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Abstract. In this paper we consider the problem of automatic localization of multiple sclerosis (MS) lesions within brain tissue. We use a machine 
learning approach based on a convolutional neural network (CNN) which is trained to recognize the lesions in magnetic resonance images (MRI 
scans) of the patient’s brain. The training images are relatively small fragments clipped from the MRI scans so – in order to provide additional 
hints on location of a given clip within the brain structures – we include anatomical information in the training/testing process. Our research 
has shown that indicating the location of the ventricles and other structures, as well as performing brain tissue classification may enhance the 
results of the automatic localization of the MS-related demyelinating plaques in the MRI scans.
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detected regions of interests of the pre-defined type (or types). 
To obtain this, a two-stage architecture of the neural network 
is usually used. At the first stage, standard convolutional and 
pooling layers are used to reduce the size of the resulting feature 
maps, and then – at the second stage – some upscaling (decon-
volutional) layers are added to enlarge and combine these maps 
to obtain the image of a proper size. Such a fully convolutional 
network is trained using whole images without the need of cut-
ting them into patches. This kind of approach was successfully 
used e.g. in the analysis of transmitted light microscopy images 
[4] and MRI prostate examinations [5]. The latter approach is 
particularly interesting since it operates directly on 3D data (3D 
MRI sequences) processed by a CNN by means of 3D convo-
lution operation.

The solution proposed in [7] combines the features of both 
aforementioned groups of approaches. On the one hand, the 
CNN is trained to act as a non-linear filter capable of detecting 
regions of interest in the images of arbitrary size (so that the 
output is the image of the same size as the input). In this case, 
however, no pooling is used and, consequently, no upscaling is 
required. On the other hand, such a network may be trained with 
smaller patches without the necessity of processing the whole 
images during the learning phase. This provides an additional 
advantage, as more representative patches may be selected for 
training, which is especially important when the regions to be 
detected are sparse within the source images.

In this work, we adopted the approach presented in [7] to 
automatically detect the demyelinating plaques in brain MRI 
(Magnetic Resonance Imaging) scans in multiple sclerosis (MS) 
patients. We have applied the same neural net model and the 
same set of images but with additional information based on 
brain tissue classification results and known location of some 
anatomical structures, manually annotated by radiologists. 
In this way we were able to assess the influence of domain 
knowledge involved in the recognition process and compare 

1.	 Introduction

Convolutional neural networks (CNNs) are biologically-in-
spired machine learning tools, which have been gaining much 
attention recently. Due to their unique architectural properties 
and processing principles, they are especially suited for auto-
matic image analysis, classification and recognition. Envisioned 
and designed in their basic principles as early as in the 1980s 
[1], they reached their true potential with the advent of efficient 
GPU implementations, which allowed them to solve real-life 
pattern recognition problems with impressive effectiveness.

Apart from the general task of object classification [2], 
scientific or medical data analysis may also be done with the 
CNNs, provided that enough training data is available [3‒5]. 
In these applications we often need not only the classification 
but also the precise localization/segmentation of anatomical 
structures or tissue lesions. In general, the approaches found 
in the literature may be roughly divided in two basic groups: 
patch-based and whole image-based. In the first case, we try 
to classify individual regions of the image (in particular, the 
regions representing the neighborhood of a given pixel). This 
may be considered a modified sliding window technique with 
CNN as a classifier. For training we also use patches cut from 
the training images, manually segmented by an expert, instead 
of the whole images. Such a method was used, for example, in 
the segmentation of anatomical regions in MRI images [3]. In 
the second group, the proposed solutions are based on a “fully 
convolutional’’ approach [6]. In this case, the whole image is 
given as an input and an image of the same size is obtained at 
the output of the neural network. The output image presents the 
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the results with the previous, pure image-based, example-driven 
approach.

The rest of the paper is structured as follows. In the next sec-
tion the detailed goals of the present study are formulated, along 
with the medical background and the testing material character-
istics. Section 3 presents related works while Section 4 recapit-
ulates the fundamental facts about the convolutional neural net-
works and their application in image analysis, classification and 
recognition. In the main part of the paper (Section 5) we present 
the details of our CNN architecture, the experiment design and 
methodology, as well as data preparation/postprocessing algo-
rithms utilizing the additional information on tissue type and 
anatomical structures. The results of the experimental validation 
are presented in Section 6 and summarized in Section 7.

2.	 Material and objectives

Multiple sclerosis (MS) is the most common chronic autoim-
mune disease of the central nervous system (CNS), leading to 
neurological disability manifested by a broad range of signs and 
symptoms [8, 9]. The underlying mechanism of the MS is the 
destruction of the myelin sheaths of the CNS nerves by patient’s 
own immune system. The areas of the white matter where the 
layer of myelin has been damaged are called demyelinating 
plaques and the whole process is known as demyelination. The 
diagnosis of the disorder is made by the combination of clin-
ical findings, the examination of cerebrospinal fluid (CSF) and 
MRI of the central nervous system. In patients with clinical 
symptoms suggesting MS, the brain MR imaging can show 
multifocal white matter lesions which are plaques of demyelin-
ation. It should be noted that the process of demyelination is not 
specific to MS only – it can be a part of many other disorders. 
The diagnosis of MS is more likely if the plaques are distributed 

in some typical areas in the brain such as: around the lateral 
ventricles (periventricular), especially while they are orientated 
perpendicularly to the long axis of the ventricles, in the corpus 
callosum, along the boundary between the white matter and 
cortex, in the cerebral and cerebellar peduncles, in pons and 
medulla oblongata. The most useful MRI scans for identifying 
white matter lesions are T2-weighted images (T2WI) – partic-
ularly FLAIR sequences (fluid-attenuated inversion recovery). 
In these images the demyelinating areas are hyperintense and 
hence they are easily detected within the normal white matter 
(Fig. 1). In T2WI sequences both cerebrospinal fluid and white 
matter lesions are hyperintense, so the contrast between them 
is rather poor. In FLAIR sequences, the signal of the CSF is 
attenuated, which improves the detection of the white matter 
lesions, especially in the periventricular distribution [10].

This paper concerns the detection of demyelinating le-
sions on MR scans of the brain (FLAIR sequences in the axial 
plane). The magnetic resonance images, obtained with a 1.5 
Tesla scanner, represent slices of thickness between 3 mm and 
5 mm. The patient population consisted of hundred people (fifty 
men and fifty women) of different age groups (between 19 and 
66 years old). The study has taken into consideration only pa-
tients with confirmed diagnosis of MS. The severity of the dis-
ease varied from newly diagnosed to longstanding disorders.

As mentioned above, the plaques in multiple sclerosis may 
be located in some characteristic areas within the cerebral white 
matter. Therefore, in the present research we have decided to 
include the information about location of some of these struc-
tures in the training dataset. These structures, including lateral 
ventricles, corpus callosum, cerebral peduncles, cerebellar pe-
duncles, pons and medulla oblongata, were manually annotated 
by specialists. However, it should be noted that it is also pos-
sible to do it automatically with the use of specialized tools 
for brain MRI data analysis, after proper registration of the 
scans and setting appropriately the 3D coordinate system. In 
particular, other properly trained convolutional neural networks 
could be of use here, leading to a hierarchical system imitating 
– to a certain degree – the process of human image analysis.

The annotations, used in our experiment as an extension 
to the input images, may be considered a source of additional 
domain knowledge which is expected to produce a better and 
more effective model. However, it is not the only source of ex-
ternal information that we have examined. In a separate, second 
experiment we applied a tissue classification procedure, based 
on deformable surface models [11] to further refine the obtained 
results.  The main goal of tissue classification was to segment 
the regions containing the nervous tissue, excluding the skull 
bones, sinuses, eyeballs and other structures irrelevant for MS 
diagnostics. The main motivation here was the fact that in the 
FLAIR MRI scans used in our experiments, the MS-specific de-
myelinating plaques appear brighter than the surrounding tissue, 
which is unfortunately also characteristic for some other types 
of tissue, e.g. for orbital fat or for most bone structures. Elimi-
nation of these regions from further analysis provided the ability 
to significantly reduce the number of false alarms induced by 
“bright’’ structures located outside the brain in MRI images, as 
demonstrated in Sect. 6.Fig. 1. Example of a MRI scan with four distinct MS lesions indicated
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3.	 Related work

The problem of automatic localization of multiple sclerosis le-
sions in MRI scans have been studied for decades, with a va-
riety of tools and methods of image segmentation and analysis. 
Processing brain MRI data involves both low-level tools, such 
as gradient operators or local thresholding as well as high-level, 
anatomically motivated techniques, including e.g. brain surface 
modeling with B-splines [12]. Many approaches are based on 
some form of initial segmentation of the MRI images and classi-
fication of the tissue type, typically including white matter (WM), 
gray matter (GM), cerebro-spinal fluid (CSF) and components 
of the ventricular system. The detection of MS lesions in [13] 
is based on FLAIR image thresholding, with a preliminary pro-
cessing step involving brain tissues segmentation with a variant 
of expectation-maximization (EM) algorithm. In [14] the tissue 
types are not classified, but a brain extraction tool (BET) is used 
to discard non-relevant areas and then a dictionary is constructed 
to enable sparse coding of individual parts (patches) of the MRI 
scans. Several other approaches involving machine learning have 
been proposed, such as [15], where a combination of genetic 
algorithm (GA) and Support Vector Machine classifier (SVM) 
is applied to analyze feature vectors based on texture descrip-
tors: co-occurrence matrix (GLCM) and gray-level run length 
(GLRLM) matrix. The features are computed on the basis of 
several MRI modalities combined together by volumetric wavelet 
fusion. In this approach 3D brain representation is used with 
several additional operations, including brain extraction, registra-
tion, segmentation [16], and filtering [17]. Among other machine 
learning techniques, neural networks and convolutional neural 
networks in particular are an interesting tool for MS lesion detec-
tion and segmentation [18], which we will cover further in more 
detail. A comparison of results of the above approaches with our 
outcomes as well as discussion of similarities and differences 
between methods will be presented in Section 6.3.

4.	 Theoretical background

Neural networks have been well known for decades as effective, 
biologically-inspired tools for solving various machine-learning 
problems. Having gone a long way from the initial concepts and 
simplified models [19] they are experiencing now their renais-
sance due to the computational potential of modern graphics 
processing units (GPUs) enabling efficient training of “deep’’ 
neural architectures with many hidden layers, modeling complex 
dependencies inherent to real-world problems [20, 21]. The bio-
logical inspirations are especially important [22] in architectural 
and functional principles of the convolutional neural networks 
(CNNs), where the analogies to some elements of a human visual 
system led to a significant reduction of the connections between 
layers and extensive weights sharing [1, 23]. CNNs are capable 
of performing visual information analysis (e.g. due to the fact 
that they are translation-independent by design) in a way resem-
bling the hierarchical processing of images performed by a human 
brain. Outputs of the hidden layers (convolutional layers) are 
called feature maps [20, 24], since they actually describe locations 

of certain features of the image on different levels of abstraction. 
The CNN input is usually just a raw digital image, with optional 
very basic preprocessing (scaling, normalization, etc.) [21].

The typical application area of the convolutional networks 
is image classification – e.g. the state-of-the-art solutions to the 
ImageNet Large Scale Visual Recogintion Challenge, ILSVRC 
[2] are based on CNNs [21, 25, 26]. In this case the CNN in-
tegrates two elementary steps of a usual pattern recognition 
system: the feature-extraction and classification. However, it 
may also be used just as general-purpose feature extractor [27] 
or as a tool for locating individual objects within the image 
[28, 29]. Some deep and complex CNNs trained for ILSVRC 
were also successfully applied as a part of larger solution to 
other image recognition problems [30].

In a typical approach the CNN is expected to perform some 
dimensionality reduction of the input data, so as to reduce the size 
of feature maps in the consecutive hidden layers. This reduced 
data representation is then fed to a general-purpose classifier, 
such as a multilayer perceptron (MLP). Using MLP is especially 
convenient, because – being itself a neural network – it may be 
implemented just as a set of additional, densely connected neural 
layers appended to the CNN and trained jointly (CNN + MLP 
network as a whole) with a gradient optimization technique [20].

In the object localization task the expected output of the 
network is a feature map itself. In this case we do not usually 
use the classifier module (such as the MLP), limiting the neural 
architecture to convolutional layers only. The output of the net-
work may be of the same size as the input, which provides 
the ability to relate the positions of the detected objects to the 
original (input) image directly. The network may be trained so 
that each output value represents the likelihood that the cor-
responding pixel of the input image belongs to an object of 
a given type. This is an approach used in [7], which we also 
adopt here, as described in Sect. 5.

4.1. CNN fundamentals. The construction of a convolutional 
neural network is based on a sequence of consecutive convo-
lutional layers, where each layer computes its output on the 
basis of 2D convolution of its input. Both input and output 
data may be interpreted here as images, usually multi-channel 
ones (Fig. 2). Let p and q denote the number of channels of the 
input and output images of a convolutional layer, respectively. 
The input image may then be defined as a tuple of matrices 
A1 … Ap of a fixed na£ma size, where each matrix represents 
a single channel. Typically, for RGB images we have p = 3 in 
the first layer (note, however, that for the other layers p may 
take arbitrary values). The neural weights of the layer define the 
so-called filters (playing the role of the convolution kernels), 
which are collected in filter groups. Each filter group is defined 
as a tuple of p matrices of nf£mf  size, where each matrix rep-
resents a single filter Fi, j for i = 1 … q, j = 1 … p. The output 
of the convolutional layer is a tuple of feature maps M1 … Mq 
defined, for each i = 1 … q, as:

	 Mi = Zi + 
Ã

j =1

p

∑
!

Aj ¤ Fi,  j .� (1)
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In the formula above Zi is a bias matrix of the same size as Mi. 
Matrix convolution Aj ¤ Fi,  j is a matrix of elements (Aj ¤ Fi,  j)r, c  
for r = 1 … (na) ¡ (nf) + 1, c = 1 … (ma) ¡ (mf) + 1 such that:

	
(Aj ¤ Fi,  j)r, c = 

Ã

dn = 0

nf  ¡ 1

∑
!Ã

dm = 0

mf  ¡ 1

∑
!

 = 

= s(Fi,  j)(nf  ¡ dn), (mf  ¡ dm) ¢ (Aj)(r + dn), (c + dm) .

� (2)

It should be noted that the size of the resulting Mi matrices is 
na ¡ nf  + 1£ma ¡ mf  + 1, so it basically differs from the input 
image size for any size of the filters other than trivial 1£1. If 
we want to keep the size constant throughout the processing 
(which is actually the case in our present study), we can use 
zero-padding of the Aj to increase the size of the input data to 
(na + nf  ¡ 1)£(ma + mf  ¡ 1) before the convolution. On the 
other hand, a typical approach employed to radically modify the 
output size (usually to reduce it, as required in most classifica-
tion problems) is to use some kind of pooling after the convo-
lutional layers. Max-pooling or average pooling (implemented 
in separate pooling layers inserted between the convolutional 
layers), reducing the output matrix size by a certain factor, is 

often applied [24]. However, as mentioned above, in the present 
study we do not use the pooling layers at all.

Convolution of a matrix with a fixed filter Fi, j is linear (and 
so is the whole layer), hence – in order to effectively process the 
output data with the next convolutional layer – it is reasonable 
to use some non-linearity between the consequent layers. The 
obvious solution is to apply a non-linear activation function 
element-wise. While a sigmoid-like function is known to work, 
the modern approach is to use ReLU (rectified linear unit) [21] 
or PReLU (parametrized extension of ReLU) [31].

Each element of the output of the convolutional layer is 
a result of processing some nf£mf  rectangles picked from each 
Aj. For the first feature map, nf£mf  is a size of visual field [22]. 
For further layers, the size of visual fields could be easily calcu-
lated by tracking down the range of CNN input pixels affecting 
each output element. Should the network consist of convolu-
tional layers and element-wise operations only, the visual field 
size would be nz£mz where nz = (nf1 + … + nft) ¡ t + 1 and 
mz = (mf1 + … + mft) ¡ t + 1. In these formulas t denotes the 
number of convolutional layers and nfw£mfw is w-th layer filter 
size for w = 1 … t [7].

5.	 Method

5.1. CNN Architecture. We have applied a 6-layer convolu-
tional neural network that proved successful in [7], with square 
convolution kernels and stride equal to 1 in all layers. As men-
tioned above, the specificity of this network lies in the lack of 
pooling layers and we also do not apply fully-connected layers, 
which are typically used in most classification problems. The 
structure of our network is as follows:
●	 Layer 1: 20 filter groups (nf£mf  = 5£5, padding: 2£2)
●	 Layer 2: 20 filter groups (nf£mf  = 7£7, padding: 3£3)
●	 Layer 3: 40 filter groups (nf£mf  = 9£9, padding: 4£4)
●	 Layer 4: 60 filter groups (nf£mf  = 7£7, padding: 3£3)
●	 Layer 5: 20 filter groups (nf£mf  = 5£5, padding: 2£2)
●	 Layer 6: 1 filter group (nf£mf  = 5£5, padding: 2£2).

After every layer, except for the last one, a non-linear activation 
function (parametric rectified linear unit, PReLU) is used. After 
the last layer we applied the unipolar sigmoid activation, as 
the goal of the training of the network was to generate binary 
(0‒1) output. In particular, we expected the output value of 1 
for every pixel within a MS lesion and the output value of 0 
for every pixel within a normal tissue region. This was a nat-
ural consequence of our supervised training scheme, in which 
every input brain scan was accompanied by the target image 
(expected at the output of the network) displaying the demyelin-
ating plaques annotated by a specialist as white regions against 
the black background (Fig. 3). It should be noted that the pad-
ding size in each convolutional layer was set so that the output 
image dimensions were identical to those of the input image and 
that our CNN guarantees the strict correspondence between the 
location of the regions of interest (demyelination plaques) in the 
input images and location of the corresponding annotations in 
the target output images. The lack of densely connected MLP 
layers in our model means also that the proposed CNN works 

Fig. 2. Internal structure and operation of a convolutional layer [7]. In 
this example, a 3-channel input (A1, A2, A3) is processed by 2 groups 
of filters Fi, j (3 filters in each group). Convolution results produced by 
each filter group are summed up. Each sum is a separate output matrix 
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scan – formed a 3-channel RGB input image, as demonstrated 
in Fig. 4. From the structural point of view, this required only 
increasing, from 1 to 3, the number of filters in each of the 20 
filter groups in the first convolutional layer (cf. Fig. 2).

In the second experiment, we used the standard one-channel 
input (MRI scan only, Fig. 3a), but the output was further fil-
tered with a special brain-tissue mask, computed separately for 
each particular input image. This approach was therefore based 
on an additional post-processing phase, while the general struc-
ture of the CNN remained the same (except of the first layer, 
processing one- instead of 3-channel input images).

5.3. Evaluation of the results. Having discussed the input data 
of the CNN, we should now consider its output and the ways 
we could interpret it in relation to our processing goal. The 
last layer contains only one group of filters, which means that 
the network output is a single-channel image Iout. We expect 
that – in the course of training – this image will get as close 
to the target image Itarg (the radiologist’s annotations, Fig. 3b) 
as possible. This is explicitly expressed in the learning objec-
tive defined as minimization of mean square error (MSE), or 
difference, between Iout and Itarg. However, it is unrealistic to 
expect the ideal, binary output image and MSE of zero (such 
a case would in fact suggest heavy over-fitting and poor gen-
eralization properties of the obtained model). Instead, we get 
a real-valued output image with individual elements close to 
one (for MS lesions) and close to zero (for normal tissue), 
which needs thresholding with a threshold T 2 (0, 1) in order 
to convert it into binary image IT, directly comparable with the 
ground-truth image Itarg.

The comparison itself is based on counting the number of 
true positive (TP) pixels, i.e. such pixels that:

TP : (IT(x, y) = 1) ^ (Itarg(x, y) = 1),

where x, y are the pixel coordinates.
We also count the number of false positive (FP) and false neg-
ative (FN) pixels:

FP : (IT(x, y) = 1) ^ (Itarg(x, y) = 0),

FN : (IT(x, y) = 0) ^ (Itarg(x, y) = 1),

in order to compute the standard measures of binary classifica-
tion quality – precision and recall:

	 Precision	 =  TP
TP + FP

;

	 Recall	 =  TP
TP + FN

.

The precision is hence defined as the proportion of the number 
of TP pixels (correctly reported within the lesion areas) to all 
of the actually detected pixels, while the recall is the proportion 
of TP to all the pixels that should be reported.

It should be noted that a low value of threshold T, used to 
compute IT, maximizes the recall and a high threshold maxi-

Fig. 4. Anatomical data for the image in Fig. 3: a) the lateral ventricles; 
b) corpus callosum (genu and splenium); c) the resulting 3-channel 

input image

(a) (b) (c)

Fig. 3. An example from the training set: a) the input image (MRI 
scan); b) the target output image (the specialist’s annotations)

(a) (b)

as a kind of image filter and it can basically process an image 
of any size, provided that it is reasonably bigger that the visual 
field size (33£33 in our case – cf. Sect. 4.1). We actually make 
use of this feature in the training phase, where we cut input/
target images into small tiles for effective training, as described 
in Sect. 5.4. On the other hand, the already trained network 
is used in the testing phase to process whole full-size scans 
without the need of any structural modifications.

5.2. Experiments. As indicated at the end of Sect. 2, in this 
study we use additional sources of anatomical information, 
which must be properly handled in the experiment design and 
in the neural models applied. We conducted 2 separate exper-
iments to test the influence of the known location of large-
scale anatomical structures (experiment 1) and the influence 
of known tissue types (experiment 2) on the detection of de-
myelinating plaques.

In the first experiment the anatomical annotations avail-
able were divided into two general types: those related to the 
ventricular system (the lateral ventricles) and those related to 
some characteristic areas of the brain tissue (corpus callosum, 
cerebral and cerebellar peduncles, pons and medulla oblongata). 
We decided to encode both types of annotations on two sepa-
rate image channels, which – combined with the original MRI 
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mizes the precision. An extremely low threshold would render 
all the pixels positive, yielding 100% recall and close-to-zero 
precision, while an extremely high threshold would do the op-
posite. Therefore, a standard approach employed to obtain repre-
sentative results, applied also in the present study, is to compute 
the harmonic mean of precision and recall, known as F-measure:

F =  2 ¢  Precision ¢ Recall
Precision + Recall

.

The value of F-measure is used in the evaluation of the obtained 
results to find the appropriate threshold value T. We search 
through all possible threshold values, recording the resulting 
F-measure values for the training images. The threshold max-
imizing the F-measure is used to compute the final results on 
a separate set of testing images.

5.4. Dataset Preparation. For all the experiments we have 
used the same dataset as in [7], extended in the current study 
by additional anatomical information. The 96 patients available1 
were split at random into the training set (77 patients) and the 
testing set (19 patients). Each patient was represented by a set 
of MR scans of the size 448£512 pixels, out of which only 

1 �four patients had been removed from the original dataset of 100 subjects, 
due to data format issues

the scans containing plaques of demyelination were consid-
ered. As a result, the testing set contained 242 scans and the 
training set was based on 982 scans. These 982 scans were not, 
however, used directly but they were cut into tiles of 50£50 
pixels, as mentioned in Sect. 5.2, and only some of these tiles 
were selected for inclusion into the final training set. Out of the 
total number of 7856 selected training tiles, approximately 2/3 
contained MS lesions, and the remaining ones were included 
as negative examples, to make the trained model more robust.

In Fig. 5 some tiles cut from the training image from Fig. 3a 
are presented. These are only examples, presenting exactly 
a half of all the 18 tiles cut from this particular input image, 
with some duplicate lesions and two “negative example’’ tiles. 
It is worth noting that the original full scan (Fig. 3a), while not 
used directly for training, is applied for determination of the 
optimal threshold T, as explained at the end of Sect. 5.3.

5.5. The annotated anatomical structures (experiment 1). 
The tiles, as presented in Fig. 5, are used directly to train 
the CNN in experiment 2. However, in experiment 1 we use 
3-channel images, additionally containing the annotated ana-
tomical structures, so also the training tiles have three channels, 
as demonstrated in Fig. 6. These training tiles are obtained in 
a natural way, by cutting full scan images (Fig. 4c), so that 
the resulting dataset corresponds  exactly to the 1-channel ver-
sion. Apart from the necessary CNN modification, explained in 

Fig. 5. Examples of training tiles cut from the image in Fig. 3. Top: Input tiles cut from Fig. 3a; Bottom: Corresponding target tiles cut from 
Fig. 3b. Note, that tiles (d)/(m) and (i)/(r) do not contain any lesions

Fig. 6. Examples of training tiles cut from the image in Fig. 4 (3-channel version of Fig. 5). Top: Input tiles cut from Fig. 4c; Bottom: Corre-
sponding target tiles (the same as in Fig. 5)
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Sect. 5.2 (extending the input neural layer to handle 3-channel 
images) all further processing in experiment 1 follows the 
scheme proposed in [7].

5.6. Tissue classification and segmentation (experiment 2). 
This experiment is based on exactly the same CNN structure 
and on the same (1-channel) input data as proposed in [7]. The 
only difference is that the output images obtained from the net-
work in the testing phase are additionally post-processed with 
a domain-specific segmentation procedure.

As a segmentation method we used an algorithm specialized 
for nervous tissue extraction from head MRI scans, based on de-
formable surface models [11], embedded in Slicer 3D platform 
[32, 33]. This method consists of several consecutive processing 
stages, realized individually for each patient:
1.	Construction of a 3D representation of the image data on 

the basis of all the available head MRI scans of the patient;
2.	Computation of some basic data statistics (histogram) and 

determination of the starting region in the form of an ellip-
soid contained completely within the brain area;

3.	Initial tissue classification within the starting region (gray 
matter, white matter, cerebro-spinal fluid) by fuzzy cluster-
ing analysis [34];

4.	Tissue classification on the whole image;
5.	Iterative deformation of the surface of the starting region 

on the basis of tissue classification results and constraints 
based on the smoothness of the resulting surface.
As a result of the segmentation, we obtained the outer sur-

face of the brain, which was then projected onto the planes 
defined by consecutive MRI scans. This finally led to obtaining 
the contour around the region occupied by the nervous tissue in 
every input image (Fig. 7a). The masks corresponding to these 
contours needed further processing to correct some imperfec-
tions of the segmentation process. A sequence of morphological 
operations was applied here, as a result of which the final masks 
were obtained, as presented in Fig. 7b:
1.	Erosion – in order to remove sporadically appearing thin 

protrusions extending far beyond the brain region;
2.	Closing – in order to eliminate frequently appearing holes 

within the brain region (Fig. 7a);
3.	The second erosion – in order to decrease slightly the mask 

region to eliminate the risk of covering the skull bones sur-
rounding the brain.
From these three steps, the second (closing operation) is 

the most crucial one – a big structuring element was applied, to 
guarantee that the resulting mask would cover the whole region 
of the nervous tissue, even if only a part of it was obtained after 
the segmentation. The basic motivation here was the need to 
decrease the risk of not detecting the demyelinating plaques in 
case they would be located in the areas not covered by the mask. 
On the other hand, a big structural element might result in an 
undesired growth of the mask area, which could in turn cover 
the “false positive’’, bright regions of the image. These regions 
are, however, located outside the brain region in most MRI 
scans, so – considering the specificity of the closing operation 
– this risk was not too severe and it was additionally reduced by 
the third morphological operation (the second erosion).

The masks thus obtained were used for the filtration of the 
CNN results in the testing phase (on the testing set). After the 
analysis of the characteristics of the available dataset, we de-
cided not to use them during the training phase. This decision 
was motivated by the need to maintain high robustness of the 
network to “false positive’’ areas of high brightness which, 
notwithstanding the segmentation methods applied, might oc-
casionally appear in the testing set. Limiting the training data 
to nervous tissue only would inevitably deteriorate the gener-
alization properties of the network in this regard.

Fig. 7. Experiment 2 – example images: a) input image with segmented 
brain (contour); b) contour-based mask after morphological operations; 
c) raw CNN output image (no thresholding); d) output image after 
thresholding; e) output image after thresholding and filtration with 

mask (b); f) expected (ground–truth) output image

a b

c d

e f
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Summarizing, the process of testing our neural network in 
experiment 2 comprised the following steps (Fig. 8):
1.	Forward propagation of the input image (the whole single 

MRI scan) through the network;
2.	Thresholding of the obtained output image (Fig. 7c) with 

threshold T resulting in a binary image IT (Fig. 7d);
3.	Filtration, i.e. removing all white areas located outside of 

the mask;
4.	Comparing of thus obtained result (Fig. 7e) with the expect-

ed target output, defined by a human specialist (Fig. 7f).

6.	 Experimental evaluation

The experiments were done with Caffe deep learning frame-
work [35] on a cluster node with Tesla K80A GPU accelerator. 
The training set of 7856 tiles was fed to the network in mini-
batches of 100 tiles each. Mean square error (Euclidean loss) 
between the network outputs and the ground-truth target images 
was used as the optimization efficacy measure, in accordance 
to Sect. 5.3.

6.1. Experiment 1. In order to increase the reliability of the ob-
tained results we repeated the whole training process 10 times.  
Apart from the 3-channel images with the annotated anatomical 
structures, we have also rerun the original experiment from [7] 
based on 1-channel MRI scans. For comparison purposes, the 
training in this case was also repeated 10 times. The results are 
presented in Table 1.

As may be observed, the influence of adding the structural, 
anatomical knowledge, although visible, is in fact quite lim-
ited. There are several possible reasons for this unspectacular 
outcome. First, although the information about localization of 
a ventricle or a peduncle may increase the probability of nearby 
MS lesion detection, still the training tiles are quite small 

(50£50 pixels out of full scan images of 448£512), which 
limits the clues on their global position that might be found. 
Mixing in one channel the information concerning the cerebral 
and cerebellar peduncles, and also genu and splenium of the 
corpus callosum, medulla and pons, perhaps did not help as 
well. Moreover, the dark regions of the lateral ventricles are 
already quite characteristic in the original MRI scans, so putting 
this part of the additional information in a separate channel was 
probably mostly redundant.

However, it should be noted that the observed increase of the 
F-measure value is statistically significant. The training process 
was very stable in terms of repeatability (standard deviation of 
F-measure values below 1%) and exactly the same conditions 
were held for both datasets (1- and 3-channel images). As the 
obtained results are quite sensitive to the moment in which the 
training is stopped, as demonstrated in [7], we applied here 
exactly the same number of epochs for both datasets and for 
all the tests (training sessions)2. More precisely, each training 
lasted 1250 epochs, which means that 9 820 000 tiles were used 
(1250 epochs£7856 tiles in the dataset). This number of ep-

2 �we observed that the training time was slightly longer for the 3-channel 
images (ca. 911 vs 908 minutes for the 1-channel variant), due to the 
increased number of neural weights in the first convolutional layer

Fig. 8. Testing procedure in experiment 2; note, that: �– the CNN is already trained as in [7];  
– brain segmentation is obtained for all the MRI scans of a given (test) patient

Table 1 
Experiment 1 – the results

1-channel [7] mean 
results from 10 tests

3-channels (Fig. 6) mean 
results from 10 tests

Precision: 51.27% (σ  = 1.32%) 53.00% (σ  = 1.58%)

Recall: 54.28% (σ  = 0.66%) 55.66% (σ  = 0.76%)

F-measure 52.73% (σ  = 0.93%) 54.29% (σ  = 0.94%)
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ochs was close to optimal in [7], although it should be noted 
that for the extended 3-channel dataset, a longer training pro-
cedure would perhaps be beneficial. In this context, the com-
parison of the range of the results obtained here for the original 
1-channel database3 (51.48% – 54.03% in 10 repetitions) and 
for the 3-channel version (53.09% – 56.18% in 10 repetitions) 
clearly supports the conclusion that the anatomical information 
encoded in the separate channels of the input image does have 
a positive impact on our detection process.

6.2. Experiment 2. In order to precisely measure the signif-
icance of tissue classification, we did not actually repeat the 
training process – we only applied the masks to filter the output 
images obtained in [7]. The original, reference results (without 
the filtering) are presented in the first column of Table 2. The 
values in the middle column present the result of our mask-
based filtration process described in Sect. 5.6.

As may be seen, an increase of the F-measure value by 
almost 4% was achieved, which resulted from a significant in-
crease of precision. This effect is quite natural, when we take 
into account that the irrelevant areas (not containing lesions) 
have been filtered out now, while practically all properly de-
tected lesions have been preserved (recall drop by as little as 
0.01%).

The obtained result proves the effectiveness of the filtra-
tion, although – considering how much additional information 
about the analyzed areas is included – one might expect a more 
significant enhancement of the result. Therefore, we analyzed 
the influence of the value of the threshold T on the obtained 
results. In the middle column of Table 2 we present the results 
obtained for the same value of T = 0.56 as in [7]. However, as 
the filtration of the resulting images with the use of the masks 
obtained on the basis of nervous tissue segmentation introduces 
quite significant changes, we computed new threshold, maxi-
mizing F-measure on filtered training images (Table 2, the third 
column).

As one could expect, the threshold value thus obtained was 
a bit smaller (T = 0.52), which led – in the testing phase – to 
the increase of the recall value by ca 3%, while the precision 
dropped by over 3%, though still remaining slightly higher with 
respect to the results of [7]. Nevertheless, it should be noted 
that despite these changes, the final F-measure value remained 
practically on the same level (0.05% increase).

Continuing the search for the explanation of the observed 
moderate enhancement of the results, we computed the statis-
tics of the changes introduced by the filtration operation in the 
whole testing set. It appeared that using the additional informa-
tion from the brain tissue classification process was significant 
in only 30% of the testing images. In the remaining 70% of 
cases the resulting images after thresholding did not contain 
“false positive’’ areas detected outside the brain region, so the 
filtration did not introduce any significant changes in their case. 
Therefore, the final conclusion from the experiment is that the 

3 �even if we consider the best result of 54.60% reported for the 1-channel 
case in [7]

applied CNN in conjunction with a proper training and good 
choice of the training examples is an effective classifier of de-
myelinating plaques, robust to “false positive’’ areas appearing 
in the analyzed images even without the application of the addi-
tional anatomical knowledge about the tissue type. On the other 
hand, using this knowledge still leads to some improvements 
of the obtained results, which offers a significant potential for 
future research.

6.3. Comparison with other approaches. Considering our 
results in a broader context, we should note the fact, that the 
considered problem is generally a difficult one and the results 
we have obtained are on par with up-to-date studies. The direct 
comparison is difficult due to different methodologies, evalu-
ation procedures and the MRI data itself. The quality of the 
material and the coherence of the annotations may also vary 
significantly, as shown in [13], who report the mean results of 
MS lesion segmentation for 45 patients from three different 
hospitals as being equal to 22%, 43% and 44%, respectively. 
These figures refer to Dice similarity coefficient (DSC) which 
is computed identically to the F-measure4 we report in Tables 1 
and 2. In this context we may regard our results as being defi-
nitely superior.

Similarly moderate results are reported in [14] (DSC equal 
to 29%) and in [36] (DSC equal to 31%). Only in some recent 
works based on machine learning, significantly better results are 
reported, e.g. DSC of 62.7% in [18] and 68% in [15].

The convolutional neural network used in [18] yielded re-
sults better by 4.23% than ours (DSC: 62.7% vs. 58.47). How-
ever, they used incomparably richer training data, including 

4 �other alternative names of the same measure include: Sørensen–Dice index, 
F1-score and Czekanowski’s index.

Table 2 
Experiment 2 – the results. The numbers in the 2nd, 3rd and 4th row 

refer to the total number of pixels in the final output images

No 
Segmentation 

[7]

No 
Segmentation 

(threshold 
found without 
segmentation)

Segmentation

Threshold T 0.56 0.56 0.52

TP + FN 143 207 143 207 143 207

TP + FP 140 339 121 750 136 903

TP 77 405 77 388 81 888

Precision: 
TP

TP + FP
55.16% 63.56% 59.81%

Recall: 
TP

TP + FP
54.05% 54.04% 57.18%

F-measure 54.60% 58.42% 58.47%
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four MRI scan types5 (T2-weighted FLAIR, T1-weighted 
MPRAGE, T2-weighted and Proton Density weighted), all 
three possible projections6 (axial, coronal and sagittal) and re-
peated scans for different time points (4‒6 time points). They 
also used several independent convolutional models, all of 
which used a fully-connected layer at the end of the architec-
ture, which is a significant difference between their approach 
and ours.

The approach proposed by [15] is based on a complex proce-
dure, in which two optimization/classification methods (SVM/
GA) are used for analysis of feature vectors, including i.a. 
GLCM/GLRLM texture descriptors, computed from volumetric 
wavelet fusion of several MRI modalities. Three-dimensional 
data are preprocessed with several specialized tools, including 
BET-FSL for registration, realignment and brain extraction [16] 
and nonlinear anisotropic diffusion filter [17]. In this context, 
our approach may be considered a simple and straightforward 
one, offering good segmentation capabilities without the need 
of costly preprocessing and feature extraction.

Finally, let us note that inter-variability between experts, 
reported by [15], in terms of the Dice coefficient, was ca 25%, 
ca 70% and ca 75% for three different brain MRI databases. 
This gives a practical assessment of the upper limit of the MS 
lesion segmentation capabilities of any classifier.

7.	 Conclusions and Future Work

In this paper, we tested two methods of anatomical data inclu-
sion within our CNN-based demyelinating plaques detection 
procedure. Both methods – the first one, based on embedding 
the anatomical data in the input images and the second one, 
based on post-processing and filtration of the output images 
– increased the detection rate, although neither of them proved 
groundbreaking.

The obtained results may be interpreted in two ways. Firstly, 
we can conclude that the presented convolutional neural net-
work is robust enough to yield good results which simply cannot 
be significantly boosted, considering the inevitable uncertainty 
of the annotation process and the quality of the available MRI 
scans. On the other hand, some enhancements of the results 
were actually achieved, indicating the benefits that might be 
expected if more information on the anatomical context was 
available during the training/testing process.

How to provide this information is still an open question. 
The method applied in experiment 1 is quite natural for a con-
volutional network, designed to process multi-channel images. 
The drawbacks include probably too generalized treatment of 
the available data (only two additional channels applied) and 
the laborious, manual annotation process. The latter issue may 
be resolved in a similar way as in experiment 2, i.e. via spe-
cialized tools capable of registering the medical imagery data 
and atlas-based segmentation of anatomical structures. Putting 

5 we use only one modality – the FLAIR MRI scans.
6 we use only axial plane.

thus obtained data into several separate channels of the input 
images may improve the training and increase the lesion detec-
tion capabilities of the network.

It should be noted that the two experiments reported in this 
paper can be combined. This could help to further enhance the 
overall detection outcome, as the additional information used in 
each experiment is independent of the other. However, taking 
into account the presented results one cannot expect the F-mea-
sure value significantly higher than 60%. On the other hand, we 
are aware that the applied methodology of evaluation is partially 
misleading – we are currently expecting the CNN to recreate 
the exact shape of the specialist’s annotations, down to single 
pixels and we simply report the number of the pixels that do not 
match. With account being taken of the unavoidable inaccuracy 
and uncertainty of the annotation process, it is completely un-
realistic to expect a 100% detection rate. Giving more priority 
to the evaluation of the number of lesions that have been found, 
instead of the number of the matching pixels, would probably 
be more clinically justified and would generate better-looking 
detection scores. The problems concerning the formulation of 
more flexible evaluation measures and the general reliability of 
the manual annotations used for training are among the open 
issues that we will try to resolve in the future work.
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8.	 APPENDIX

On the following page we demonstrate some more results of 
experiment 2. Each column presents a separate MRI scan, while 
each row presents the results of the separate stages of pro-
cessing:
●	 Contour obtained on the basis of brain segmentation, i.e. the 

“raw’’ result of the segmentation algorithm a – d;
●	 Mask obtained on the basis of brain segmentation and the 

morphological operations e – h;
●	 Resulting images obtained at the output of the neural net-

work, without thresholding i – l;
●	 Result of thresholding the network output without filtration 

m – p;
●	 Result of thresholding the network output and filtration on 

the basis of the masks q – t;
●	 Expected (ground–truth) output, i.e. the specialist’s anno-

tations u – x.
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