
891Bull.  Pol.  Ac.:  Tech.  66(6)  2018

Abstract. The paper presents the results of research on the stress relaxation of selected digital materials obtained by means of additive tech-
nology. A 5-parameter Maxwell-Wiechert model was used to describe the stress relaxation curves, allowing to obtain a very close fit. Anisotropy 
of properties was found due to the direction of sample printouts.
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guished: creep is the increase in strain over time under a con-
stant level of stress, and relaxation is the decrease in stress over 
time with constant deformation. Stress relaxation is determined 
by conducting the so-called stress relaxation test, recording 
a decrease in stress over time at a predetermined pre-set strain. 
In real bodies, deformation processes are highly complex and 
depend on factors such as type of stress, loading speed or load 
duration. Different models are used for mathematical descrip-
tion. They simulate viscoelastic systems, and include e.g. the 
simple Hooke, Newton or Maxwell models (Hooke, Newton, 
Maxwell), or more complex ones, constitute a combination of 
simple models. The Wiechert model [11] is one of those. In 
experimental practice, the frequently obtained curve is approx-
imated by the relation between stress and strain appropriate for 
the adopted rheological model. In some cases, description using 
ordinary differential equations proves not enough and you can 
use fractional differential calculus [12, 13].

The goal of this work is to examine the stress relaxation of 
materials obtained by means of the PolyJet Matrix technology, 
and to describe the obtained stress relaxation characteristics 
by using a second-order Maxwell-Wiechert model. It has been 
demonstrated that the model assumed describes stress relaxation 
in tested digital materials in a reliable manner.

2.	 Rheological model

Once we obtain the result of the test in the form of a curve that 
constitutes the subject of our research and that characterizes 
a given phenomenon or property, we ask ourselves the fol-
lowing: what mathematical formula should be used to describe 
it and how shall we find an equation that will give us the result 
with satisfactory accuracy. The Maxwell-Wiechert model was 
used to describe stress relaxation in this paper, but it did not 
happen immediately. Initially, simpler models were tried, but 
they proved lacking in accuracy.

The Maxwell model is used frequently to describe the 
stress relaxation curve. Examples of that are to be found in 
papers [14‒17]. The classic stress relaxation curve described 

1.	 Introduction

Polymers have found widespread use in additive manufacturing 
technologies, also known as 3D printing technologies. Their 
dynamic development has been observed recently. As a result of 
additive shaping, the starting materials – most often liquids or 
powders – provide a composite (solid material) with a pre-de-
signed shape. During the additive manufacturing process, prop-
erties of the material obtained are also shaped. Those include 
e.g. mechanical or rheological properties, which are the subject 
of research [1‒4]. Additive technologies, including PolyJet, and 
digital materials (http://www.stratasys.com/materials/polyjet/
digital-materials) are used in this technology. The concept and 
principle of building digital materials can be found in paper 
[5]. Digital materials are created as a result of mixing two or 
three base materials (photocurable resins) during the dosing 
process on the machine’s working platform. Dispensing resin 
droplets using appropriate heads is digitally controlled, hence 
the name of “digital materials”. The dispensed resins are cured 
using UV light emitted by lamps mounted onto the dosing head. 
The basic line of the PolyJet Matrix technology is formed by 
base materials with the commercial names of TangoBlackPlus 
and VeroWhitePlus, which when mixed together in different 
proportions allow to obtain new materials with different Shore 
hardness. The material properties given in the catalogs are 
indicative. Additively shaped materials show anisotropy de-
pending on the setting on the machine’s working platform, i.e. 
on the print direction. More information on the anisotropy of 
mechanical properties of additively shaped materials can be 
found, for example, in papers [6‒10].

The polymers exhibit viscoelastic properties, i.e. to phrase 
it more simply, they deform elastically under the influence of 
external stresses, taking the time factor into account. We the 
flow of material is considered, two aspects need to be distin-
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by the basic Maxwell model, which is a serial connection of 
the Newton model and the Hooke model, is expressed by the 
following equation:

	 σ (t) = σ0e
–t
t1 ,� (1)

where: �σ0 – initial value of stress for time t = 0, 
t1 – relaxation time.

Relaxation time is defined as the ratio of the material properties 
of both simple center components, i.e. the Newton and Hooke 
bodies, and is calculated as follows:

	 t1 = 
µ1

E1
,� (2)

where: �µ1 – coefficient of viscosity,  
E1 – elastic modulus.

This model can be slightly improved by using a fractional 
Maxwell model, as described in papers [12, 18, 19]. The Max-
well model is also used in parallel with the Hooke model [11] 
described by the following equation:

	 σ (t) = σ0 + σ1e
–t
t1 .� (3)

Equation (2), describing the basic Maxwell model, along with 
equation (3), describing the combined Maxwell and Hooke 
models, are not always sufficient to approximate the stress re-
laxation curve obtained by means of experiments. Therefore, 
a more complex model is used, e.g. the general Maxwell model, 
often referred to in the literature [1] as the Wiechert model. The 
Maxwell-Wiechert model is shown in Fig. 1, in graphical form. 
This model consists of n basic Maxwell models connected in 
parallel and of a Hooke’s body model. E0, E1, E2 … En stand 
for the elastic modulus and m1, m2, … mn are the coefficients 
of viscosity of basic models. The general differential equation 
describing this model is as follows:

	
a0σ (t) + a1

dσ
dt

 + a2
d2σ
dt2

 + ¢¢¢ + an
dnσ
dtn

 =

= b0ε(t) + b1
dε
dt

 + b2
d2ε
dt2

 + ¢¢¢ + bn
dnε
dtn

.
� (4)

In the case of stress relaxation with ε = ε 0, i.e. constituting 
a constant value, the solution of equation (4) is [1]:

	 σ (t) = ε0
i =1

n

∑ Eie
–t
t1  + E0 ,� (5)

where:	ε0	–	set displacement, 
	 n	–	number of basic models, 
	 i	–	marking the number of the next model,
	 ti	–	relaxation time of the Maxwell’s i-th model, 

which is:

	 ti = 
µi

Ei
,� (6)

where: �µi – viscosity coefficient of the i-th model, 
Ei – elastic modulus of the i-th model.

Formula (5) is a practical engineering formula because it can 
be applied after the construction of any multi-parameter Max-
well-Wiechert model in order to estimate the value of its in-
dividual elements. The user does not have to build and solve 
respective differential equations every time.

In this paper, the Maxwell-Wiechert model of the second 
order was used, i.e. one consisting of two basic Maxwell models 
and the Hooke model connected in parallel. The second-order 
Maxwell-Wiechert model is shown graphically in Fig. 2.
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Due to the fact that the second-order model contains two 
basic Maxwell models and the Hooke model connected in par-
allel, formula (5) for n = 2 is as follows:

	 σ (t) = ε0 E1e
–t
t1  + E2e

–t
t2  + E0 ,� (7)

which after transformations gives:

	 σ (t) = σ0 + σ1e
–t
t1  + σ2e

–t
t2 .� (8)

Equation (8) was used to describe stress relaxation in the tested 
materials.
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3.	 Experimental phase and results

3.1. Samples and tests. Samples for testing were made of 
digital materials (photocurable resins) with the trade names 
of DM_8515_Grey35 and DM_9895_Shore95. They consti-
tute a mixture of base materials Vero White and Tango Black 
plus. Cylindrical samples of the following dimensions: diam-
eter D = 10 mm and height H = 15 mm, were made using the 
PolyJet additive technology (http://www.stratasys.com/3d-
printers/technologies/polyjet-technology) in an Objet Connex 
350 printer (now Stratasys). The solid model of the sample 
was drawn using the CAD 3D program and was then saved 
in a digital file with the extension .stl, using triangulation pa-
rameters in the export options: resolution – adjusted, deviation 
– tolerance 0.016 mm, angle – tolerance 5°. ext. Using the Objet 
Studio program, the sample models were placed (virtually) on 
the Connex 350 machine’s working platform in a vertical and 
horizontal position. The arrangement of samples made from the 
DM_8515_Grey35 material during printing is shown in Fig. 3, 
with the samples positioned vertically and horizontally. Samples 
made from the DM_9895_Shore95 material were arranged in 
the same manner.

The samples were made in glossy mode to obtain a smooth 
surface. Ten samples were prepared for each material. After 
printing, the sample was removed from the machine’s working 
platform and then the support material was removed and pre-
pared for the stress relaxation test. The stress relaxation tests 
were performed using the Inspect mini testing machine. The 
test parameters were set in the Labmaster program, which is 
equipped with the Inspect mini machine, using block program-
ming. For compressing the cylindrical samples, flat plates were 
used, with the lower plate oscillating, i.e. the flat part of the plate 
was mounted onto the spherical joint. The use of swinging discs 
to compress cylindrical samples provides for even loading of 
both flat surfaces of the sample. A displacement value of 1 mm 
was set and the value of this displacement was maintained for 

a time of 600 s for the DM_8515_Grey35 material and for 120 s 
for the DM_9895_Shore95 material. During this time, a decrease 
in the value of the sample compression force was recorded.

The detailed procedure for printing samples and the proce-
dure for conducting stress relaxation tests are both described 
in paper [17]. The stress relaxation curves for individual sam-
ples were recorded using the Labmaster program in the form 
of graphs and raw ASCII data. The ASCII code (text entry) is 
extremely useful in laboratory practice. In this case, it enabled 
the separation of the stress relaxation curve and the use of data 
in the procedure of fitting the theoretical curve to the experi-
mental curve.

3.2. Results. The collective results of the stress relaxation tests 
of the tested digital materials are presented in Figs. 4‒7.

Fig. 3. Placement of samples on the working platform of the Connex 
350 printing machine

Fig. 4. Experimental stress relaxation curves of DM_8515_Grey35 
digital material for vertically printed samples

Fig. 5. Experimental stress relaxation curves of DM_8515_Grey35 
digital material for horizontally printed samples
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Even a preliminary qualitative analysis of the stress relaxation 
curves obtained indicates different relaxation properties and dif-
ferent dispersion of the results arrived at. For quantification, 
an approximation was made using (8) for each experimental 
curve. The σ0, σ1, σ2, t1, t2 parameter values were estimated 
for each curve. The fitting was carried out using the Leven-
berg-Marquardt method. The matching program simultaneously 
estimated the Chi2 compatibility test values and R2 correlation 
coefficients for each match. Figure 8 shows an example together 
with estimated parameters.

The fit shown in Fig. 8 was made for each curve obtained. 
The results obtained are summarized in Tables 1, 2, 3 and 4, on 

Fig. 6. Experimental stress relaxation curves of DM_9895_Shore95 
digital material for vertically printed samples

Fig. 7. Experimental stress relaxation curves of DM_9895_Shore95 
digital material for horizontally printed samples

Fig. 8. Experimental curve compared with the approximation curve. 
1 – experimental curve for samples made of DM_9895_Shore95 
(vertical), 2 – approximation curve obtained using the second-order 

Maxwell-Wiechert model

Table 1 
Parameters of the stress relaxation curves obtained for material 

DM_8515_Grey35, samples printed vertically

Test 
No.

σ0 
[MPa]

σ1 
[MPa]

σ2 
[MPa]

t1 
[s]

t2 
[s]

11 15.646 2.628 6.551 21.8 352.3

12 17.558 2.325 6.447 23.4 390.3

13 14.974 2.915 7.734 23.0 352.1

14 16.243 2.528 6.813 22.3 377.5

15 17.482 2.357 6.468 22.7 391.1

16 16.877 2.384 6.619 22.6 383.5

17 17.621 2.274 6.137 22.1 383.8

18 16.345 2.427 6.558 22.0 385.6

19 15.626 2.329 5.447 20.4 366.2

10 18.075 2.240 5.602 21.7 379.0

– X– 16.645 2.441 6.438 22.2 376.1

Table 2 
Parameters of the stress relaxation curves obtained for material 

DM_8515_Grey35, samples printed horizontally

Test 
No.

σ0 
[MPa]

σ1 
[MPa]

σ2 
[MPa]

t1 
[s]

t2 
[s]

11 17.670 1.966 4.060 19.2 353.1

12 13.538 2.135 4.622 19.4 338.4

13 16.179 2.021 4.196 20.0 354.3

14 16.302 1.794 4.207 20.6 358.3

15 16.323 1.762 3.683 19.2 338.8

16 13.933 2.693 5.125 21.3 324.1

17 14.633 2.194 5.246 21.2 342.7

18 15.271 2.007 4.846 20.7 349.7

19 16.291 1.793 4.506 21.1 370.0

10 15.644 1.934 4.874 21.3 392.7

– X– 15.578 2.030 4.537 20.4 352.2
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the basis of which the uncertainty of the estimated parameters 
was calculated.

Having determined the average values of parameters σ 0, 
σ1, σ2, t1, t2, one can save (8) in a detailed form for individual 
materials. For DM_8515_Grey35 vertically printed samples, it 
is as follows:

	 σ (t) = 16.645 + 2.411e
– t

22.2 + 6.438e
– t

376.1 .� (9)

For DM_8515_Grey35 horizontally printed samples, it takes 
the form below:

	 σ (t) = 15.578 + 2.03e
– t

20.4 + 4.537e
– t

352.2 .� (10)

For DM_9895_Shore95 vertically printed samples, it is as fol-
lows:

	 σ (t) = 0.614 + 1.213e– t + 0.495e
– t

20.4 .� (11)

And for DM_9895_Shore95 horizontally printed samples, it 
takes the form below:

	 σ (t) = 0.889 + 2.02e
– t
0.7  + 0.536e

– t
24.2 .� (12)

Figures 9 and 10 display the chart of function (9, 10, 11 and 12).
Standard uncertainty for parameters σ0, σ1, σ2, t1 and t2 in 

individual series of measurements, calculated by means of the 
A type method, is as follows:

	 uA =  1
n(n ¡ 1) i =1

n

∑(xi ¡ x–)2 ,� (13)

where:	 n	–	�number of measurements (number of samples made 
of individual materials),

	 xi	–	individual result in the series,
	 x–	–	�arithmetic average of individual parameters ob-

tained as a result of approximation.

Table 3 
Parameters of the stress relaxation curves obtained for material 

DM_9895_Shore95, samples printed vertically

Test 
No.

σ0 
[MPa]

σ1 
[MPa]

σ2 
[MPa]

t1 
[s]

t2 
[s]

11 0.663 1.284 0.526 1.0 24.4

12 0.600 1.264 0.469 1.0 24.5

13 0.594 1.126 0.469 1.0 24.4

14 0.657 1.343 0.555 1.0 24.3

15 0.547 0.989 0.421 1.0 24.3

16 0.660 1.345 0.543 1.0 23.8

17 0.643 1.317 0.537 1.0 23.9

18 0.599 1.190 0.486 1.0 24.0

19 0.563 1.052 0.445 1.0 24.2

10 0.608 1.222 0.501 1.0 24.1

– X– 0.614 1.213 0.495 1.0 24.2

Table 4 
Parameters of the stress relaxation curves obtained for material 

DM_9895_Shore95, samples printed vertically

Test 
No.

σ0 
[MPa]

σ1 
[MPa]

σ2 
[MPa]

t1 
[s]

t2 
[s]

11 0.901 1.800 0.532 0.7 21.5

12 0.900 1.915 0.002 0.6 22.0

13 0.869 1.753 0.525 0.7 22.1

14 0.826 1.900 0.590 0.8 25.9

15 0.889 2.083 0.616 0.8 21.9

16 0.854 2.149 0.605 0.7 21.2

17 0.932 2.207 0.630 0.7 21.0

18 0.917 2.158 0.631 0.8 21.7

19 0.893 2.082 0.613 0.8 22.0

10 0.909 2.155 0.619 0.7 20.7

– X– 0.889 2.020 0.536 0.7 22.0

Fig. 9. Stress relaxation curves of digital material fitting on the basis 
of (9) and (10) for DM_8515_Grey35

St
re

ss
 [M

Pa
]

t
Time [s]

σGrey35 vertical (t)    
σGrey35 horizontal (t)

Fig. 10. Stress relaxation curves of digital material fitting on the basis 
of (11) and (12) for DM_9895_Shore95
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Due to the fact that the sample size is less than thirty (n = 10), 
expanded uncertainty was estimated using the Student’s dis-
tribution:

	 uCA = kpuA,� (14)

where: �kp – an expansion factor that assumes a value of 2 for 
the confidence level p = 0.95.

The results of calculations of standard deviation and uncer-
tainty of measurements are presented in Table 5.

Table 5 
Results of calculations of uncertainty of approximation

Type of material
Uncertainty of approximation uA

uσ0 
[MPa]

uσ1 
[MPa]

uσ2 
[MPa]

ut1 
[s]

ut2 
[s]

DM_8515_Grey35  
vertical 0.328 0.064 0.201 0.32 4.6

DM_8515_Grey35  
horizontal 0.397 0.087 0.158 0.32 6.0

DM_9895_Shore95  
vertical 0.013 0.039 0.014 0.02 0.1

DM_9895_Shore95  
horizontal 0.010 0.052 0.061 0.02 0.5

The values of uncertainty of approximation contained in 
Table 5 show that a good fit of equation (8) to the experimental 
curves has been achieved. Small uncertainty values calculated 
for individual parameters of relaxation curves result from the 
fact that these parameters, as shown by formulas (5) and (6), 
depend on material properties such as elastic modules and vis-
cosity coefficients represented in equation (8) by parameters 
σ1, σ2, t1 and t2.

4.	 Conclusion

A very good fit of the adopted five-parameter Maxwell-Wiechert 
model to the experimentally obtained stress relaxation curves of 
selected digital materials obtained with additive technology was 
achieved. This is evidenced by the small values of the estimated 
uncertainty of approximation of individual model parameters.

Having average values of σ0, σ1, σ2, t1 and t2 parameters 
calculated with high accuracy, one can use the equations de-
scribing individual materials. The description of experimental 
stress relaxation curves using the adopted model is of great 
importance due to the physical nature of the parameters ob-
tained. It also extends the possibilities of modeling materials, 
especially digital ones, for the relaxation properties assumed, 
or, more precisely, for the assumed parameters of the adopted 
rheological model describing a given material.

The research presented herein also showed the anisotropy 
of the properties due to the direction of the printout, i.e. setting 
the object on the bild tray platform of the printing machine. One 

can see the difference in the mean values obtained for model 
parameters in the case of samples printed vertically and those 
printed horizontally.
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