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Abstract. Most current state-of-the-art computer vision algorithms use images captured by cameras, which operate in the visible spectral range 
as input data. Thus, image recognition systems that build on top of those algorithms can not provide acceptable recognition quality in poor 
lighting conditions, e.g. during nighttime. Another significant limitation of such systems is high demand for computational resources, which 
makes them impossible to use on low-powered embedded systems without GPU support. This work attempts to create an algorithm for pattern 
recognition that will consolidate data from visible and infrared spectral ranges and allow near real-time performance on embedded systems 
with infrared and visible sensors. First, we analyze existing methods of combining data from different spectral ranges for object detection task. 
Based on the analysis, an architecture of a deep convolutional neural network is proposed for the fusion of multi-spectral data. This architecture 
is based on the single shot multi-box detection algorithm. Comparison analysis of the proposed architecture with previously proposed solutions 
for the multi-spectral object detection task shows comparable or better detection accuracy with previous algorithms and significant improvement 
of the running time on embedded systems. This study was conducted in collaboration with Philips Lighting Research Lab and solutions based 
on the proposed architecture will be used in image recognition systems for the next generation of intelligent lighting systems. Thus, the main 
scientific outcomes of this work include an algorithm for multi-spectral pattern recognition based on convolutional neural networks, as well as 
a modification of detection algorithms for working on embedded systems.
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quired to capture thermal-infrared radiation. Originally, it was 
developed for night vision purposes for the military, and the 
devices were very expensive. Example of visible-infrared pair 
image is presented in Fig. 1.

The technology was later commercialized and has devel-
oped quickly over the last few decades, resulting in both better 
and cheaper cameras. This has opened a broader market, and the 
technology is now being introduced to a wide range of different 
applications, such as building inspection, gas detection, indus-
trial appliances, medical science, agriculture, fire detection, and 
surveillance [1].

Concerning significant price drop of the infrared sensor, 
there is a possibility to utilize such cameras in image recogni-
tion tasks that require competitive and high nighttime detection 
accuracy, e.g. self-driving cars or video surveillance. However, 
despite variety of multi-spectral cameras, most datasets that 
contain infrared images have a lack of samples for proper 
training of state-of-the-art algorithms. Besides, such algorithms 
require significant computational resources, and it makes them 

1.	 Introduction

During the last couple of years, research and development in 
computer vision systems have been rapidly growing. Accord-
ingly, the need has emerged to use additional data sources to 
solve common problems in image recognition systems, such 
as object detection and semantic segmentation. Visible cam-
eras that captured visible light in greyscale or RGB images 
have been the standard device for image capturing. However, 
image recognition systems, which build upon datasets that 
contain such images, highly depend on the sun or artificial 
lighting. Also, such systems can not recognize objects in total 
darkness.

One of the possible solutions is to use infrared cameras as the 
primary imaging device. It is possible to use active or passive 
sensors for infrared cameras. Active sensors, which illuminate 
the scene with near-infrared radiation, are less dependent on the 
lighting conditions. However, in many applications, a passive 
image sensor is preferred. In the mid- and long-wavelength 
spectrum radiation is emitted by objects themselves. The inten-
sity in such sensors highly depends on the object temperature. 
Thereby passive sensors do not depend on any external energy 
source. Hot objects, e.g. humans, are much easier to distinguish 
in the thermal image, while colors of any other object with low 
temperature are invisible. A special detector technology is re-

Fig. 1. Visible and thermal image of the same scene [1]
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ineffective on the low-powered embedded systems. At the same 
time, there is high demand for smart embedded systems which 
can use mentioned algorithms on board, e.g. in smart connected 
systems and other Internet of Things applications.

Given the above background, the primary goal of this work 
is to design, implement and experimentally evaluate an algo-
rithm that allows utilizing heterogeneous data from different 
sources for image recognition tasks. Designed algorithm should 
provide near real-time performance on embedded systems and 
accuracy comparable to more resource-intensive state-of-the-art 
detection frameworks. Thus the following research objectives 
were defined:
1.	Conduct analysis and comparison of modern object detec-

tion algorithms. The primary criteria are resource-consump-
tion and detection quality.

2.	Perform necessary modifications of the algorithm to run it 
on low powered embedded devices.

3.	Implement architecture extension of the developed algo-
rithm to support multi-spectral data processing.

4.	Conduct experiments with the proposed architecture to ver-
ify the importance of additional data source in object detec-
tion, semantic segmentation with heterogeneous data.
All solutions, proposed in this work, are based on convolu-

tional neural network architectures and fusion functions that 
perform consolidations of extracted features from multi-spec-
tral input data. The results of this work can be used to build 
image recognition systems for variety of applications, e.g. in 
video surveillance systems, self-driving cars, automatic an-
notation for multi-spectral satellite images and in any other 
domain which impose combination of heterogeneous data. Near 
real-time performance of provided multi-spectral algorithm for 
object detection allows to use it in smart connected systems, 
e.g. in smart office for light control or energy management. 
Also, development of a large dataset of infrared images in the 
future creates possibilities to re-train described models exclu-
sively on infrared images, this will avoid disrupting privacy 
when installing these systems in office buildings.

The structure of present work is the following. In Section 2 
we provide an overview of state of the art in standard and 
multi-spectral object detection problem, along with a short re-
view of neural network architectures for semantic segmentation. 
In Section 3 we define basic fusion rules, present multi-spec-
tral architectures for various computer vision tasks and discuss 
fast object detection on embedded devices. In addition, exper-
imental results are provided with implementation details. In 
Section 4 we make conclusions.

2.	 Overview. Selection of a primary  
architecture

This section provides a top-down review presenting the cur-
rent problem. We start with a review and analysis of current 
state-of-the-art object detection algorithms in order to find and 
justify the most suitable detector for multi-spectral extension 
regarding accuracy and resource efficiency. Also, previously 
proposed solutions, based on convolutional neural networks for 

multi-spectral object detection, are analyzed. A short overview 
of a neural network architecture for semantic segmentation, 
which was used in experiments, is also provided.

2.1. Object detection. The primary goal of object detection is 
to find objects in an image and to classify them. The standard 
output of object detection algorithm is described by the cor-
responding class label and bounding box coordinates. Image 
classification is done before object detection and provides con-
fidences for classes. Localization task is performed by regres-
sion for bounding box coordinates. Object detection systems 
are usually trained with image and ground truth bounding box 
and the regression is conducted by calculation of L2 distance 
between the predicted bounding box and the ground truth. In-
tersection over union (IOU) between predicted bounding boxes 
and ground truth helps to verify most stable detections. There 
are two major classes of object detection frameworks – multi-
staged and single shot. The brief review of this classes is pro-
vided below.

The first representative of the multi-staged detection frame-
work is region-based convolutional neural network (R-CNN). 
R-CNN is a visual object detection system that combines re-
gion proposals with features extracted from a convolutional 
neural network (CNN). R-CNN creates bounding boxes using 
an algorithm called selective search [2] that slides through the 
image with windows of different sizes and combines adjacent 
pixels by color, intensity or texture to find objects. Once the 
proposals have been created, R-CNN warps the region to a stan-
dard square size and passes it through to a modified version 
of a convolution neural network feature extractor. On the final 
layer of the CNN, R-CNN adds a support vector machine that 
detects object presence and class of detected object. The full 
structure of R-CNN is presented on Fig. 2.

The main disadvantages of this approach are multi-stage 
training pipeline that makes it difficult to re-train for new data-
sets; object detection with VGG16 takes 47 sec/image on GPU 
which is very slow and far away from near real-time perfor-
mance. R-CNN is slow because it performs a CNN forward 
pass for each object proposal, without sharing computations.

To address all issues mentioned above with R-CNN authors 
proposed a new modified fast R-CNN architecture. The input 
to the fast R-CNN is input image and the region proposals 
that have been generated using selective search [2]. In order 
to avoid CNN forward pass for each region proposal of each 
image authors introduced technique known as region of inter-

Fig. 2. Region-based Convolution Neural Network structure [3]

1. �Input image 2. �Extract region 
proposals (∼2k)

3. �Compute  
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R-CNN: Regions with CNN features

4. �Classify 
regions
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esting pooling (RoI pooling layer). RoI pooling layer shares the 
forward pass of a CNN for an image across its subregions. Con-
volution features for each region are obtained by mapping of 
the corresponding section from output feature layer of the CNN. 
Then max pooling operation is performed with each feature to 
fix sizes of feature maps for further computations. All these 
steps allow making only one forward pass of the original image 
as opposed to 2000 in R-CNN. Also, fast R-CNN utilizes CNN 
feature extractor, classifier, and bounding box regressor into the 
single network. The whole network is trained with a dual loss 
function, the SVM classifier is replaced with a softmax layer 
on top of the CNN for classification, and linear regression layer 
is added in parallel for bounding box prediction. The whole 
structure of fast R-CNN is presented in Fig. 3.

According to comparison results, R-CNN object detection 
algorithms did not achieve near real-time inference speed for 
launching on low-powered embedded devices with CPU.

Methods mentioned above have region proposals part fol-
lowed by the high-quality classifier for this proposals. These 
methods are very accurate but require significant computational 
resources.

However, there is the second type of object detection al-
gorithms that is called single shot and is designed to combine 
two stage detection of R-CNN detectors into the single convo-
lutional neural network. The main idea of these algorithms is 
the usage of pre-defined bounding boxes, and convolutional 
feature maps from last layers in the network for a class score 
and bounding box offsets prediction.

The first method that uses this idea is called YOLO [5]. It 
predicts classes and bounding boxes using single feature map. 
This approach helps to increase inference speed but creates 
several limitations during detection, such as inaccuracies due 
to small objects, different aspects and ratios of objects (Fig. 5).

These problems were successfully addressed in single shot 
multibox detector (SSD) paper [7]. SSD requires assigning 
the default boxes to ground truth boxes with some matching 
strategy. Best default box for corresponding ground truth box 
is the one that best fits regarding location, aspect ratio, and 
scale. For this matching strategy default boxes with the best 
intersection over union and higher than 0.5 are selected. The 
overall training objective L of SSD is based on the weighted 
combination of bounding box regression and classification loss 
functions. Let x p

ij 2 {1, 0} be an indicator for matching the i-th 
default box to the j-th ground truth box of category p, then

L(x, c, l, g) = (Lconf (x, c) + αLloc(x, l, g))/N ,

Fig. 4. Faster R-CNN structure overview [6]

Fig. 3. Fast R-CNN joint training framework structure [4]

The external region proposals problem and still slow in-
ference speed of fast R-CNN have been improved in further 
modification called faster R-CNN. Faster R-CNN provides re-
al-time detection performance with 10 ms per image including 
time cost for region proposals. It replaced the previous region 
proposals method with region proposal network (RPN). RPN 
accepts convolution feature map of the image as input and pro-
vides a set of rectangular object proposals with confidence score 
as output. In general, faster R-CNN has four losses: RPN clas-
sification (object or not object), RPN bounding box proposal, 
fast R-CNN Classification (standard object classification), 
fast R-CNN bounding-box regression as a refinement of RPN 
bounding box proposals.

The detailed structure of faster R-CNN is presented in 
Fig. 4. All mentioned modifications lead to significant improve-
ment in inference speed and detection accuracy. Comparison 
of R-CNN based multi-staged object detection frameworks is 
presented in Table 1.

Table 1 
Comparison of multi-staged object detection frameworks

Detection 
Framework

Test time  
(sec. per image)

Speedup mAP  
(Pascal VOC 2007)

R-CNN 50 1£ 66

fast R-CNN 2 25£ 66.9

faster R-CNN 0.2 250£ 69.9
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where N is the number of best-matched default boxes and the 
weight term α is adjusted by cross-validation. If N = 0 loss is 
equal to 0. The localization loss is a Smooth L1 loss [4] between 
the predicted box (l ) and the ground truth box (g) parameters: 
similar to faster R-CNN [6], SSD method regresses to offsets 
for the center (cx, cy) of the default bounding box (d ) and for 
its width (w) and height (h) [7], i.e.

Lloc(x, l, g) = 
i 2 Pos

N

∑
m 2 {cx, cy, w, h}

∑ xk
ij ¢ smoothL1(li
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The confidence loss is the softmax loss over multiple class 
scores (c)

Lconf (x, c) = –
i 2 Pos

N

∑ x p
ij log(c ̂ i

p) ¡ 
i 2 Neg
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³
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p´

∑pexp
³
ci
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SSD uses feature maps from different layers to handle scale 
variance. Scales and aspect ratios for default boxes in each 
feature map are computed as:

sk = smin + 
smax ¡ smin

m ¡ 1
(k ¡ 1),  k 2 [1, m],

where m is the number of feature maps, smin = 0.1, smax = 0.95. 
Different aspect ratios are considered at each scale ar 2 {1, 2, 3, 
0.5, 0.3}. To avoid significant class imbalance between posi-
tive and negative default boxes samples with higher confidence 
score are used to keep positive-negative ratio equal to 3:1. SSD 
algorithm uses several activation maps in different scales for 
prediction which helps to achieve higher mean average preci-
sion (mAP) by better detecting small objects.

According to results in Table 2, SSD is the best available 
method for fast multispectral detection task extension because 
it provides a trade-off between accuracy and inference speed. 
Also, most commercially available infrared cameras capture im-
ages in low resolution which is also perfectly fit with SSD, 
since it supports lowest possible resolution.

Table 2 
Comparison of single shot detection frameworks  

(FPS – frames per second)

Method mAP (VOC 2007) FPS Input resolution

Fast YOLO 52.7 155 448£448
YOLO (VGG16) 66.4 21 448£448

SSD300 74.3 46 300£300
SSD512 76.8 19 512£512

Fig. 5. A comparison between single shot detection models architectures. SSD adds several feature layers to the end of the base network, which 
predicts the offsets to default boxes of different scales and aspect ratios and their associated confidences [7]
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Also, in [8] authors presented high-quality review and com-
parison of modern convolutional object detectors regarding 
speed and accuracy. They analyzed SSD and faster R-CNN for 
sensitivity to different feature extractors and showed that SSD 
is less sensitive to the quality of feature extractor than faster 
R-CNN. This property will be used in subsection 3.2 for fast 
single shot detector development. Also, in [8] they performed 
analysis of GPU time for different object detectors which show 
that SSD is faster than other competitors, such as faster R-CNN.

Let us summarize all mentioned key properties of Single 
Shot Multibox Detector:
●	 Inference speed. High detection speed achieved by adapta-

tion of single convolutional neural network that directly re-
turned scores for classes and corresponding bounding boxes.

●	 Detection accuracy. Due to different sizes of last feature 
layers, SSD performs detection for objects with different 
shapes and sizes.

●	 Low resolution support. Since cheap infrared cameras pro-
vide images in resolution 300£300, SSD already supports 
such resolution which simplifies training procedure and cre-
ates opportunities for industrial applications.

●	 Modular structure. Since SSD is less sensitive to changes 
of base network and extra classification layers can be varied, 
it is suitable to construct detectors for specific needs, such 
as detectors for embedded systems.
Considering presented properties, SSD was considered as 

a primary architecture to be used on low-powered embedded 
systems and suitable for a multi-spectral extension for object 
detection task, discussed in subsection 3.2.

Let us also note that different data augmentation strategies, 
such as sampling patches with some minimum overlap, random 
sampling, etc. can be used to make a model more robust to 
various input shapes for both classes of object detection frame-
works, discussed above.

2.2. Multispectral object detection. By general definition, 
Data Fusion is a formal framework for fusion of data origi-
nating from different sources. Specifically, image fusion can 
be classified into three categories depending on the stage at 
which fusion takes place: pixel level, feature level, decision 
level. Since the core part of all object detection algorithms men-
tioned above is CNN, it is reasonable to discuss feature level 
fusion, because CNN is a perfect feature extractor. Feature level 
fusion methods deal with data at higher processing level than 
pixel level methods. The general scheme for feature-level fusion 
systems is presented in Fig. 7.

Fig. 6. GPU time (milliseconds) for different models, for image resolution equal to 300 [8]
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Fig. 7. General feature level fusion scheme
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The most popular dataset and benchmark for evaluation of 
multi-spectral object detection algorithms is KAIST [9]. This 
dataset contains temporally and spatially aligned visible and 
thermal images with resolution 640£512. In general, there are 
95k pairs of visible-thermal infrared pairs. The baseline results 
for this dataset are provided by algorithm which is based on 
aggregated channel features (ACF) [10] with an extension that 
incorporates a contrast-enhanced version of original thermal-in-
frared images as well as a histogram of oriented gradients fea-
tures of this image as primary channels.

There is a quite few literature on multi-spectral object de-
tection with convolutional neural networks. In [11] authors pro-
posed multi-spectral detection framework that is based on the 
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R-CNN framework. The main difference is in region proposal 
algorithm that is based on ACF [10] from KAIST benchmark 
[9]. After region proposals convolution neural network is used 
to fuse information of different modalities and perform binary 
classification. The primary fusion strategies are early and late 
fusion. Early fusion architecture is based on AlexNet [12] and 
different modalities combined at pixel-level. On the other hand, 
late fusion architectures process data of the two modalities sep-
arately in subnetworks and perform fusion in a fully connected 
layer. According to results, late fusion architecture provides 
better detection results because it fuses information at a stage 
where spatial features are less relevant. Both fusion schemes 
are presented in Fig. 8.

In [13] authors proposed end-to-end multi-spectral detec-
tion framework based on faster R-CNN [6]: fusion schemes are 
based on the fusion of feature maps in different stages in CNN 
to evaluate the influence of spatial and contextual features on 
resulting detection score. The most promising architecture was 
designed to perform halfway fusion.

According to results, two separately trained faster R-CNN 
that fused multi-spectral features in the middle of the network 
provided the best solution for multi-spectral object detection. 
However, this approach requires more computational resources 
for subnetworks and is highly complex due to specific training 
pipeline. All current results of multi-spectral detection from 
all discussed approaches are presented in Table 3. Above-men-
tioned results are highly inspiring to apply multi-spectral sup-
port for single shot detection algorithms in order to improve 

inference speed of multi-spectral detection as well as to evaluate 
different fusion functions for this task.

Table 3 
Current multispectral pedestrian detectors results on KAIST dataset

Method Log-average miss rate

ACF + T + HOG [9] 50.48%

R-CNN (AlexNet) [11] 43.80%

faster R-CNN (VGG16) [13] 36.99%

2.3. Semantic segmentation. To better test fusion architectures 
two additional tasks containing heterogeneous data were se-
lected: multi-spectral semantic segmentation of satellite images 
and air quality prediction. For the task of air quality prediction 
custom convolutional neural network architecture was used. 
This task and experiments are discussed in Section 3.

Semantic segmentation for images can be defined as the pro-
cess of grouping parts of the image so that each pixel in a group 
corresponds to the object class of the group. In the present work, 
the object classes correspond to buildings and background. Be-
sides, for a multi-class semantic segmentation, the classes can 
be grouped into roads, trees, water, etc. This subsection pro-
vides a short overview of the fully convolutional neural network 
that was used in experiments. This fully convolutional model 
for the task of semantic segmentation was inspired by the family 
of U-Net [14] architectures, where low-level feature maps are 

Fig. 8. Multispectral image fusion using AlexNet and ACF [11]. Left: Early fusion. Right: Late fusion

Fig. 9. Proposed approaches to fuse color and thermal images for multispectral pedestrian detection. Left: low level fusion (Early).  
Center: middle level fusion (Halfway). Right: high level fusion (Late). Red and yellow boxes represent convolutional and fully-connected 

layers. Blue boxes represent concatenate layer. Green boxes denote dimensionality reduction layer [13]
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combined with higher-level ones, which enables precise local-
ization. The main modification of this network is a large number 
of feature channels in up-sampling part, which allow propa-
gating context information to higher resolution layers. This type 
of network architecture was specially designed to solve image 
segmentation problems effectively.

The basic variant of U-Net architecture is presented in 
Fig. 10. It consists of a contracting path (left side) and an expan-
sive path (right side). The contracting path follows the typical 
architecture of a convolutional neural network. It consists of 
the repeated application of two 3£3 convolutions, each fol-
lowed by a rectified linear unit activation function and a 2£2 
max pooling operation with stride 2 for down-sampling. The 
number of feature channels is doubled at each down-sampling 
step. Every step in the expansive path consists of an up-sam-
pling of the feature map followed by a 2£2 convolution that 
halves the number of feature channels, a concatenation with 
the correspondingly cropped feature map from the contracting 
path, and two 3£3 convolutions, each followed by an activation 
function. At the final layer, a 1£1 convolution is used to map 
each 64-component feature vector to the desired number of 
classes. In total the network has 23 convolutional layers [14].

Application of such network for multispectral semantic seg-
mentation of satellite images is discussed in Section 3.

3.	 Methodology and experiments

In this section, fusion functions definition is discussed, as well 
as the construction of a fusion block for multi-spectral archi-
tectures. In addition, faster version of current SSD object de-
tection framework is presented. Inference speed of SSD was 
improved with base network architecture modifications. Also, 
two multi-spectral architectures suitable for multi-spectral ob-
ject detection and semantic segmentation tasks were defined 
and evaluated on open datasets. Additional experiments were 
conducted on the task of air quality prediction which also re-
quired fusion of heterogeneous data.

3.1. Fusion functions definition. In general, input data for fu-
sion function can represent different types of sources. In this 
case, only image-like data sources are considered, such as vis-
ible-infrared images, multi-spectral satellite images or concen-
tration, temperature, pressure maps. For simplicity, lets consider 
the case of visible-infrared fusion.

A fusion function f  : xRGB, xIR ! y fuses two convolutional 
feature maps xRGB 2 RH£W£D and xIR 2 RH 0£W 0£D0

, to create 
output fused feature map y  2 RH 00£W 00£D00

, where W, H, D are 
width, height and depth of the considered feature map. In our 
case feature maps with the same shapes will be fused, i.e. for 

Fig. 10. U-net architecture (example for 32£32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. 
The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied 

feature maps. The arrows denote different operations [14]
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simplicity H = H 0, W = W 0, D = D0. Let us consider several 
typical fusion functions which can be used in our experiments.

3.1.1. Weighted sum fusion. Weighted sum fusion function 
ywsum 2  f (xRGB, xIR, α) computes the sum of two feature maps 
at the same spatial positions i, j and feature channel d with some 
weight coefficient α:

ywsum
i, j, d  = x RGB

i, j, d  + α£x IR
i, j, d ,

where 1 ∙ i ∙ H, 1 ∙ j ∙ W, 1 ∙ d ∙ D and xRGB, xIR, y 2 
2 RH£W£D. Parameter α is adjusted by cross validation. This 
fusion function can define arbitrary correlation between feature 
maps, and optimization of filters in subsequent network layers 
makes this fusion useful.

3.1.2. Max fusion. Maximum fusion function ymax = f (xRGB, xIR) 
takes the maximum of two feature maps:

ymax
i, j, d = max

³
x RGB

i, j, d , x IR
i, j, d

´
.

3.1.3. Concatenation fusion. Concatenation fusion rule stacks 
two convolutional feature maps at the same spatial locations i, j 
across depth axis of this feature map d:

	 y concat
i, j, 2d  = x RGB

i, j, d , y concat
i, j, 2d ¡1 = x IR

i, j, d ,� (1)

where y 2 RH£W£2D.
Concatenation also does not produce correlation between 

convolutional feature maps and transfer this task to subsequent 
layers in neural network.

3.1.4. Convolution fusion. Convolution fusion function yconv =  
=  f conv(xRGB, xIR) stacks two feature map channels using con-
catenation fusion rule (1). After that it applies convolution op-
eration to the concatenated features with a new set of filters 
f  2 R1£1£2D£D and biases b 2 RD:

yconv =  yconcat f  + b,

where the output depth is D, and the filters have dimensions 
1£1£2D. This fusion rule performs dimensionality reduction 
by a factor of two and provides weighted combinations of the 

feature maps at the same spatial location. Using f conv as a train-
able filter we can perform proper feature extraction from the 
two feature maps and improve further recognition results.

Fusion block, used for multi-spectral architectures construc-
tion, can use one of the defined fusion functions in order to 
perform feature aggregation of different modalities. The main 
characteristic of convolution fusion block is support of input 
feature maps with different number of channels, while other 
fusion block (based on sum and max fusion rules) require equal 
number of channels for input feature maps. The schematic over-
view of fusion blocks is presented in Fig. 11.

3.2. Fast single shot detection. In [8] authors already com-
pared different feature extractors for the object detection 
task, but they mostly considered very deep and computa-
tionally expensive CNNs. The only exception is lightweight 
MobileNet [15] which was recently presented. Thus, we 
selected several lightweight architectures as base networks 
with VGG16 [16] that was originally used in [7]. In more 
detail, we considered the following three feature extractors 
as base networks:
●	 AlexNet [12]. This network used a relatively simple layout, 

compared to current state-of-the-art architectures. It was 
made up of 5 convolution layers, pooling layers, regular-
ization layers, and fully connected layers. The designed 
network was used for classification with 1000 possible cat-
egories. Only convolutional and polling layers were used in 
SSD model with this base network.

●	 SqueezeNet [17]. This network used small convolution 
filters of size 1£1 instead of commonly used 3£3 filters. 
Each such replacement provided decrease in number of pa-
rameters by a factor of 9. This size decrease was performed 
in the last part of the network to provide large field for con-
volutional layers. All these strategies were summarized in 
the “fire’’ module presented in Fig. 12. The whole network 
is constructed from such modules. Also, authors removed 
fully connected layer, located in the end of the network, and 
used average pooling for the final training layer. All these 
modifications allowed to reduce number of parameters by 
a factor of 50 compared with the original AlexNet and to 
reduce size of the model to 5 MB.

●	 ResNet-18 [18]. This network architecture allows to con-
struct very deep convolutional neural networks providing 
information between previous and further layers via usage 
of a residual block. In the original convolutional architecture 

Fig. 11. Left: The general scheme of multi-spectral fusion. Middle: Fusion block structure includes fusion rule, convolution and activation layers. 
Right: Convolution fusion block with concatenation fusion as a main fusion rule



883

Fast multispectral deep fusion networks

Bull.  Pol.  Ac.:  Tech.  66(6)  2018

an input x goes through the set of convolution and activation 
layers, resulting in some function F(x). However, in case 
of the residual block instead of just computing such trans-
formation, we compute such term F(x) that is added to the 
input x to model nonlinear correction of identity transfor-
mation. Basically, the residual module, presented in Fig. 12, 
computes a difference or a slight change to the original input 
x to get a slightly altered representation. The authors believe 
that it is easier to optimize the residual mapping than to 
optimize the original mapping.
The primary strategy for experiments was to follow closely 

the methodology, described in [7]: always select the topmost 
convolutional feature map and a higher resolution feature map 
at a lower layer of the network, then adding a sequence of extra 
convolutional layers with spatial resolution decaying by a factor 
of 2 with each additional layer used for prediction. Also, batch 
normalization was used in all extra SSD layers to speed up con-
vergence during training. Since convolutional feature map from 
the base network has different feature scale compared to other 
feature maps further in the network, L2 normalization technique 
[21] was used to scale the feature norm at each spatial location 
of the feature map to 20 and learn this magnitude during the 
training procedure.

Pascal VOC dataset was used as the primary dataset for 
training SSD detectors. This dataset contains images and cor-
responding labels for 20 different classes. For training combi-
nation of train and validation from VOC 2007 and VOC 2012 
sets [24] was used resulting in 16551 images. For testing, only 
VOC 2007 test set was used with 4952 images.

During training it is necessary to optimize joint loss function 
of SSD that combines cross-entropy and smooth L1 loss for 
classification and regression tasks respectively. For the min-
imization of this training objective Adam [19] optimizer was 
used with learning rate 0.001 that was changed by a learning 
rate re-factor value 0.9 each 50 epochs. This setting allowed for 
smooth training without high oscillations of loss function value 
during optimization. All new detection networks were fine-
tuned with the weights of the corresponding base network. All 
suggested base network architectures were previously trained 
for image classification task on the Imagenet large scale visual 
recognition challenge dataset [22]. The parameters of all newly 
added convolutional layers were initialized with the commonly 
used method discussed in [20]. SSD with ResNet-18 as a base 
network shows the best convergence than other tested architec-
tures regarding joint training objective. Learning curves for the 
validation set are presented in Fig. 13.

Fig. 12. Main components of tested base networks for SSD. Left: Residual block [18]. Right: “Fire” module [17]

Fig. 13. Joint loss function value during SSD training with different base networks. Left: Cross-entropy loss function during training. Right: 
Smooth L1 loss function during training
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Mean average precision was used as primary detection ac-
curacy metric across all class categories. The training results 
show high sensitivity to different base network architectures. 
SSD with AlexNet base network showed bad detection accuracy 
because of reduced feature extraction ability of AlexNet, which 
is caused due to a low number of convolution and activation 
layers, and filters inside convolution layers. Squeezenet showed 
intermediate quality confirming efficiency of the “fire’’ module 
compared to the standard convolution-activation-pooling de-
sign. ResNet-18 showed the best detection results across all 
tested base network architectures, and being almost comparable 
with the VGG16 base network that was used in the original SSD 
design. For most classes that required for video surveillance or 
self-driving systems, ResNet showed nearly the same results 
as VGG16. Detection results for all tested base network archi-
tectures are in Table 4.

Squeezenet provided the best results in terms of inference 
speed, and model size compared to all tested base networks, 
which highly motivates to use such detector in embedded sys-
tems. However, ResNet-18 is the trade-off base network, which 
achieved comparable accuracy and near real-time performance 
on Raspberry PI, while reducing the model size by a factor of 
2 comparing to the original SSD model. Thus, SSD with this 
base network architecture will be used for multi-spectral object 
detection task. All results are in Table 5.

3.3. Multi-spectral image recognition. After defining fusion 
functions let us propose architectures for multi-spectral image 
recognition. Proposed architectures are specifically designed for 
multi-spectral object detection and segmentation tasks, while 
it is also possible to utilize this design for processing hetero-
geneous data.

3.3.1. Multi-spectral SSD for pedestrian detection. The pri-
mary idea of a multi-spectral extension for object detection 
task is to extend SSD architecture with the additional feature 
extraction base network. This network was added in a siamese 
way to the main architecture. Additional network repeated 
structure of the standard base network and preserved the same 
number of filters in convolutional layers and the same spatial 
dimensions of feature maps. Weights of ResNet-18 were fixed 
during the fine-tuning procedure, as recommended in [23], and 
only weights of fusion layers and additional subnetwork were 
trained. The weights of the additional network were initialized 
with the scheme described in [20]. Schematic view of the pro-
posed architecture is in Fig. 14.

Table 4 
Detection results for several classes of Pascal VOC 2007 dataset

Base 
Network

AlexNet SqueezeNet Resnet-18 VGG16 
reduced

Person 43.92 57.02 72.23 74.39

Car 51.11 56.67 79.07 81.77

Bus 51.94 66.09 74.98 77.91

Bicycle 52.31 62.27 77.89 79.69

Motorbike 55.56 64.73 79.43 77.06

Train 60.44 68.42 79.24 84.01

Aeroplane 49.37 56.71 70.98 72.15

mAP 40.56 51.68 69.45 71.57

Table 5 
Benchmarking results for SSD with different base networks on 

various devices

Base  
Network

TITAN X 
GPU (FPS)

CPU I7-5820K 
CPU (FPS)

RPI 
(sec)

Size 
(MB)

AlexNet 102 3.20 02.6 026.1

SqueezeNet 138 5.26 01.7 017.8

Resnet-18 079 1.62 05.3 052.6

VGG16 reduced 045 0.31 55.6 104.3

In addition, all detection architectures were tested on dif-
ferent devices in order to properly evaluate inference speed. The 
detector was tested on the following devices: NVIDIA TITAN 
X GPU, I7‒5820K CPU, and Raspberry PI 3 Model B (RPI), 
as a baseline for the low powered embedded system. This set-
ting allows comparing algorithm performance on high powerful 
GPU, middle-level CPU, and low-powered CPU. Also, models 
were compared in terms of size, because it is an important factor 
for embedded systems.

Fig. 14. Multi-spectral SSD architecture. Subnetwork for multi-spectral 
feature extraction is in green. Fusion blocks are in violet. Classification 

and non-maximum suppression blocks are in red

All multi-spectral experiments were conducted on a subset 
of the KAIST [9] dataset. This subset contains not occluded 
pedestrians with height more than 55 pixels. Test set contains 
700 images and training set contains 7000 images. SSD with 
ResNet-18 base network architecture was fine-tuned using 
Adam optimizer [19] with initial learning rate 0.0001, 0.0001 
weight decay and batch size equal to 16. Evaluation scheme 
used log-average miss rate described in [9] as the main evalu-
ation metric. All inference speed results, presented earlier for 



885

Fast multispectral deep fusion networks

Bull.  Pol.  Ac.:  Tech.  66(6)  2018

SSD with the ResNet-18 base network, were slightly degraded. 
However this architecture still performed faster than multi-spec-
tral architectures based on siamese R-CNN architecture. Archi-
tecture with convolution fusion results showed better detection 
accuracy than other fusion blocks because this type of fusion 
preserves feature scale and trains multi-modal feature infer-
ence during backpropagation. Multi-spectral detection results 
are presented in Table 6. According to the results, convolution 
fusion block should be used in other testing examples as a pri-
mary fusion block.

Table 6 
Comparison of multi-spectral pedestrian detectors in terms 

of accuracy and inference speed

Method Log-average 
miss rate

GPU  
(FPS)

SSD (ResNet-18) RGB 61.3% 79

SSD (ResNet-18) Sum Fusion 58.3% 56

SSD (ResNet-18) Max Fusion 55.3% 57

SSD (ResNet-18)  
Convolution Fusion 47.4% 53

faster R-CNN (VGG16) [13] 36.99% <7

High miss rate of the final architecture can be explained by 
the insufficient number of training samples in KAIST dataset. 
Also, faster R-CNN [13] architecture was fine-tuned on another 
dataset with daytime images of pedestrians before training on 
the multi-spectral dataset, which improved test results. The pri-
mary goal of this model comparison is to show the significant 
gap between the standard RGB detector and a multi-spectral 
one. Also, the designed model can be used with any additional 
datasets for human detection tasks, e.g. for office lighting con-
trol systems based on human detection. The example of detec-
tion results are presented in Fig. 15.

3.3.2. Multi-spectral U-Net for semantic segmentation. Re-
mote sensing is another interesting domain with multi-spec-

tral data. A significant amount of satellite imagery has given 
a radical improvement of planet understanding. It has enabled 
for researchers to achieve better results in various applica-
tions from mobilizing resources during disasters to moni-
toring effects of global warming. What is often taken for 
granted is that advancements such as those have relied on 
labeling and feature construction e.g. of building footprints 
and roadways, fully manually or through imperfect semi-au-
tomated methods.

The dataset from DSTL Satellite Imagery Feature Detec-
tion competition [25] provides labels and various satellite 
multi-spectral images, which will be used for evaluation of fu-
sion architectures for semantic segmentation of buildings. This 
dataset contains 60 images which cover 1£1 km area. Images, 
provided in different bands, such as RGB, full multi-spectral 
(400‒1040 nm), and short-wave infrared band (1195‒2365). 
The full range of bands is presented in Fig. 16. In present work 
only RGB and near infrared bands are used.

The core idea of multi-spectral extension is the same as for 
object detection: we add additional subnetwork in a siamese 
way, which utilizes near-infrared channel of the multi-spectral 
band. The multi-spectral extension for U-Net [14] architecture 
based on convolution fusion is presented in Fig. 17. The loss 
function for this task is binary cross-entropy, which provides 
per-pixel optimization for input images. All weights of both 
architectures were optimized with Adam [19] optimizer, with 
learning rate 0.001. The standard architecture was trained in 

Fig. 15. The example of detection results with multi-spectral SSD 
architecture on KAIST dataset

Fig. 16. General overview of spectral bands that are used in remote sensing [38]
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the same way as the architecture with multi-spectral extension. 
Comparison results on the test set are presented in Table 7. 
Evaluation metric is Jaccard index, also known as intersection 
over union, which can be interpreted as similarity or diversity 
measure between a finite number of sets.

Table 7 
Semantic segmentation of satellite images

Method Intersection over Union

U-NET 0.516

Multispectral U-NET 0.5784

Intersection over union is used to evaluate how well neural 
network maps predicted mask with ground truth label mask for 
building class. To improve predicted results several morpho-
logical operations were used, providing better building shapes. 
We used the most common morphological operations such as 
erosion, dilation, opening, and closing. The difference between 
them is showed in Fig. 18.

3.3.3. Air quality prediction using heterogeneous data. In 
this subsection multi-modal architecture is designed for air-
quality prediction. Specifically, a neural network is designed 
to predict CO level in the Moscow city. In this setting, con-
volution neural network performs approximation of mesoscale 
atmospheric model for 1-hour prediction. This model (so-
called full-physics model) describes transport, microphysics 
and chemistry processes in the atmosphere with indirect and 
nonlinear effects. Physical block is based on a full number of 
hydrodynamic equations. The chemical block contains about 
200 reactions. This model is similar to numerical weather mod-
eling. It is well known that such models require a lot of com-
putational resources at each time step. Thus usually powerful 
clusters of powerful machines are used for simulations and in 
practice we need to decrease computation time of the model. 
We can consider this problem as an approximation problem 
(also known as regression problem), which arises quite often 
in industrial design, and solutions of such problems are con-
ventionally referred to as surrogate models [27]: we collect 

Fig. 17. Multispectral U-net based architecture for semantic segmentation. Only first two layers are presented, while full network utilized the 
same number of down-sampling stages as original U-net

Fig. 19. Semantic segmentation results using multi-spectral U-Net 
architecture. Left: RGB satellite input image. Middle: Infrared satellite 

input image. Right: Semantic segmentation results for buildings

Fig. 18. Different morphological operation for post-processing stage 
of semantic segmentation [39]. Closing operation helps to fill holes 

inside predicted building significantly improving final score

a. Original b. Erosion c. Dilation d. Opening e. Closing
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input-output data from simulations, construct a surrogate model 
and use it instead of full-scale simulations. The most common 
application of surrogate modeling in engineering is in connec-
tion to engineering optimization [26]. Input data is presented 
in Fig. 20, it is provided as images with information about CO 
concentration, land-use index and surface temperature. Hence, 

we can construct a surrogate model for this task using the same 
architecture as previously designed multi-spectral models. We 
estimate accuracy of the surrogate model via the root-mean-
square loss function (RMSE).

Multi-modal architecture for air quality prediction is pre-
sented in Fig. 21. Several fusion blocks, located in different 
stages of the network, provide a fusion of various feature maps, 
corresponding to different types of input data.

Fig. 20. Input data for air quality prediction network. Left: CO concen-
tration. Middle: Land-use index. Right: Surface temperature

Fig. 21. Multi-modal architecture structure used for air quality prediction. Convolution layers with different number of filters are used. Pooling 
layers are not used since we need to preserve the same spatial dimension of feature maps

Table 8 
Predicted rmse error for different fusion blocks

Fusion block type RMSE

Sum 1.25

Max 0.93

Convolution 0.65
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4.	 Implementation details

4.1. Deep learning framework. All presented experiments in 
this work were made with help of MXNet framework [31], in 
Python programming language. MXNet perfectly fits with the 
objective of embedding system computing.

4.1.1. Hyper-parameters setting. For successful training, pro-
cedure hyper-parameters should be correctly configured. For all 
experiments, hyper-parameters were manually set, according 
to training logs about loss function behavior and standard best 
practices. The initial parameters are learning rates, L2 regular-
ization strength, mini-batch size, loss function and type of opti-
mizer. The Adaptive Moment Estimator (Adam) was chosen for 
all experiments. Similar to most other optimizers, it calculates 
an adaptive learning rate for all parameters in the network. By 
storing an exponentially decaying average of past gradients, 
it has been shown that Adam performs better than other algo-
rithms such as RMSProp [19]. The resulting hyper-parameters 
are presented in Table 9.

Table 9 
Used hyper-parameters for different models

Experiment Learning 
rate

Regularization Batch 
size

Loss 
function

Fast SSD 
(ResNet-18)

4£10–2 10–5 32 cross entropy 
+ L1

Multi-spectral 
SSD

10–3 10–5 16 cross entropy 
+ L1

U-Net 10–2 10–3 10 binary cross 
entropy

Multi-spectral 
U-Net

10–3 10–3 8 binary cross 
entropy

4.1.2. Hardware. The Intel Core i5 CPU with 8GB of memory 
was used in earlier stages of this work, resulting in impractical 
time consuming training process. Eventually, a single GPU 
NVIDIA GeForce Titan X was used resulting in massive speed 
increase. The massive parallelization in GPUs is a key that al-
lows building fast training pipelines. Final training time for 
object detection models were approximately 1‒1.5 days and 
for segmentation 2‒2.5 days.

5.	 Conclusions

The results of Section 4 have much scope for improvement:
●	 Improving the dataset. In fact the dataset [9] used for 

multi-spectral object detection is fairly small, and for a spe-
cific task, e.g. multi-spectral human detection in the office 
environment, it is highly recommended to perform data ac-
quisition process and re-train proposed convolutional neural 
network architectures. During the image acquisition pro-
cess it is necessary to draw attention to image registration, 
because even small misalignments in multi-spectral-visible 

image pair lead to significant decrease of detection accuracy. 
Also, more complex data augmentation strategies can be 
used. Concerning segmentation task, publicly available re-
sources of satellite images can be leveraged at a larger scale, 
to obtain more representative satellite imagery of different 
locations for training the pipeline.

●	 Detection pipeline improvements. According to the results, 
only near real-time performance was achieved on embedded 
systems. Hence, it is necessary to improve the quality of 
base feature extractor, non-maximum suppression, and de-
fault box generation strategy. To improve features quality 
produced by current ResNet-18 feature extractor, it is pos-
sible to use collective residual unit networks, which use 
collective tensor factorization, described in [32]. Also, it is 
necessary to try recently presented neural network archi-
tectures specifically designed for embedded systems such 
as [15]. Also, non-maximum suppression can be integrated 
into the learning pipeline as an additional neural network 
as discussed in [33]. Another possibilities could be to use 
sparse convolutions [34] to process data with multiple mo-
dalities, provided in different channels, to use ensembles for 
increasing accuracy and robustness of results [35], as well as 
more efficient heuristics for initialization of neural network 
parameters [36]. In case of surrogate models construction 
for data with multi-model input so-called variable fidelity 
surrogate modeling approaches [28‒30] and learning with 
privileged information can be used [37].

●	 Hyper-parameters tuning. Since the manual approach 
was used for hyper-parameters tuning in most of the ex-
periments, it is highly encouraged to explore algorithmic 
approaches to exploring hyper-parameter space.
A primary motivation for undertaking this work was to gain 

an understanding for designing, implementing and evaluating 
a deep learning pipeline with the focus on heterogeneous data, 
e.g. infrared images.

Thus as a result we defined a set of computer vision prob-
lems, including multi-spectral object detection for human de-
tection, semantic segmentation of satellite images for building 
identifications. In particular, we analyzed and compared object 
detection algorithms, including analysis how such algorithms 
can be used for multi-spectral detection on embedded systems. 
We presented necessary steps for launching state-of-the-art 
single object detection algorithms on low-powered devices. 
Single Shot Multibox detection framework (SSD) was success-
fully adopted for the near real-time inference on Raspberry Pi, 
which was used as a baseline embedded system. We discussed 
implementation details, describing the architecture, used deep 
learning framework and evaluation results for the estimation 
of multi-modal features influence on computer vision task. 
Convolution fusion block, as a key element of multi-spectral 
architectures, showed the best performance overall presented 
fusion rules. Several experiments were conducted to estimate 
influence of heterogeneous data sources in object detection, se-
mantic segmentation and air quality prediction tasks. According 
to results, there was an improvement in the quality of proposed 
models, compared with standard models, which operated with 
normal data.
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The first version of the proposed multispectral architecture 
was developed in the framework of the Skoltech-MIT NGP 
Burnaev/Solomon project.

Acknowledgements. The work was supported by the MES Rus-
sian Federation under the grant 14.756.31.0001.

References
	 [1]	 R. Gade and T.B. Moeslund, “Thermal cameras and applications: 

a survey”, Machine vision and applications 25 (1), 245‒262 
(2014).

	 [2]	 J.RR. Uijlings and et al., “Selective search for object recogni-
tion”, Int. J. of Computer Vision 104 (2), 154‒171 (2013).

	 [3]	 R. Girshick and et al., “Rich feature hierarchies for accurate 
object detection and semantic segmentation”, CVPR (2014).

	 [4]	 R. Girshick and et al., “fast R-CNN”, ICCV (2015).
	 [5]	 J. Redmon and et al., “You only look once: Unified, real-time 

object detection”, CVPR (2016).
	 [6]	 S. Ren and et al., “Faster r-cnn: Towards real-time object detec-

tion with region proposal networks”, NIPS (2015).
	 [7]	 W. Liu and et al., “SSD: Single shot multibox detector”, ECCV, 

Springer, 21‒37 (2016).
	 [8]	 J. Huang and et al., “Speed/accuracy trade-offs for modern con-

volutional object detectors”, arXiv:1611.10012 (2016).
	 [9]	 S. Hwang and et al., “Multispectral pedestrian detection: Bench-

mark dataset and baseline”, CVPR (2015).
	[10]	 P. Dollar and et al., “Fast feature pyramids for object detection”, 

IEEE Trans. on Pattern Analysis and Machine Intelligence, 36 
(8), 1532‒1545 (2014).

	[11]	 J. Wagner and et al., “Multispectral pedestrian detection using 
deep fusion convolutional neural networks”, ESANN (2016).

	[12]	 A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks”, NIPS (2012).

	[13]	 J. Liu and et al., “Multispectral deep neural networks for pedes-
trian detection”, arXiv:1611.02644 (2016).

	[14]	 O. Ronneberger, P. Fischer, and T. Brox. “U-net: Convolutional 
networks for biomedical image segmentation”, Int. Conf. on 
Medical Image Computing and Computer-Assisted Intervention, 
Springer (2015).

	[15]	 A.G. Howard and et al., “Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications”, 
arXiv:1704.04861 (2017).

	[16]	 K. Simonyan and A. Zisserman, “Very deep convolutional 
networks for large-scale image recognition”, arXiv:1409.1556 
(2014).

	[17]	 F.N. Iandola and et al., “SqueezeNet: AlexNet-level accu-
racy with 50x fewer parameters and < 0.5 MB model size”, 
arXiv:1602.07360 (2016).

	[18]	 K. He and et al., “Deep residual learning for image recognition”, 
CVPR (2016).

	[19]	 D. Kingma and B. Jimmy, “Adam: A method for stochastic op-
timization”, arXiv:1412.6980 (2014).

	[20]	 X. Glorot and Y. Bengio, “Understanding the difficulty of 
training deep feedforward neural networks”, AISTATS, 9 (2010).

	[21]	 W. Liu, A. Rabinovich, and A.C. Berg, “Parsenet: Looking wider 
to see better”, arXiv:1506.04579 (2015).

	[22]	 O. Russakovsky and et al., “Imagenet large scale visual recog-
nition challenge”, Int. J. of Computer Vision, 115 (3), 211‒252 
(2015).

	[23]	 A. Eitel and et al., “Multimodal deep learning for robust rgbd 
object recognition”, 2015 IEEE/RSJ Int. Conf. on Intelligent Ro-
bots and Systems (IROS), IEEE (2015).

	[24]	 M. Everingham and et al., “The pascal visual object classes 
challenge: A retrospective”, Int. J. of Computer Vision 111 (1), 
98‒136 (2015).

	[25]	 Kaggle: DSTL Satellite Imagery Feature Detection Dataset. https:// 
www.kaggle.com/c/ dstl-satellite-imagery-feature-detection/data

	[26]	 S. Grihon, E. Burnaev, M. Belyaev, and P. Prikhodko, “Surrogate 
Modeling of Stability Constraints for Optimization of Composite 
Structures”, Surrogate-Based Modeling and Optimization. Engi-
neering applications, Eds. by S. Koziel, L. Leifsson. Springer, 
359‒391 (2013).

	[27]	 M. Belyaev, E. Burnaev, E. Kapushev, M. Panov, P. Prikhodko, 
D. Vetrov, and D. Yarotsky, “GTApprox: Surrogate modeling for 
industrial design”, Advances in Engineering Software 102, 29- 39 
(2‒16)

	[28]	 E. Burnaev and A. Zaytsev, “Minimax approach to variable fi-
delity data interpolation”, PRML, Volume 54: Artificial Intelli-
gence and Statistics, 54, 652‒661 (2017).

	[29]	 E. Burnaev and A. Zaytsev, “Large Scale Variable Fidelity Sur-
rogate Modeling”, Ann Math Artif Intell, 1‒20 (2017).

	[30]	 E. Burnaev and A. Zaytsev, “Surrogate modeling of mutlifidelity 
data for large samples”, J. of Communications Technology and 
Electronics, 60 (12), 1348‒1355 (2015).

	[31]	 DMLC: MXNet for Deep Learning. https://github.com/ dmlc/
mxnet

	[32]	 C. Yunpeng and et al. “Sharing Residual Units Through Col-
lective Tensor Factorization in Deep Neural Networks”, arXiv 
preprint arXiv:1703.02180 (2017).

	[33]	 J. Hosang, B. Rodrigo, and B. Schiele, “A Convnet for Non-
maximum Suppression”, German Conf. on Pattern Recognition, 
Springer (2016).

	[34]	 A. Notchenko, E. Kapushev, and E. Burnaev, “Large Scale Shape 
Retrieval with Sparse 3D Convolutional Neural Networks”, 
Proc. of 6th Int. Conf. on Analysis of Images, Social Networks 
and Texts (AIST-2017), LNCS 10716, 236‒245 (2018).

	[35]	 E. Burnaev and P. Prikhod’ko, “On a method for constructing 
ensembles of regression models”, Automation and Remote Con-
trol, 74 (10), 1630‒1644 (2013).

	[36]	 E. Burnaev and P. Erofeev, “The Influence of Parameter Ini-
tialization on the Training Time and Accuracy of a Nonlinear 
Regression Model”, J. of Communications Technology and Elec-
tronics, 61 (6), 646‒660 (2016).

	[37]	 E. Burnaev and D. Smolyakov, “One-Class SVM with Privileged 
Information and Its Application to Malware Detection”, ICDMW, 
273‒280 (2016).

	[38]	 World View-3 Satellite Sensor Specifications. http: //www.sati-
magingcorp.com/satellite-sensors/ worldview-3/

	[39]	 S.W. Smith: The scientist and engineer’s guide to digital signal 
processing, California Technical Pub, 1997.


