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Abstract. This paper describes a numerically efficient method for determining the electrical parameters of axial field permanent magnet ma-
chine (AFPM). The presented method aims to accurately determine the back EMF waveform and self-inductance coefficients, while maintaining 
possibly low computational complexity, which is crucial in case of incorporation of the method in numerical optimization procedure of AFPM 
construction. The described algorithm is based on 2D FEM with several simplifications. The obtained results have been compared with full 3D 
FEA conducted with Ansys/Maxwell software, and confirmed by measurements. The result shows that presented method ensures satisfactory 
accuracy as well as computational time performance.
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approach is high computational complexity, which makes the 
process extremely time/computational power consuming. It was 
pointed out in the literature [6, 7] that 2D FE models also give 
a very accurate representation of magnetic field distribution in 
AFPM machine. There are some works published, which dis-
cuss the concept of incorporating 2D FE calculations in the 
numerical optimization procedure applied to design process of 
AFPM machine [8], however, there are no published works 
which aim to assess the accuracy of these methods in case of 
determining particular electrical parameter of AFPM machine. 
The assessment aims to determine the scope of applicability of 
2D approach when it comes to numerical optimisation of AFPM 
construction. The computational efficiency of evaluation of the 
value of objective function has a great importance especially if 
some modern optimisation algorithms, such as PSO or ABC, 
are going to be used. When it comes to accuracy versus time 
consumption,the simulation and experimental tests have been 
performed to find the most suiTable algorithm of determining 
the most important electrical parameters of AFPM machine. 
The analytical approach was also considered, but simulation 
tests showed that time performance is worse than in case of 
numerical computations.

In this paper the chosen method, based on simplified 2D 
FE algorithm, is presented and compared with results of full 
3D FEA conducted by using Ansys/Maxwell software as well 
as the results of experimental tests conducted on a machine 
prototype. The assessment of accuracy and computational time 
of presented simplified algorithm has been provided.

2.	 Statement of computational problem  
and model description

2.1. AFPM machine model. The coreless AFPM machine con-
sists of a single stator disc fixed in the middle and two outer 
rotor discs with surface mounted permanent magnets. The stator 

1.	 Introduction

The coreless axial flux permanent magnet machines, are be-
coming more and more popular in many industrial applications. 
The construction, characterized by huge ratio of machine di-
ameter to its axial length, makes it particularly suitable to me-
chanical integration with vertical axis wind turbines or internal 
combustion engines. Because of the absence of core losses, such 
types of machines can potentially achieve higher efficiency. 
A wide range of possible applications causes various demands 
when it comes to design process, especially if the goal is to ob-
tain the constructions dedicated for a particular application. In 
purpose of design the machine which reveals desired dynamic 
properties, it is necessary to determine geometry of the ma-
chine, which provides proper values of its electrical parameters. 
In dynamic properties, point of view the most important elec-
trical parameters are back EMF waveform and self inductance 
coefficients. To determine these values for given geometry of 
the machine, the magnetic field distribution inside of AFPM 
machine needs to be calculated. So far, most of published works 
proposed an approach that uses analytical methods to calculate 
this distribution for a simplified 1D model [1‒3]. Based on 
these results, the optimization criteria (usually a single variable 
objective function) have also been minimized by using analyt-
ical methods [4]. The limitations of such approach are mostly 
related to the number of optimization variables, which in some 
cases, needs to be greater than one, as well as to the accuracy 
of 1D simplified model of magnetic field distribution [5]. On 
the other hand, there is a possibility to conduct very accurate 
optimization calculations based on 3D FEA of magnetic field 
distribution inside AFPM machine. The main drawback of this 
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coils are radially placed and the magnetic field is in axial direc-
tion. The machine available for experimental tests has a 2.8 kW 
rated power and 32 uniformly distributed, rectangularly shaped 
permanent magnets, mounted on each of the rotor discs. The 
positioning of the magnets is alternating, which gives 16 pole 
pairs. A schematic drawing of machine construction is presented 
in Fig. 1.

neodymium magnets, and sub areas from 8 to 13 are the coils 
cross sections arranged with a following order: A–, C +, B–, A+, 
C –, B+ where each letter denotes the phase and each sign de-
notes a direction of current flow. Construction parameters of 
considered AFPM machine relevant for 2D field calculations 
have been presented in Table 1 The machine model can be set 
in cartesian coordinates, because the radius of the machine is 
huge in comparison to the width of the air gap [10].

Table 1 
Machine model parameters

parameter value unit

rotor yoke plane

rotor yoke thickness 8 mm

axial distance between yokes 35 mm

material steel s235 [–]

permanent magnets

width 25 mm

high 10 mm

averaged induction remanence Br 1.19 T

relative magnetic permeability µr 1.0922 [–]

stator coils

radial length 85 mm

angular width 240 elec. deg

cross section width 14 mm

cross section high 9 mm

number of wires 64 [–]

coil active length 0.0502 m

Fig. 1. The schematic cross section representing a single pole pitch of 
the core less AFPM machine

Fig. 2. A flat layout of machine cross section on a single pole pitch 
– the model for a 2D FEA

The stator winding is a three phase overlapping type and it 
consists of 16 uniformly distributed, series connected, rectan-
gularly shaped coils per phase. Subjected construction is a core-
less type, which means that there is no iron in a stator disc and 
the winding is kept in place by encapsulation in epoxy resin. 
The influence of magnetic permeability of such material can 
be neglected, which lets us omit this domain in FE model and 
effectively reduce a total number of nodes. Moreover, due to 
relatively huge air gap, there is no magnetic saturation phenom-
enon which allows us to apply further simplifications to 2D FE 
procedure. The 2D FE model of the machine is a flat layout of 
cylindrical cutting surface placed in the middle of stator coil ac-
tive part, which is presented in Fig. 2. The geometrical dimen-
sions of cutting plane in meters are labelled on graph axis. The 
2D FEA is inherently unable to fully handle a magnetic field 
distribution in the overlapping end connection region of stator 
winding. Only a single pole pitch section has been chosen to 
2D calculations. However, in case of 3D calculations, two pole 
pitches have been analysed to handle all properties of magnetic 
field distribution [9].

In FEM, the whole domain is divided in a sub domains 
with a specific physical properties and loads assigned to them. 
In a presented model, the domains number 2 and 5 are solid 
steel rotor yoke planes. Sub areas number 3, 4, 6, 7 are the 
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2.2. Computational problem. To determine the values of ma-
chine inductance coefficients, the distribution of magnetic field, 
generated by each phase current individually, needs to be calcu-
lated. While conducting these calculations, the influence of per-
manent magnets isn’t considered. In order to apply a 2D analysis 
to a presented problem, the symmetry along z axis is assumed. 
Because of its source-less nature the magnetic induction field B 
can be represented as a rotation of vector potential A

	 divB = 0 ) div
³
rotA

´
 = 0 ) B = rot

³
A
´
.� (1)

The mentioned symmetry assumption causes that the vector 
of current density J  has only a z component. Applying Maxwell 
first equation:

	 rotH
→

 = 
Ã
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 =  J  = (0, 0, jz).� (2)

Hence the vector potential A also has only that component
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The components of magnetic induction field B on a consid-
ered x ¡ y plane are given by:

	 Bx =  ∂
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Substituting the component mentioned above to the equa-
tion 2 and writing all in the open form
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The equation which needs to be solved using FEM is then 
given by z (k) component.
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In order to calculate the magnetic flux coupled with a stator 
winding, the distribution of magnetic field generated by perma-
nent magnets under no current conditions needs to be computed. 
The purpose of the efforts was to develop, test and validate the 
code which can be later incorporated in a numerical optimiza-
tion procedure, and used without any sophisticated software 
tools. For this reason, the 2D FEM code for solving presented 
problem has been implemented in Matlab from scratch. The ge-
ometry model has been prepared as a *.dxf  file using AutoCad 
software, and imported to Matlab. For mesh generation, the 

open sources package provided in [11] was used. To achieve 
the lowest possible computational complexity the linear basis 
functions have been chosen. The overall computational meth-
odology has been presented in great details in [12‒15].

2.3. Applying boundary conditions. Since the rotor yokes are 
made of solid iron, which has a magnetic permeability about 
4000 times higher than the air, it can be expected that there is 
no magnetic field flow outside the yoke plate to the air. For this 
reason, the zero value of Dirichlet boundary condition needs 
to be applied on the outside edges of yoke sub domains. It can 
be easily achieved by applying zero value for all elements in 
rows of the main matrix, corresponding to the nodes laying 
on those edges, applying value 1 to its diagonal elements and 
the value 0 to a corresponding element of the load vector. Due 
to symmetry, for reducing the computational complexity only 
the part of machine cross section is analysed. For this reason, 
the special matching boundary condition needs to be applied 
on the vertical boundaries of the considered domain presented 
in Fig. 2. In order to respect the symmetry of the machine, it 
needs to be forced that the values of vector potential obtained 
for the left edge of the domain are equal to these obtained for 
its right edge. In a discussed procedure, the unstructured trian-
gular mesh is used, which leads to disproportionate numbers 
of nodes laying on left and right edges. For this reason, the 
edge containing greater number of nodes, needs to be chosen as 
a dominating one and the matrix of weight coefficients needs to 
be determined to achieve equal values obtained for nodes laying 
on subordinate edge to a weighted average of values obtained 
for the two nearest nods to them in vertical direction but lying 
on dominating edge. The weight coefficients are determined 
based on distance between dominating nodes and a subordinate 
one, as follows:

	 W1 = 
j yd1 ¡ ysj

j yd1 ¡ ysj + j yd2 ¡ ysj
� (7)

	 W2 = 
j yd2 ¡ ysj

j yd1 ¡ ysj + j yd2 ¡ ysj
� (8)

where: yd1 and yd2 are the y coordinates of the nodes lying on 
dominate edge. ys is the y coordinate of the node lying between 
yd1 and yd2, but on a subordinate edge.

To efficiently apply this boundary condition, it is convenient 
to create a matrix multiplier, which consists of unity part to 
preserve the structure of the main matrix and the set of rows 
corresponding to subordinate nodes with the weight coefficients 
located in columns corresponding to the location of dominating 
nodes.

	 Z = 

	1	 0	 0	 0	 0	 ¢¢¢	 0
	0	 1	 0	 0	 0	 ¢¢¢	 0
	 	 	 ¢¢¢	
	W1	 0	 ¢¢¢	 W2		  ¢¢¢	 0
	

� (9)
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It needs to be pointed out that before using matrix multi-
plier in a presented form, the main matrix of the system needs 
to be reordered in such a way that the rows corresponding to 
subordinate nodes are collected at the bottom. The system of 
linear equations, obtained from activities described previously, 
has a following form:

	 Mu– = L– .� (10)

After applying Dirichlet boundary conditions, the following 
operations need to be done.

	 A = ZT
©

RTMR
ª

� (11)

where R is a reordering matrix, which makes the main system 
matrix organized in such a way that matrix multiplier Z can be 
used in a form presented above

	 b– = ZTRTL– � (12)

	 Au–P = b– ,   u–p  6= u–� (13)

where u–p is the new, shorted and reordered vector of unknowns. 
It should be emphasised that, after presented manipulations 
were implemented, the dimension of the system of linear equa-
tions has been decreased by the number of subordinated nodes.

2.4. Solving the system of linear equations. Due to high de-
mands on reducing computational complexity of presented al-
gorithm, as well as the dimension of A matrix which can be 
potentially large, only the iterative methods of solving the sys-
tems of linear equations have been considered. If it comes to 
consumption of computational time, the matrix conditioning is 
crucial. The structure of obtained the sparse matrix A is pre-
sented in Fig. 3.

The Generalized Minimum Residual Method has been 
chosen to use for solving the system. Regarded to the literature, 
it is the best suited method for the sparse nonsymmetric linear 
systems [16]. To assess the initial situation, a convergence test 
has been conducted without any preconditioning. Resulting 
convergence plot is presented in Fig. 4.

Fig. 3. The structure of linear system matrix after applying a boundary 
condition

Fig. 4. Minimum residual values obtained for solving a system without 
preconditioning

The results showed that satisfactory value of residue is ob-
tained after more than nine hundred iterations of GMR, which 
is unacceptably time-consuming. Due to the fact that after ap-
plying the Cuthill-McKee permutation, the matrix A became 
diagonally dominated thus the starting point for a GMR itera-
tions has been chosen as 14

	 u– ̂ p = 
	A1, 1

		  ¢¢¢
		  	 Anp, np

–1

 ¢ 
b1

bnp

.� (14)

To further improve the convergence rate, the Incomplete 
LU factorization method has been applied with a tolerance pa-
rameter equal to 1 ¢ 10–6. Conducted simulation tests showed, 
that it gives excellent improvement in the convergence rate and 
effectively decreases the computational complexity of overall 
developed code. The plot of GMR convergence after described 
preconditioning process is presented in Fig. 5.

By solving the linear system, the shortened vector u–p is cal-
culated. To determine the values of the vector potential A, cor-
responding to all nodes of triangular mesh in order defined by 
initial global nodes numeration, the following operation needs 
to be performed.

	 u– = RZ
©

Pu–p
ª

� (15)

where P is a Cuthill-McKee permutation matrix.
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The resulting distribution of vector potential A, (having one 
component is a scalar field, hence it will be denoted as Az in 
the following part) calculated under no current conditions, con-
sidering only the influence of permanent magnets for a cross 
section presented in Fig. 2, is presented in a Fig. 6.

All parameters, which are of interests here, can be calculated 
directly based on the distribution of potential Az, determined 
for proper conditions. This is going to be discussed in the next 
section, however the distributions of H  and B fields has also 
been calculated in accordance with equations 2‒4, mainly for 
visualization purposes, and are presented in Fig. 7.

Obtained results are in line with the expectations. The closed 
loop path containing a magnetic flux is created by both solid 
iron rotor yokes and four permanent magnets mounted, as it 
was described in subsection 2.1

2.5. Determining the parameters of interest. If it comes to 
dynamic properties of AFPM machine, the most important elec-
trical parameters are the values of stator phase winding self-in-
ductance coefficients and magnetic flux coupled with a stator 
phase winding as a function of rotation angle. Determination of 
those values is the purpose of presented efforts.

2.5.1. Magnetic flux coupled with phase winding. To deter-
mine the values of magnetic flux coupled with a phase winding, 
only a single calculation of potential field Az is needed. The 
coupled magnetic flux is later calculated as an algebraic sum of 
the potential Az integrated over the areas of cross sections be-
longing to a single coil of corresponding phase with a sign cor-
responding to a direction of current flow. It presents as follows:

	 ΨA = 
ZZ

A+
Az dxdy ¡ 

ZZ

A¡
Az dxdy,� (16)

	 ΨB = 
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B+
Az dxdy ¡ 
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B¡
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Az dxdy ¡ 

ZZ

C¡
Az dxdy.� (18)

To compute these values as functions of rotation angle, the 
presented calculations have been repeated with an angular step 
equal to 0.8 of electrical degree. Obtained results are presented 
in Fig. 8.

The waveforms of an EMF, induced in generator phase 
windings, are directly proportional to the derivative of mag-
netic fluxes coupled with the phase windings after the rotation 
angle. Such derivatives have been calculated numerically using 
central finite difference approximation.

	 f
0
(x) ¼  f (x + h) ¡ f (x ¡ h)

2h
.� (19)

Fig. 5. Minimum residual values obtained for solving a system after 
full preconditioning

Fig. 6. The distribution of a potential A calculated under non current 
conditions, considering only the influence of permanent magnets

Fig. 7. Magnetic field distribution in 2D, calculated using the presented 
method under no current conditions
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The results have been multiplied by the number of coils in 
phase connected in series, which is 16 in the presented case. 
Obtained waveforms are presented in Fig. 9.

as an excitation to one of the phases, while there is no current 
applied to the remaining two. Based on the resulting Az, exem-
plary, if the excitation is applied to phase A, the corresponding 
inductance coefficients are computed as follows:

	 Laa = Wn

Ac
d
∙ZZ

A+
Az dxdy ¡ 

ZZ

A¡
Az dxdy

¸
,� (20)
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¸
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where:
●	 Wn – number of wires in a single coil [¡],
●	 Ac – area of coil cross section 

£
m2¤,

●	 d – coil active length [m].
It needs to be pointed out that all values, which are in-

terpreted as an energy when determined by 2D analysis, are 
related to the unity value in a z dimension. For this reason, in 
the equations above, the factor d represents the length of coils 
parts in a z dimension, which are represented in a 2D model 
as cross sections. The structure of the induction of matrix co-
efficients L, as well as their values obtained using described 
method, are as follows:

	 L = 
	Laa	 Lab	 Lac

	Lba	 Lbb	 Lbc

	Lca	 Lcb	 Lcc

.� (23)

The values of induction coefficients have been calculated 
using presented method, for both overlapping and non-overlap-
ping stator winding. The results are presented below in a given 
order.

	 L = 
	 0.007062	 –0.0023723	 –0.0023723

	–0.0023723	 0.007062	 –0.0023723

	–0.0023723	 –0.0023723	 0.007062

[H ]� (24)

	 L = 
	 0.00987	 –7.84 ¢ 10– 4	 –7.84 ¢ 10– 4

	–7.84 ¢ 10– 4	 0.00987	 –7.84 ¢ 10– 4

	–7.84 ¢ 10– 4	 –7.84 ¢ 10– 4	 0.00987

[H ]� (25)

3.	 Validation of developed code

In order to check the correctness of the obtained results, the 
full 3D FEA has been conducted using Ansys/Maxwell soft-
ware. The analysis was performed for both overlapping and 
non overlapping winding topologies. Experimental tests have 
been also conducted for further validation of all simulation re-

Fig. 8. The waveforms of magnetic fluxes coupled with the stator phase 
winding of AFPM machine

Fig. 9. The waveforms of the derivatives of magnetic fluxes coupled 
with the stator phase winding of AFPM machine, after the rotation 

angle

2.5.2. Calculations of the inductance coefficients. In order to 
determine the values of self and mutual inductances of AFPM 
machine using presented method without assuming an ideal 
symmetry in advance, the distribution of vector potential field 
Az needs to be calculated three times. For each calculation the 
current with density equal to 1A/m2 is assumed to be applied 
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sults. As it was mentioned in section 2.1, the 3D FEA has the 
advantage to handle the whole magnetic field distribution inside 
the AFPM machine, including the overlapping end connection 
region. For that reason, the 3D FEA results are considered as 
the most accurate.

3.1. 3D Finite element model of AFPM machine. The 3D 
model of the machine without upper rotor yoke plate, is pre-
sented in Fig. 10. The permanent magnets, mounted within 
3 mm thick aluminium ring, are visible on the top and the coils 
of overlapping three phase stator winding are located below. 
The disk shaped element located in the centre is made of solid 
iron and it constitutes a fixing of stator disk, which is made of 
epoxy resin and is not included in the model.

In Fig. 11, it is presented how the coils are interlaced in the 
front part, creating, at the same time, a thin system in an active 
part, over which permanent magnets are moved.

As it was mentioned in section 2.1, due to the overlapping 
construction of stator winding, the 1/8 of machine model needs 
to be analysed in a 3D approach. In case of non overlapping 
winding, the same pole pitch was analysed to preserve a co-
hesion of the comparison. The layout of coils are presented in 
Fig. 12. To respect the symmetry of the machine, a ‘matching 
boundary’ condition has been applied. After conducting simula-
tion experiments, the discretization providing the magnetic field 
energy error at 0.1% has been chosen to apply. The triangular 
mesh obtained for a model section is presented in Fig. 13. The 
results obtained by performing the magneto static computations 
for presented 3D model using Ansys/Maxwell software will 
be compared with these obtained by the tested method in the 
next section.

3.2. Comparative study of obtained results.

3.2.1. Calculations of magnetic flux coupled with stator 
winding. In Fig. 14 the magnetic field distribution over the 
cylindrical cutting surface, placed in the middle of coil active Fig. 11. The view of three phase overlapping stator winding in a close up

Fig. 12. The view of a three phase non-overlapping stator winding, 
two poles section

0 30 60 [mm]

0 50 100 [mm]

Z
Y

X

Fig. 10. The 3D model of analysed coreless axial field permanent 
magnet machine, presented without upper rotor yoke plate

0 150 300 [mm]

Z

Y

X Fig. 13. Triangular mesh providing, for a subjected model, an accuracy 
of determining the magnetic field energy at 0.1%
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Z

Y
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Y
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part, is presented. The cross section presented in Fig. 2 sec-
tion 2.1 corresponds to the half part of the same plane.

Comparing the obtained magnetic field distribution with the 
one presented in Fig. 7 section 2.4, it can be concluded that in 
both cases the boundary conditions, as well as the directions of 
magnetization vectors, have been applied correctly. In Fig. 15 
the distribution of a magnetic field over a radially placed cut-
ting plane is presented. The cross section contains a permanent 
magnet and an overlapping one as well as connection regions 
of the stator winding.

using Ansys/Maxwell software. In Fig. 16 the comparison of the 
results obtained using simplified 2D method and 3D analysis 
are presented.

Fig. 14. The distribution of magnetic induction vector on a cylindrical 
cutting surface, placed in the middle of coil active part

Fig. 16. The waveforms of magnetic flux coupled with phase winding, 
calculated using the presented simplified 2D method in comparison 

with the results of 3D FEA

Fig. 17. The slight overestimation of the magnetic flux coupled am-
plitude occurring in comparison to the 3D FEA results

Fig. 15. The distribution of magnetic field over a radial cutting plane, 
placed in the middle of permanent magnet, presenting a significant 
magnetic coupling in the end connection regions of overlapping stator 

winding

0 50 100 [mm]

0 35 70 [mm]

It can be noticed that for an overlapping construction of 
stator winding, the magnetic coupling in the end connection re-
gion of coils is significant. This is considered as an impediment 
to use a 2D method for analysis of such constructions. Based 
on obtained field distributions, the magnetic flux coupled with 
stator phase winding and the values of self and mutual induc-
tances have been calculated as a function of rotational angle 

Z

YX

The results prove that 2D method determines the overall 
shape of the subjected waveform. A slight inaccuracy concerns 
mainly the value of the amplitude, which is overestimated. In 
Fig. 17 the same plots are shown in a close-up.

Because of its crucial meaning the same comparison has 
been performed for a derivatives of magnetic flux. The results 
are presented in Figs. 18 and 19.
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In accordance with the expectations, the derivatives of ob-
tained waveform are in line with the 3D FEA results. For the 
proper accuracy assessment, the relative L2 norm of error has 
been calculated for magnetic flux and its derivative as follows.

	 Lr
2 =  k=0

n
∑ (y3Dk

 ¡ y2Dk)
2

k=0

n
∑ y3Dk

� (26)

The results are presented in Table 4.

3.3.2. Calculations of self and mutual inductances coeffi-
cients. Both self and mutual inductance coefficients have been 

calculated as a function of rotation angle using Ansys/Maxwell 
software. The results obtained for the overlapping winding are 
presented in the Figs. 20 and 21 respectively. The same results, 
but for non-overlapping type of stator winding, are presented in 
the Figs. 22 and 23. The slight periodic variability of the induc-
tion coefficients results are caused by the magnetic permeability 
of permanent magnets, which relative value is given in Table 1. 
The noticeable noise in the obtained waveforms is related to 
the numerical approximation errors. For a better readability the 
noise has been filtered out from the results presented in the 
corresponding figures.

Fig. 18. The comparison of ∂Ψ
∂θ

 waveforms obtained using simplified 

2D and full 3D FEA

Fig. 19. The slight overestimation of the magnetic flux coupled am-
plitude occurring in comparison to the 3D FEA results

Fig. 20. The values of phase self inductance coefficients as a function 
of rotation angle, calculated for overlapping stator winding: original 

results (up) without the numerical approximation noise (down)

Fig. 21. The values of mutual inductance coefficients as a function 
of rotation angle, calculated for overlapping stator winding: original 

results (up) without the numerical approximation noise (down)
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The amplitudes of the obtained waveforms are not bigger 
than 1 ¢ 10–5H and 2 ¢ 10–5H. In any practical purposes such 
value is negligible hence the inductance coefficients of anal-
ysed AFPM machine, in case of self and mutual inductances 
respectively, can be considered as constant functions of rotation 
angle. The resulting value of phase self inductance coefficient 
can be adopted as 0.00775H and 0.00124H for the mutual one. 
It needs to be pointed, out that the value obtained for a phase 
self-inductance using the proposed method was noticeably 
lower. Moreover, in accordance with the expectations, due to 
the influence of the inductance of the end connections, which 
cannot be handled in the 2D approach, the values of mutual 

inductance coefficients are divergent. To dispel the doubts, the 
experimental tests have been carried out on the prototype of 
the AFPM machine.

3.2.3. Results of experimental tests. In order to verify the 
above results, the measurements of generator inductance have 
been carried out using the GW Instek LCR-8110G measuring 
bridge, which allows impedance measurements over a wide fre-
quency range. The measured values of the phase inductance as 
a function of frequency are presented in Fig. 24.

Fig. 22. The values of phase self inductance coefficients as a function 
of rotation angle, calculated for Non-overlapping stator winding: 
original results (up) without the numerical approximation noise (down)

Fig. 23. The values of mutual inductance coefficients as a function of 
rotation angle, calculated for Non-overlapping stator winding: original 

results (up) without the numerical approximation noise (down)

Fig. 24. The measured values of phase inductance of analysed AFPM 
machine, as a function of frequency

The results showed that the value of the phase inductance is 
strongly dependent on frequency. The eddy current losses take 
place in a solid iron rotor yokes as well as permanent magnets 
[17], which also strongly affect the results. Moreover, these 
phenomenona make the series connected to the R-L model of 
the circuit, which is implemented in GW Instek LCR-8110G 
measuring the bridge software and inconsistent with reality. 
For these reasons, further measurements have been conducted 
at frequency 20 Hz, at which the influence of Eddy current 
losses is slight. The measurements have been carried out for 
a single phase as well as for two phases connected by a neutral 
point. It needs to be pointed out that to refer the measured 
values to the results of magnetostatic calculations, it is needed 
to extrapolate it towards zero in a frequency domain. Using 
a simple linear extrapolation of values measured in a range of 
frequence between 20H to 50H, one can obtain 0.00776, which 
gives almost the exact convergence with the 3D FEA results. 
Based on the results, the value of mutual inductance has been 
calculated as follows:

	 Lm =  1
2

(LA + LB ¡ Ls)� (27)

where:
●	 LA and LB are the values of phase inductances,
●	 Ls is the value of inductance of two phases connected in 

series by the neutral point.
The values are presented in Table 2.
In order to experimentally verify the correctness of calcula-

tions of magnetic flux coupled with stator windings, the output 
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line voltage waveform in idle mode has been measured at con-
stant speed 32.764 rotations per minute. The screenshot of the 
oscilloscope is presented in Fig. 25.

3.3. Summary comparison of computed and measured pa-
rameters of AFPM machine. The values of electrical parame-
ters obtained for a machine with an overlapping type of winding, 
using: proposed algorithm, full 3D FEA as well as the results 
of measurements, are presented in Table 2. Additionally some 
selected results, in case of non overlapping stator winding, are 
presented in Table 3.

Fig. 25. Idle mode output line voltages measured at constant speed 
32.764 rotations per minute

Fig. 26. Idle mode output line voltages measured at constant speed 
32.764 rpm, in comparison with simulation results

Table 3 
Comparison of the results obtained for Non-overlapping winding

parameter value unit

tested method

phase self inductance 0.00987 H

mutual inductance –7.84 ¢ 10–4 H

full 3D Finite Element Analysis

phase self inductance 0.0108 H

mutual inductance 8 ¢ 10–4 H

Table 2 
Comparison of the results obtained for overlapping winding

parameter value unit

proposed algorithm

phase self inductance 7.06 mH

mutual inductance –2.372 mH

amplitude of magnetic flux coupled Ψ 0.72723 Wb

amplitude of ∂Ψ
∂θ 13.282 Wb

rad
THD of Ψ 3.6957 %

THD of ∂Ψ
∂θ

11.491 %

full 3D Finite Element Analysis

phase self inductance 7.75 mH

mutual inductance 1.24 mH

amplitude of magnetic flux coupled Ψ 0.69408 Wb

amplitude of ∂Ψ
∂θ

12.747 Wb
rad

THD of Ψ 3.936231 %

THD of ∂Ψ
∂θ 11.888819 %

measurements

phase self inductance 6.93863 mH

mutual inductance 1.073155 mH

Inductance of two series connected phases 11.7053 mH

extrapolated phase self inductance 7.76 mH

In order to provide an experimental verification of the cal-
culated Ψ waveform, the simulation model of AFPM dynamic 
was developed using parameter values determined above. How-
ever, the description of the model is beyond of the scope of this 
paper it has been used to simulate the idle work mode of AFPM 
machine. The waveforms of the output line voltages, obtained 
at a constant rotation speed 32.764, have been compared with 
the measurements and are presented in Fig. 26.

The simulation results show a very good convergence with 
measurements, proving the correctness of computations when it 
comes to magnetic flux coupled with stator winding. The rela-
tive Lr

2 norm, calculated for a differences between 2D and 3D Ψ  
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and ∂Ψ∂θ  waveforms in accordance with equation 26 is listed in 
Table 4. The relative differences between measured and cal-
culated values of self and mutual inductances are presented in 
Table 5.

Table 4 
Relative differences between values of magnetic flux coupled with 
stator windings calculated using 3D FEA and proposed algorithm

parameter value unit

Ψ

relative L2 norm 0.051925 [¡]

Amplitude relative difference 0.047749 [¡]

∂Ψ
∂θ

relative L2 norm 0.0548 [¡]

Amplitude relative difference 0.042028 [¡]

Table 5 
Relative differences between measured and computed values 

of inductances, given in % of measured value

parameter value unit

phase self inductance

Overlapping winding – tested method –9.07 %

Non-overlapping winding – tested method –8.62 %

Overlapping winding 3D FEA 1.55 %

Non-overlapping winding 3D FEA –1.22 %

mutual inductance

Overlapping winding – tested method divergent [¡]

Non-overlapping winding – tested method 2.03 %

Overlapping winding 3D FEA 2.12 %

Non-overlapping winding 3D FEA 1.93 %

The inaccuracy of the self-inductance value, obtained by 3D 
FEA, is mostly a result of differences between machine proto-
type and its 3D model. The values of induction coefficients, 
obtained by the usage of 2D method, are noticeably lower. It 
is caused by the omission of the impact of the end winding 
leakage inductance. This situation reveals the need to elaborate 
a computationally efficient method of determining the value 
of end winding leakage inductance, to improve the accuracy 
of developed program. In accordance with the expectations, 
proposed method is inherently unable to determine the values 
of mutual inductances when considered overlapping type of 
stator winding. This configuration of windings has been inten-
tionally chosen for algorithm validation purposes because it is 
considered as the most inconvenient for application of the 2D 
approach. The quasi 3D approach [17] has also been tested, by 
taking a several cutting planes as slices. However, in considered 
case (rectangular shaped magnets and coils) the decreasing of 

the error was almost negligible. If it comes to incorporation of 
the presented algorithm into a numerical optimization proce-
dure, the consumption of computational time is crucial. It needs 
to be pointed out that to compute all the presented results less 
than 5 seconds is needed, while for the presented accuracy of 
calculations using 3D FEA for a single rotor position about 
14 minutes are needed. That gives a total computational time 
about 9h 50 min. for the presented results.

4.	 Conclusions

The purpose of the efforts was to develop a computationally 
efficient code for determining the most important electrical 
parameters of AFPM machine. After several other experi-
ments the simplified 2D FE algorithm with a single model 
set in cartesian coordinates was chosen to use. This approach 
has the advantage of being relatively easy to implement and 
use without any sophisticated software tools, although there 
are also other methods worth to be tested [18, 19]. Developed 
program has been validated by comparison with the results of 
full 3D FEA and the experiments conducted using a machine 
prototype, for both overlapping and non-overlaping topology 
of stator winding. The obtained results allow to state that due 
to its low time consumption, presented approach is well suited 
to incorporate in a numerical optimisation procedure of AFPM 
construction, especially if it comes to non overlapping winding 
topology, or if the optimisation criteria is subjected to back 
EMF. However, the inaccuracies in determining the values of 
induction coefficients make the method useful only for a rough 
calculations. The method stil can be used on a preliminary stage 
of a multidimensional numerical optimisation process to signifi-
cantly shorten the overall time consumption The computational 
efficiency is particularly important when multi variable optimis-
ation is conducted, using some modern algorithms such as: PSO 
[20], GA [21], or ABC. The development of fast method for 
numerical support of design processes has a great importance 
for designing the machines best suited for particular applica-
tions [22, 23].
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