tracking and disturbance rejection performance
comparison of various standard form of controllers
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of all controllers was found to be satisfactory with the PID having the fastest
recovery with ts2 of 112.75 s.

Table 17: Controller parameters and performance analysis of various standard form of
controllers

Controller Kp Ti Td α b c λ µ tr ts1 ts2 %OS

PID 1.8294 13.7860 0.7181 0.0152 1.0 1.0 1.0 1.0 0.8316 17.7484 112.7530 187.7207

FOPID 1.8294 13.7860 0.7181 0.0152 1.0 1.0 0.97 0.92 0.7703 23.3838 115.8060 199.3169

2DOF PID 1.8294 13.7860 0.7181 0.0152 0.0186 0.0 1.0 1.0 7.8788 15.6226 114.8759 0.2633

2DOF FOPID 1.8294 13.7860 0.7181 0.0152 0.0186 0.0 0.97 0.92 7.8755 15.3824 113.3261 0.0005

To evaluate the performance of various controllers to variation in reference
signal, the plant is made to track variable set-point with various controllers
as shown in Figure 29. It is observed from the response that, during set-point
change, the 1DOF based controller (i.e., PID and FOPID) produced higher over-
shoots while the 2DOF based controllers produced smaller overshoots. Observ-
ing the control signals of the controllers, it can be seen that the 1DOF based
controllers have derivative kick effects while this effect is significantly reduced
in the 2DOF based controllers.

Figure 29: Variable set-point tracking performance comparison of various
standard form of PIDs on USOPDT system
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7.3. Unstable Third Order Plus Dead Time (UTOPDT) System

In a similar way to earlier systems in Section 7.1.5 and 7.2, the tuned param-
eters of the standard PIDs compared are given in Table 18.

Table 18: Controller parameters and performance analysis of various standard form of
PIDs on UTOPDT system

Controller Kp Ti Td α b c λ µ tr ts1 ts2 %OS

PID 3.0326 14.6628 2.3592 0.0151 1.0 1.0 1.0 1.0 2.3607 28.0483 120.9497 60.8517

FOPID 3.0326 14.6628 2.3592 0.0151 1.0 1.0 0.98 0.95 2.0795 28.1442 120.5152 61.5605

2DOF PID 3.0326 14.6628 2.3592 0.0151 0.0175 0.0 1.0 1.0 12.3712 32.2013 120.9502 2.6492

2DOF FOPID 3.0326 14.6628 2.3592 0.0151 0.0175 0.0 0.98 0.95 14.2489 23.1937 123.2245 1.4885

The comparison of the responses of the third order system with various stan-
dard form of controllers for set-point tracking and disturbance rejection are given
in Figure 30. Numerical analysis of the performance of the controllers is also
given in Table 18. From the figure and the table, it is clearly seen that the 2DOF
based controllers produced responses with very little overshoots compared to the
1DOF PID controller. However, the response times of the 1DOF controllers is

Figure 30: Set-point tracking and disturbance rejection performance
comparison of various standard form of controllers
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faster then the 2DOF controllers. This is at the expense of overshoot. It is also
observed that all controllers recovered from the effect of disturbance at around
120 s. Furthermore, as shown in Figure 31, similar trend of variable set-point
tracking is observed on this system as in the case of first and second order sys-
tems.

Figure 31: Variable set-point tracking performance comparison of various
standard form of controllers

8. Conclusion

This paper has reviewed various PID controllers and their conversion from
one form to another. From these forms, the control actions of 2DOF PID, FOPID
and 2DOF FOPID controllers were derived. Furthermore, equivalent configura-
tions of the standard 2DOF FOPID controller such as feedforward, feedback,
pre-filter and component separated type have been presented.

As a proof of concept, comparative study on a class of unstable systems with
all the controllers discussed has been undertaken. In the study, consideration
has been given to set-point tracking, disturbance rejection and suppression of
derivative kick effect. Simulation results show that the conversion from one form
to another has little effect on the performance of the controllers. Results further
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showed that the 2DOF controllers (2DOF PID and 2DOF FOPID) suppressed the
effect of derivative kick more than the other variants of the PID. This effect is
more noticeable with 2DOF FOPID variant. Another noticeable advantage of the
2DOF controllers is that they produced less overshoot and faster settling time.
Hence, better set-point tracking performance.

References

[1] K.J. ÅSTRÖM and T. HÄGGLUND: The future of PID control, Control
engineering practice, 9(11) (2001), 1163–1175.

[2] P. SHAH and S. AGASHE: Review of fractional PID controller, Mecha-
tronics, 38 (2016), 29–41.

[3] V.M. ALFARO and R. VILANOVA: Conversion formulae and performance
capabilities of two-degree-of-freedom PID control algorithms, in Emerg-
ing Technologies & Factory Automation (ETFA), 2012 IEEE 17th Confer-
ence on. IEEE, 2012, pp. 1–6.

[4] M. ARAKI and H. TAGUCHI: Two-degree-of-freedom PID controllers,
International Journal of Control Automation and Systems, 1 (2003), 401–
411.

[5] K.H. ANG, G. CHONG, and Y. LI: PID control system analysis, design,
and technology, IEEE transactions on control systems technology, 13(4)
(2005), 559–576.

[6] V.M. ALFARO and R. VILANOVA: Model-Reference Robust Tuning of
PID Controllers, Springer, 2016.

[7] K. BINGI, R. IBRAHIM, M.N. KARSITI, and S.M. HASSAN: Fractional
order set-point weighted PID controller for pH neutralization process us-
ing accelerated PSO algorithm, Arabian Journal for Science and Engi-
neering, 43(6) (2018), 2687–2701.

[8] R. SHARMA, P. GAUR, and A. MITTAL: Performance analysis of two-
degree of freedom fractional order PID controllers for robotic manipulator
with payload, ISA transactions, 58 (2015), 279–291.

[9] P. DWIVEDI, S. PANDEY, and A. JUNGHARE: Performance Analysis and
Experimental Validation of 2-DOF Fractional-Order Controller for Un-
deractuated Rotary Inverted Pendulum, Arabian Journal for Science and
Engineering, 12 (2017), 1–25.



A COMPARATIVE STUDY OF 2DOF PID AND 2DOF FRACTIONAL ORDER
PID CONTROLLERS ON A CLASS OF UNSTABLE SYSTEMS 675

[10] S. PANDEY, P. DWIVEDI, and A. JUNGHARE: A novel 2-DOF fractional-
order PIλ -Dµ controller with inherent anti-windup capability for a mag-
netic levitation system, AEU-International Journal of Electronics and
Communications, 79 (2017), 158–171.

[11] R. AZARMI, M. TAVAKOLI-KAKHKI, A.K. SEDIGH, and A. FATEHI:
Analytical design of fractional order PID controllers based on the frac-
tional set-point weighted structure: Case study in twin rotor helicopter,
Mechatronics, 31 (2015), 222–233.

[12] S. DEBBARMA, L.C. SAIKIA, and N. SINHA: Automatic generation con-
trol of multi-area system using two degree of freedom fractional order PID
controller: a preliminary study, in Power and Energy Engineering Confer-
ence (APPEEC), 2013 IEEE PES Asia-Pacific. IEEE, 2013, pp. 1–6.

[13] S. DEBBARMA, L.C. SAIKIA, N. SINHA, B. KAR, and A. DATTA: Frac-
tional order two degree of freedom control for AGC of an interconnected
multi-source power system, in Industrial Technology (ICIT), 2016 IEEE
International Conference on. IEEE, 2016, pp. 505–510.

[14] S. DEBBARMA, L.C. SAIKIA, and N. SINHA: Automatic generation con-
trol using two degree of freedom fractional order PID controller, Interna-
tional Journal of Electrical Power & Energy Systems, 58 (2014), 120–129.

[15] F. PADULA and A. VISIOLI: Set-point weight tuning rules for fractional-
order PID controllers, Asian Journal of Control, 15(3) (2013), 678–690.

[16] H. RASOULI and A. FATEHI: Design of set-point weighting PIλ+ Dµ
controller for vertical magnetic flux controller in Damavand tokamak, Re-
view of Scientific Instruments, 85(12) (2014), p. 123508.

[17] M. LI, P. ZHOU, Z. ZHAO, and J. ZHANG: Two-degree-of-freedom frac-
tional order-PID controllers design for fractional order processes with
dead-time, ISA transactions, 61 (2016), 147–154.

[18] Z. LI, L. LIU, S. DEHGHAN, Y. CHEN, and D. XUE: A review and eval-
uation of numerical tools for fractional calculus and fractional order con-
trols, International Journal of Control, 90(6) (2017), 1165–1181, DOI:
10.1080/00207179.2015.1124290.

[19] C.A. MONJE, Y. CHEN, B.M. VINAGRE, D. XUE, and V. FELIU-
BATLLE: Fractional-order Systems and Controls: Fundamentals and Ap-
plications. Springer Science & Business Media, 2010.

[20] E.C. DE OLIVEIRA and J.A. TENREIRO MACHADO: A Review of Defi-
nitions for Fractional Derivatives and Integral, Math. Probl. Eng., 2014.



676 K. BINGI, R. IBRAHIM, M. NOH KARSITI, S. MIYA HASSAN, V. RAJAH HARINDRAN

[21] I. PETRÁŠ: Tuning and implementation methods for fractional-order con-
trollers, Fractional Calculus and Applied Analysis, 15(2) (2012), 282–
303.

[22] R. KHALIL, M. AL HORANI, A. YOUSEF, and M. SABABHEH: A new
definition of fractional derivative, Journal of Computational and Applied
Mathematics, 264 (2014), 65–70.

[23] D. CAFAGNA: Fractional calculus: A mathematical tool from the past for
present engineers [Past and present], IEEE Industrial Electronics Maga-
zine, 1(2) (2007), 35–40.

[24] J. WANG, G. YANG, B. ZHANG, Z. SUN, Y. LIU, and J. WANG: Con-
vergence analysis of Caputo-type fractional order complex-valued neu-
ral networks, IEEE Access, 5 (2017), 14560–14571, DOI: 10.1109/AC-
CESS.2017.2679185.

[25] B. VINAGRE, I. PODLUBNY, A. HERNANDEZ, and V. FELIU: Some ap-
proximations of fractional order operators used in control theory and ap-
plications, Fractional calculus and applied analysis, 3(3) (2000), 231–
248.

[26] D. VALÉRIO, J.J. TRUJILLO, M. RIVERO, J.T. MACHADO, and
D. BALEANU: Fractional calculus: A survey of useful formulas, The Eu-
ropean Physical Journal Special Topics, 222(8) (2013), 1827–1846.

[27] A. OUSTALOUP, P. MELCHIOR, P. LANUSSE, O. COIS, and F. DANCLA:
The CRONE toolbox for MATLAB, in Computer-Aided Control System
Design, 2000. CACSD 2000. IEEE International Symposium on, IEEE,
2000, pp. 190–195.

[28] I. PETRAS: Fractional-Order Nonlinear Systems: Modeling, Analysis and
Simulation, Springer Science & Business Media, 2011.

[29] D. XUE, Y. CHEN, and D.P. ATHERTON: Linear feedback control: anal-
ysis and design with MATLAB, SIAM, 2007.

[30] K.J. ÅSTRÖM and T. HÄGGLUND: PID Controllers: Theory, Design, and
Tuning. ISA Research Triangle Park, NC, 1995.

[31] A. VISIOLI: Practical PID Control, Springer Science & Business Me-
dia, 2006.

[32] R. VILANOVA and A. VISIOLI: PID Control in the Third Millennium:
Lessons Learned and New Approaches, Springer, 2012.



A COMPARATIVE STUDY OF 2DOF PID AND 2DOF FRACTIONAL ORDER
PID CONTROLLERS ON A CLASS OF UNSTABLE SYSTEMS 677

[33] S. SKOGESTAD: Simple analytic rules for model reduction and PID con-
troller tuning, Journal of process control, 13(4) (2003), 291–309.

[34] K.J. ÅSTRÖM and T. HÄGGLUND: Advanced PID Control. ISA-The In-
strumentation, Systems and Automation Society, 2006.

[35] N. KANAGARAJ, P. SIVASHANMUGAM, and S. PARAMASIVAM: Fuzzy
coordinated PI controller: application to the real-time pressure control pro-
cess, Advances in Fuzzy Systems, 8 (2008), p. 2.

[36] S.W. SUNG, J. LEE, and I.-B. LEE: Process identification and PID con-
trol, John Wiley & Sons, 2009.

[37] X. GAO, C. SHANG, D. HUANG, and F. YANG: A novel approach to
monitoring and maintenance of industrial PID controllers, Control Engi-
neering Practice, 64 (2017), 111–126.

[38] I. BOIKO: Variable-structure PID controller for level process, Control En-
gineering Practice, 21(5) (2013), 700–707.

[39] C.-C. YU: Autotuning of PID controllers: A relay feedback approach,
Springer Science & Business Media, 2006.

[40] T. LIU and F. GAO: Industrial process identification and control design:
step-test and relay-experiment-based methods. Springer Science & Busi-
ness Media, 2011.

[41] I. RUSNAK: Family of the PID Controllers, Introduction to PID Con-
trollers – Theory, Tuning and Application to Frontier Areas, InTech, 2012.

[42] T. HÄGGLUND: Signal filtering in PID control, IFAC Proceedings Vol-
umes, 45(3) (2012), 1–10.

[43] V.R. SEGOVIA, T. HÄGGLUND, and K.J. ÅSTRÖM: Measurement noise
filtering for PID controllers, Journal of Process Control, 24(4) (2014),
299–313.

[44] T. HÄGGLUND: A unified discussion on signal filtering in PID control,
Control engineering practice, 21(8) (2013), 994–1006.

[45] K.K. TAN, Q.-G. WANG, and C.C. HANG: Advances in PID control.
Springer Science & Business Media, 2012.

[46] H.S. SÁNCHEZ and R. VILANOVA: Optimality comparison of 2DoF PID
implementations, in System Theory, Control and Computing (ICSTCC),
2014 18th International Conference, IEEE, 2014, pp. 591–596.



678 K. BINGI, R. IBRAHIM, M. NOH KARSITI, S. MIYA HASSAN, V. RAJAH HARINDRAN

[47] V.M. ALFARO, R. VILANOVA, and O. ARRIETA: Considerations on set-
point weight choice for 2-DoF PID controllers, IFAC Proceedings Vol-
umes, 42(11) (2009), 721–726.

[48] A. VISIOLI: Adaptive tuning of fuzzy set-point weighting for PID con-
trollers, IFAC Proceedings Volumes, 33(4) (2000), 455–460.

[49] R.K. SAHU, S. PANDA, and U.K. ROUT: DE optimized parallel 2-DOF
PID controller for load frequency control of power system with gover-
nor dead-band nonlinearity, International Journal of Electrical Power &
Energy Systems, 49 (2013), 19–33.

[50] R. MANTZ: A PI controller with dynamic set-point weighting for nonlin-
ear processes, IFAC Proceedings Volumes, 45(3) (2012), 512–517.

[51] L. MUSMADE and M. CHIDAMBARAM: Learning Automata based Set-
point weighted parameter for unstable systems, IFAC Proceedings Vol-
umes, 47(1) (2014), 122–126.

[52] A. GHOSH, T.R. KRISHNAN, P. TEJASWY, A. MANDAL, J.K. PRAD-
HAN, and S. RANASINGH: Design and implementation of a 2-DOF PID
compensation for magnetic levitation systems, ISA transactions, 53(4)
(2014), 1216–1222.

[53] Q. JIN and Q. LIU: Analytical IMC-PID design in terms of perfor-
mance/robustness tradeoff for integrating processes: From 2-Dof to 1-Dof,
Journal of Process Control, 24(3), (2014), 22–32.

[54] V. RAJINIKANTH and K. LATHA: Setpoint weighted PID controller tun-
ing for unstable system using heuristic algorithm, Archives of Control Sci-
ences, 22(4) (2012), 481–505.

[55] A. DEHGHANI and A. LANZON: Discussion on: “2-DOF Controller De-
sign for Precise Positioning a Spindle Levitated with Active Magnetic
Bearings”, European Journal of Control, 18(2) (2012), 207–209.

[56] A. RODRIGUEZ-MARTINEZ and R. GARDUNO-RAMIREZ: 2 DOF fuzzy
gain-Scheduling PI for combustion turbogenerator speed control, IFAC
Proceedings Volumes, 45(3) (2012), 276–281.

[57] N. PACHAURI, V. SINGH, and A. RANI: Two degree of freedom PID
based inferential control of continuous bioreactor for ethanol production,
ISA transactions, 68 (2017), 235–250.



A COMPARATIVE STUDY OF 2DOF PID AND 2DOF FRACTIONAL ORDER
PID CONTROLLERS ON A CLASS OF UNSTABLE SYSTEMS 679

[58] R.K. MUDI and C. DEY: Performance improvement of PI controllers
through dynamic set-point weighting, ISA transactions, 50(2) (2011),
220–230.

[59] F.D. BIANCHI, R.J. MANTZ, and C.F. CHRISTIANSEN: Multivariable
PID control with set-point weighting via BMI optimisation, Automatica,
44(2) (2008), 472–478.

[60] R.K. SAHU, S. PANDA, U.K. ROUT, and D.K. SAHOO: Teaching learn-
ing based optimization algorithm for automatic generation control of
power system using 2-DOF PID controller, International Journal of Elec-
trical Power & Energy Systems, 77 (2016), 287–301.

[61] V. ALFARO, R. VILANOVA, and O. ARRIETA: Robust tuning of two-
degree-of-freedom (2-DoF) PI/PID based cascade control systems, Jour-
nal of process control, 19(10) (2009), 1658–1670.

[62] M. VITECKOVA and A. VITECEK: 2DOF PI and PID controllers tuning,
IFAC Proceedings Volumes, 43(2) (2010), 343–348.

[63] G.J. SILVA, A. DATTA, and S.P. BHATTACHARYYA: PID Controllers for
Time-Delay Systems, Springer Science & Business Media, 2007.

[64] J.E. NORMEY-RICO: Control of dead-time processes, Springer Science &
Business Media, 2007.

[65] A. VISIOLI and Q. ZHONG: Control of integral processes with dead time,
Springer Science & Business Media, 2010.

[66] K.J. ASTRÖM and R.M. MURRAY: Feedback systems: an introduction
for scientists and engineers, Princeton University press, 2010.

[67] K.G. PAPADOPOULOS: PID Controller Tuning Using the Magnitude Op-
timum Criterion, Springer, 2015.

[68] S.K. SWAIN, D. SAIN, S.K. MISHRA, and S. GHOSH: Real Time Im-
plementation of Fractional Order PID Controllers for a Magnetic Levi-
tation Plant, AEU-International Journal of Electronics and Communica-
tions, 2017.

[69] I. PETRÁS: Fractional derivatives, fractional integrals, and fractional dif-
ferential equations in MATLAB, in Engineering Education and Research
Using MATLAB, InTech, 2011.

[70] D. VALÉRIO and J. SÁ DA COSTA: An introduction to fractional control,
Institution of Engineering and Technology, 2013.



680 K. BINGI, R. IBRAHIM, M. NOH KARSITI, S. MIYA HASSAN, V. RAJAH HARINDRAN

[71] C.I. MURESAN, E.H. DULF, and R. BOTH: Vector-based tuning and ex-
perimental validation of fractional-order PI/PD controllers, Nonlinear Dy-
namics, 84(1) (2016), 179–188.

[72] R. DE KEYSER, C.I. MURESAN, and C.M. IONESCU: A novel auto-
tuning method for fractional order PI/PD controllers, ISA transactions, 62
(2016), 268–275.

[73] P. ROY, B. KAR, and B.K. ROY: Fractional Order PI-PD Control of Liq-
uid Level in Coupled Two Tank System and its Experimental Validation,
Asian Journal of Control, 19(5) (2017), 1–11, DOI: 10.1002/asjc.1487.

[74] Y. LUO and Y. CHEN: Fractional order [proportional derivative] controller
for a class of fractional order systems, Automatica, 45(10) (2009), 2446–
2450.

[75] M. TAVAKOLI-KAKHKI and M. HAERI: Fractional order model reduction
approach based on retention of the dominant dynamics: Application in
IMC based tuning of FOPI and FOPID controllers, ISA transactions, 50(3)
(2011), 432–442.

[76] T. VINOPRABA, N. SIVAKUMARAN, S. NARAYANAN, and T. RAD-
HAKRISHNAN: Design of internal model control based fractional order
PID controller, Journal of Control Theory and Applications, 10(3) (2012),
297–302.

[77] C.A. MONJE, B.M. VINAGRE, V. FELIU, and Y. CHEN: Tuning and
auto-tuning of fractional order controllers for industry applications, Con-
trol engineering practice, 16(7) (2008), 798–812.

[78] F. PADULA and A. VISIOLI: Tuning rules for optimal PID and fractional-
order PID controllers, Journal of process control, 21(1) (2011), 69–81.

[79] Y. SU, D. SUN, and B. DUAN: Design of an enhanced nonlinear PID
controller, Mechatronics, 15(8) (2005), 1005–1024.

[80] H.-B. DUAN, D.-B. WANG, and X.-F. YU: Novel approach to nonlin-
ear PID parameter optimization using ant colony optimization algorithm,
Journal of Bionic Engineering, 3(2) (2006), 73–78.

[81] P. MELCHIOR, B. ORSONI, O. LAVIALLE, and A. OUSTALOUP: The
CRONE toolbox for Matlab: fractional path planning design in robotics,
in Robot and Human Interactive Communication, 2001. Proceedings. 10th
IEEE International Workshop on, IEEE, 2001, pp. 534–540.



A COMPARATIVE STUDY OF 2DOF PID AND 2DOF FRACTIONAL ORDER
PID CONTROLLERS ON A CLASS OF UNSTABLE SYSTEMS 681

[82] R. MALTI and S. VICTOR: Crone toolbox for system identification us-
ing fractional differentiation models, IFAC-PapersOnLine, 48(28) (2015),
769–774.

[83] D. VALERIO and J.S. DA COSTA: Ninteger: a non-integer control tool-
box for MATLAB, Proceedings of the Fractional Differentiation and its
Applications, Bordeaux, 2004.

[84] N. LACHHAB, F. SVARICEK, F. WOBBE, and H. RABBA: Fractional or-
der PID controller (FOPID)-toolbox, in Control Conference (ECC), 2013
European, IEEE, 2013, pp. 3694–3699.

[85] E. PISONI, A. VISIOLI, and S. DORMIDO: An interactive tool for frac-
tional order PID controllers, in Industrial Electronics, 2009. IECON’09.
35th Annual Conference of IEEE, IEEE, 2009, pp. 1468–1473.

[86] A. TEPLJAKOV, E. PETLENKOV, and J. BELIKOV: FOMCON: a MAT-
LAB toolbox for fractional-order system identification and control, Inter-
national Journal of Microelectronics and Computer Science, 2(2) (2011),
51–62.

[87] A. TEPLJAKOV: Fractional-order calculus based identification and control
of linear dynamic systems, Tallinn University of Technology, 2011.

[88] A. TEPLJAKOV, E. PETLENKOV, and J. BELIKOV: Fomcon: Fractional-
order modeling and control toolbox for matlab, in Mixed Design of In-
tegrated Circuits and Systems (MIXDES), 2011 Proceedings of the 18th
International Conference, IEEE, 2011, pp. 684–689.

[89] R. CAPONETTO: Fractional Order Systems: Modeling and Control Appli-
cations, World Scientific, 2010, vol. 72.

[90] J. SABATIER, O.P. AGRAWAL, and J.T. MACHADO: Advances in frac-
tional calculus, Springer, 2007, vol. 4, no. 9.

[91] D. BALEANU, J.A.T. MACHADO, and A.C. LUO: Fractional Dynamics
and Control, Springer Science & Business Media, 2011.

[92] I. PAN and S. DAS: Intelligent Fractional Order Systems and Control: An
Introduction, Springer, 2012, vol. 438.

[93] D. XUE: Fractional-Order Control Systems: Fundamentals and Numeri-
cal Implementations, Walter de Gruyter GmbH & Co KG, 2017, vol. 1.

[94] A.J. MICHAEL and H.M. MOHAMMAD: PID Control: New Identification
and Design Methods, 2005.



682 K. BINGI, R. IBRAHIM, M. NOH KARSITI, S. MIYA HASSAN, V. RAJAH HARINDRAN

[95] H. TAGUCHI and M. ARAKI: Two-degree-of-freedom PID con-
trollers—their functions and optimal tuning, IFAC Proceedings Volumes,
33(4) (2000), 91–96.

[96] J. SÁNCHEZ, A. VISIOLI, and S. DORMIDO: A two-degree-of-freedom
PI controller based on events, Journal of Process Control, 21(4) (2011),
639–651.

[97] R. GOREZ: New design relations for 2-DOF PID-like control systems,
Automatica, 39(5) (2003), 901–908.

[98] F. PADULA and A. VISIOLI: Set-point filter design for a two-degree-
of-freedom fractional control system, IEEE/CAA Journal of Automatica
Sinica, 3(4) (2016), 451–462.

[99] P. PADHY and S. MAJHI: Relay based PI–PD design for stable and unsta-
ble FOPDT processes, Computers & Chemical Engineering, 30(5) (2006),
790–796.

[100] A. VISIOLI: Optimal tuning of PID controllers for integral and unsta-
ble processes, IEE Proceedings-Control Theory and Applications, 148(2)
(2001), 180–184.

[101] G. PRASHANTI and M. CHIDAMBARAM: Set-point weighted pid con-
trollers for unstable systems, Journal of the Franklin Institute, 337(2)
(2000), 201–215.

[102] C.-C. CHEN, H.-P. HUANG, and H.-J. LIAW: Set-point weighted PID
controller tuning for time-delayed unstable processes, Industrial & Engi-
neering Chemistry Research, 47(18) (2008), 6983–6990.

[103] R.P. SREE and M. CHIDAMBARAM: Simple method of calculating set
point weighting parameter for unstable systems with a zero, Computers &
Chemical Engineering, 28(11) (2004), 2433–2437.




