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Transverse vibration analysis of nonlocal beams
with various slenderness ratios,

undergoing thermal stress

In this paper, thermally-excited, lateral free vibration analysis of a small-sized
Euler-Bernoulli beam is studied based on the nonlocal theory. Nonlocal effect is ex-
erted into analysis utilizing differential constitutive model of Eringen. This model is
suitable for design of sensors and actuators in dimensions of micron and submicron.
Sudden temperature rise conducted through the thickness direction of the beam causes
thermal stresses and makes thermo-mechanical properties to vary. This temperature
field is supposed to be constant in the lateral direction. Temperatures of the top and
bottom surfaces of the system are considered to be equal to each other. Governing
equation of motion is derived using Hamilton’s principle. Numerical analysis of the
system is performed by Galerkin’s approach. For verification of the present results,
comparison between the obtained results and those of benchmark is reported. Numer-
ical results demonstrate that dynamic behavior of small-sized system is been effected
by temperature shift, nonlocal parameter, and slenderness ratio. As a result, taking
the mentioned parameters into account leads to better and more reliable design in
miniaturized-based industries.

1. Introduction

Through recent decades, micro and nano-electro-mechanical systems (MEMS,
NEMS) technology has widely engrossed several researchers. Because of the ad-
vantages such as: cost-effectiveness, long life duration and high performance level,
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it is worth to spend time and investigate these devices with in-depth considera-
tion. MEMS/ NEMS can be generally defined as a technology including minia-
turized electro-mechanical and mechanical elements which is accompanied with
micro-fabrication techniques. The most noticeable applications of such technology
are micro-sensors, micro-actuators and micro-electronics. Small-scaled beams are
amongst the most applicable structures to model such systems. Moreover, several
experiments have proved the essentiality of considering the size-dependency phe-
nomena for analyzing such micro-system’s mechanical behavior [1–4]. It is evident
that theories based on the classical continuum do not consider size-dependent be-
havior; consequently, several researchers provided the scientific community with
higher order continuum theories capturing the small effects thorough the analysis.
Couple stress theory containing four material constants [5], micro-polar theory [6],
nonlocal elasticity theory [7], strain gradient theory [8], modified couple stress
theory with single material constant [9] and surface elasticity theory [10] are such
non-classical theories capturing the size-dependencies of MEMS/NEMS models
in the analysis.

Examples of researchers who have utilized the modified couple stress theory
are: Roque et al. [11] conducted a research concerning bending analysis of a Timo-
shenko micro-beam using meshless approach with radial basis functions. Ghanbari
et al. [12] studied vibration behavior of a small-scaled beam using assumed modes
method. Askari et al. [13] reported dynamic, size-dependent analysis of MEMS
elements under mechanical shock. Jung et al. [14] studied buckling and vibra-
tion behavior of micro-plates embedded in elastic medium. Free vibration analysis
of a small-sized beam made up of functionally graded materials is presented by
Babaei et al. [15]. Size-dependent vibration analysis of non-uniform, functionally
graded small-scaled beam is reported by Shafiei et al. [16], they assumed Euler-
Bernoulli and Timoshenko beam theories. Aghazadeh et al. [17] proposed a new
functionally graded beam model with varying length scale parameter to investigate
static and vibration analysis of small-sized electro-mechanical systems. Fathalilou
et al. [18] have perused micro-inertia effect upon dynamic characteristics of a
small-scaled beam.

Amongst the mentioned non-classical continuum theories, nonlocal theory is
attractive to researchers: vibration analysis of a post-buckled piezoelectric small-
sized beam is reported by Ansari et al. [19]. Eltaher et al. [20] presented a func-
tionally graded nonlocal beam model to investigate the dynamic responses based
on slenderness ratio ant the material gradation index. A similar research is carried
out by Ebrahimi and Salari [21] which considers shear deformations and thermal
effects in the analysis. Taking into account the thermal effects, vibration behavior
of a functionally graded small-scaled beam is presented by Ebrahimi and Salari
[22]. Babaei andAhmadi [23] studied dynamic analysis of non-homogenous beams.
They represented results based on a numerical approach. Babaei and Yang [24] car-
ried out a research regarding rotation effects upon vibration analysis of rods. They
used coupled-type field of displacements for the first time. Dynamic and vibration
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analysis of micro-sensors based in the modified couple stress theory is reported by
Babaei et al. [25]. They proposed the material length scale parameter as a variable
one and investigated corresponding consequences on the response of the system.
Azizi et al. [26] studied nonlinear vibration analysis of nano-beams embedded in
elastic medium considering effects of surface stress effects. Safaei and Fattahi [27]
carried out a research regarding vibrational behavior of single-layered Graphene
sheets based on diverse nonlocal plate theories. Buckling analysis of carbon-nano-
tube reinforced beams with different boundary conditions is investigated by Fattahi
and Safaei [28].

Capturing a realistic idea, temperature variations (especially in the shape of
temperature rises) is an expectable phenomena. Usually, the mentioned tempera-
ture rises are induced to the system gradually. This temperature is mostly derived
from the energy loss emitted from machinery working in the vicinity of the sys-
tem. Hence it seems to be a proper assumption to take into account the thermal
stresses besides to the small effects in the analysis. In the event of this notion,
several scholars have considered the role played by heat conduction. Chakraborty
et al. [29] studied the thermo-elastic behavior of a model made up of functionally
graded material, and using the first-order shear deformation beam theory. Xiang
and Yang [30] proposed a classic beam model to obtain free and forced vibration
analysis of a laminated structure in which thermal stress effects are also captured.
Based on the classic mechanics, thermo-dynamical analysis of a sandwich beam is
reported by Pradhan and Murmu [31]. Vibrational analysis of micro-beam under-
going temperature conductions is accomplished by Nateghi and Salamat-talab [32],
in this research material properties vary based on the rule of mixture. Mahi et al.
[33] reported a similar research including material variations due to temperature
besides to those induced by the grading characteristic. Eventually; Babaei et al.
[34] presented a micro-beam model taking into account variations induced both
by temperature and by material gradation, they obtained the formulas utilizing the
modified couple stress and the Euler-Bernoulli beam theories. Safaei and Moradi-
Dastjerdi [35] analyzed vibration behavior of thermo-elastic nano-plates reinforced
by carbon nano-tubes.

Based on the review literature presented above and to the best of our knowledge,
there are two researches in which nonlocal theory is adopted along with thermal
stress effects upon vibration behavior of a small-sized system. Ebrahimi and Salari
[21, 22] considered Timoshenko beam theory undergoing thermal stresses. In the
current research, to achieve more accuracy of dynamic analysis of long beams,
Euler-Bernoulli beam theory is adopted. Another difference includes the course
of temperature difference. Ebrahimi and Salari have defined temperature shift as
the difference of temperature between the top surface and the bottom one, so they
have neglected the temperature difference between the system and the environment.
However, for considering the heat-energy lost from machinery or other appliances,
we have presented another temperature-rise feature. This rise is the temperature
difference between the beam surfaces and the environment. In other words, purpose



8 Alireza Babaei, Arash Rahmani, Isa Ahmadi

of this study includes the effects of thermal stresses derived from temperature
difference between the structure itself and the surrounding area.

In this paper, based on the Eringen’s nonlocal constitutive equations; a simply-
supported thermally-stressed Euler-Bernoulli beam model is presented for free
lateral vibration analysis. Initial temperature rise along the thickness direction of
the beam causes thermal stresses. Throughout the cross section plane, temperature
field is supposed to be in steady state. Besides, different values for slenderness ratio
(ratio of the beam length to the beam thickness) are considered in this analysis. In
order to derive the governing equation of motion, Hamilton’s principle is taken, for
solution procedure Galerkin’s method is adopted.

2. Theory and preliminaries

Based on the Eringen [7]; in an elastic medium, stress field at a random point
x is a function of both the strain field corresponding to that point (hyperelastic
case) and all other strain fields of the configuration. General from of nonlocal
characteristic equation is shown in Eq. (1) [7]:

[
1 − (e0a)2∇2

]
tkl = λεrrδkl + µεkl . (1)

In Eq. (1), tkl is nonlocal stress tensor, εkl and εrr represent strain tensor, δkl is
the Kronecker delta function, λ and µ are Lame’s constants. (e0a)2 is named as
nonlocal parameter; where, e0 is occasionally specific for each material and a
represents the internal characteristic length. Nonlocal constitutive relation can be
found in the following form [7]:

σxx − (e0a)2 ∂
2σxx

∂x2 = Eεxx . (2)

In the above equations, σxx and εxx represent axial normal stress and axial strain.
σxz is shear stress, and γxz is shear strain. E and G are elasticity modulus and
modulus of rigidity which are constrained to each other (G = E/2(1 + ν)), ν
is Poison’s ratio). By putting the nonlocal parameter equal to zero, constitutive
relation of local theory is achievable.

3. Mathematical modeling

3.1. Kinematic relations

According to the Euler-Bernoulli beam theory before and after deformation,
plane sections perpendicular to the axis of the beam remain perpendicular and
rotate such that no distortion is resulted. As a result, axial and lateral displacements
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(ux, uz ) of any point of the beam are as follows [34]:

ux (x, z, t) = −z
∂w

∂x
, (3a)

uy (x, z, t) = 0, (3b)
uz (x, z, t) = w(x, t), (3c)

where,w denotes lateral displacement of any point on themid plane and t represents
time. The only nonzero strain is the bending strain:

εxx = −z
∂2w

∂x2 . (4)

3.2. Thermal induction

A simply-supported beam of length L, thickness h and width b is considered
and shown in Fig. 1.

Fig. 1. Geometry of a nonlocal simply-supported beam

The mentioned beam is located in a temperature-varying environment without
any heat generation. Furthermore, heat transfer is considered only through the
lateral direction. Hence; following steady-state, one dimensional heat conduction
equation fits the case [34]:

d
d z

[
k (z)

dT
d z

]
= 0. (5)

In Eq. (5), k (z) is thermal conductivity which is varying through the thick-
ness direction of the beam. However; equal temperatures for the upper and lower
surfaces will be considered, so there is not necessity to elaborate variation of ther-
mal conduction coefficient. By applying boundary conditions (T (z = h/2) = Tt ,
T (z = −h/2) = Tb), unique solution of Eq. (6) takes the following form [34]:

T (z) = Tb +
Tt − Tb

h/2∫
−h/2

1
k (z)

d z

z∫
−h/2

1
k (z)

d z. (6)
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Thermal expansion coefficient (α) and modulus of elasticity (E) are supposed to
be temperature-dependent. Such properties are obtainable based on the following
relation [34]:

P = P0
(
P−1T−1 + 1 + P1T + P2T2 + P3T3

)
. (7)

In Eq. (7) P−1, P0, P1, P2 and P3 are constant temperature coefficients. Temper-
ature difference between any random point on the perpendicular section and the
environment is as follows:

∆T = Ts − T0 . (8)

Temperature of the environment is supposed to be a fixed one (T0 = 20◦C). It is
also good to note that temperature of the top and bottom surfaces are equal to
the environment temperature at first. With a sudden rise in the temperature of the
beam’s upper or lower surface, thermal stress is expected. Based on Babaei [34],
the mentioned thermal stress term is represented by Eq. (9):

σxx
T = −E(T )α(T )∇T . (9)

As mentioned above, modulus of elasticity and thermal expansion coefficient are
temperature-dependent. It means for each temperature induced to the surfaces of the
beam, thermo-mechanical properties take a specific value. In Figs. 2 and 3, influence
of temperature on the modulus of elasticity and thermal expansion coefficient
are shown. Other properties’ changes are not of importance since they do not
appear in the governing equation of motion. Based on Fig. 2, modulus of elasticity
decreases by increasing in the value of temperature; while, Fig. 3 demonstrates
linear increment for values of thermal expansion coefficient when temperature
arises. It is good to note that the two mentioned figures, are plotted using Eq. (7)
and Table 1.

𝑇𝑇(𝑧𝑧) = 𝑇𝑇𝑏𝑏 + 𝑇𝑇𝑡𝑡−𝑇𝑇𝑏𝑏
∫ 1

𝑘𝑘(𝑧𝑧) d𝑧𝑧
ℎ 2⁄
−ℎ 2⁄

∫ 1
𝑘𝑘(𝑧𝑧)

d𝑧𝑧𝑧𝑧
−ℎ 2⁄ . (6)

Thermal expansion coefficient (𝛼𝛼) and modulus of elasticity (𝐸𝐸) are supposed to be temperature-

dependent. Such properties are obtainable based on the following relation [34]: 
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Fig. 2 Variation of elasticity modulus with temperature
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Fig. 2. Variation of elasticity modulus with temperature
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Fig. 3 Variation of thermal expansion coefficient with temperature

3.3. Governing equation of motion 

In order to obtain the equation of motion, Hamiltoon's principle is used. Based on this variational 

approach, variation of the Lagrangian of the system (ℒ) is equal to zero over a time interval [34].  

δ �∫ ℒ𝑡𝑡2
𝑡𝑡1

d𝑡𝑡� = 0  . (10) 

Lagrangian means the difference between kinetic (𝑈𝑈𝐾𝐾) and potential energies (𝑈𝑈) of the system [15]:

ℒ = 𝑈𝑈𝐾𝐾 − 𝑈𝑈 . (11)

Kinetic energy 𝑈𝑈𝐾𝐾 of Euler-Bernoulli beam can be expressed in the following form [15]: 

𝑈𝑈𝐾𝐾 = 1
2 ∫ 𝜌𝜌 �∂𝑤𝑤

∂𝑡𝑡
�
2

d𝑉𝑉𝑉𝑉 , (12a) 

where 𝜌𝜌 represents density and integration’s domain for the energy terms is over volume.  

Potential energy of this system includes the energy resulting from toughness (𝑈𝑈𝑆𝑆) which is mostly named

as strain energy and the energy resulting from heat conduction (𝑈𝑈𝑇𝑇) [34]:  

𝑈𝑈 = 𝑈𝑈𝑇𝑇 + 𝑈𝑈𝑆𝑆 , (12b) 

𝑈𝑈𝑆𝑆 = ∫ 𝜎𝜎𝑥𝑥𝑥𝑥𝜀𝜀𝑥𝑥𝑥𝑥𝑉𝑉 d𝑉𝑉 , (12c) 

𝑈𝑈𝑇𝑇 = 1
2 ∫ 𝜎𝜎𝑥𝑥𝑥𝑥𝑇𝑇𝑉𝑉 �∂𝑤𝑤

∂𝑥𝑥
�
2

d𝑉𝑉. (12d) 

The first variation of kinetic energy is obtained as:
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Fig. 3. Variation of thermal expansion coefficient with temperature

Table 1.
Temperature-dependent coefficients of stainless steel (SUS3O4) at T = 0 K (Young’s modulus

E (Pa), coefficient of thermal expansion α (1 K−1)) [34]

Property P−1 P0 P1 P2 P3

E 0 201.04 × 109 3.079 × 10−4 −6.534 × 10−7 0
α 0 12.33 × 10−6 8.086 × 10−4 0 0

3.3. Governing equation of motion

In order to obtain the equation of motion, Hamiltoon’s principle is used. Based
on this variational approach, variation of the Lagrangian of the system (L) is equal
to zero over a time interval [34].

δ



t2∫
t1

L dt


= 0. (10)

Lagrangian means the difference between kinetic (UK ) and potential energies (U)
of the system [15]:

L = UK −U . (11)

Kinetic energy UK of Euler-Bernoulli beam can be expressed in the following
form [15]:

UK =
1
2

∫
V

ρ

(
∂w

∂t

)2
dV, (12a)

where ρ represents density and integration’s domain for the energy terms is over
volume.
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Potential energy of this system includes the energy resulting from toughness
(US) which is mostly named as strain energy and the energy resulting from heat
conduction (UT ) [34]:

U = UT +US , (12b)

US =

∫
V

σxx εxx dV, (12c)

UT =
1
2

∫
V

σxx
T

(
∂w

∂x

)2
dV . (12d)

The first variation of kinetic energy is obtained as:

δUK =

∫
V

ρ
∂w

∂t
∂

∂t
δw dV . (13)

The first variations of the potential energies are given as:

δUT =

∫
V

σxx
T ∂w

∂x
∂

∂x
δw dV, (14)

δUS =

∫
V

σxxδεxx dV . (15)

Using Eq. (9) and Eq. (14) takes the following form:

δUT = −

L∫
0

E(T )α(T )A∆T
∂w

∂x
∂

∂x
δw dx. (16)

By substituting Eq. (4) into Eq. (15), Eq. (17) is obtained:

δUS =

∫
V

−zσxx
∂2

∂x2 δw dV . (17)

By introducing bending moment as the second stress resultant in Eq. (18), Eq. (17)
can be rewritten as Eq. (19):

M =
∫
A

zσxx d A, (18)

δUs = −

L∫
0

M
∂2

∂x2 δw dx. (19)
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Eq. (13) can be converted to integration over the area of the cross section:

δUK =

L∫
0

ρA
∂w

∂t
∂

∂t
δw dx. (20)

Substituting Eqs. (16), (19) and (20) into the Eq. (10) leads to the following
equation:

t2∫
t1

L∫
0

{
ρA

∂w

∂t
∂

∂t
δw + M

∂2

∂x2 δw + S
∂w

∂x
∂

∂x
δw

}
dx dt = 0. (21)

In Eq. (21), S = E(T )α(T ) A∆T . By integration by parts on Eq. (21), Eq. (22)
is concluded:

t2∫
t1

L∫
0

(
∂2M
∂x2 − S

∂2w

∂x2 − ρA
∂2w

∂t2

)
δw dx dt

+

t2∫
t1




∂M
∂x

δw
�����

L

0
− S

∂w

∂x
δw

�����

L

0
− M

∂δw

∂x

�����

L

0




dt = 0. (22)

As a result, the equation of motion and the boundary conditions of the simply-
supported nonlocal beam are obtained:

ρA
∂2w

∂t2 −
∂2M
∂x2 + S

∂2w

∂x2 = 0, (23)

w |x=0, L = 0,
∂2w

∂x2

�����x=0, L
= 0. (24)

Using Eqs. (2), (4) and (18); moment-strain relation of the nonlocal Euler-Bernoulli
beam is achieved:

M − (e0a)2 ∂
2M
∂x2 = −EI

∂2w

∂x2 , (25)

where I is second moment of inertia of the beam’s cross section.
By substituting second derivative of the nonlocal bending moment from

Eq. (23) into Eq. (25), an explicit relation for the second stress resultant (M)
is obtainable:

M = (e0a)2
[
ρA

∂2w

∂t2 + S
∂2w

∂x2

]
− EI

∂2w

∂x2 . (26)

Finally, the explicit nonlocal governing equation of motion in terms of lateral
displacement can be derived by substituting second derivative of Eq. (26) into
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Eq. (23) as follows:

ρA
∂2w

∂t2 − (e0a)2
[
ρA

∂4w

∂x2∂t2 + S
∂4w

∂x4

]
+ EI

∂4w

∂x4 + S
∂2w

∂x2 = 0. (27)

Ignoring temperature difference (∆T = 0) in Eq. (27) leads to the governing
equation of nonlocal Euler-Bernoulli beam.

4. Solution procedure

For the case of free vibrations; since there is no trace of any external forces or
viscous damping, lateral displacement can be expressed as in the following shape:

w(x, t) = y(x)erωt, (28)

inwhichω denotes the natural angular frequency, y(x) is the amplitude of vibrations
and r =

√
−1. Using Eq. (28), Eq. (27) reaches the following form:

(
EI − (e0a)2S

) d4y

dx4 +
(
S + (e0a)2ρAω2

) d2y

dx2 − ρAω2y = 0. (29)

Dimensionless variables are defined as follows:

X =
x
L
, Y =

y

L
, η =

e0a
L
,

ω̂ = ωL2

√
ρA

EI − (e0a)2S
, q =

SL2

EI − (e0a)2S
.

(30)

As such, the equation of motion (Eq. (29)) is simplified into the following dimen-
sionless equation

d4Y
dX4 +

(
q + η2ω̂2

) d2Y
dX2 − ω̂

2Y = 0. (31)

In this section, Galerkin’s method is adopted. Based on Babaei et al. [34] this ap-
proximate method discretizes the continuous system into a discrete system utilizing
expansion series.

Y (X ) =
n∑
i=1

biϕi (X ). (32)

In Eq. (32), mode shape functions are considered as a linear combination of trial
functions (ϕi (X )) and undetermined coefficients (bi). Trial functions are a com-
plete set of independent functions. This procedure is equivalent to applying the
method of variation of parameters to a function space. Constraints should be ap-
plied on the function space in order to characterize the space with a set of trial
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functions. Such functions also play the role of test or weighting functions. It is es-
sential to choose proper trial functions satisfying natural and geometric boundary
conditions. For a simply-supported (pinned-pinned) beam, following sinusoidal
functions are adopted (however other functions satisfying the boundary conditions
can also be used):

ϕi (X ) = sin(iπX ), i = 1, 2, 3, . . . (33)

Substitution Eq. (32) into Eq. (31) leads to the following equation

n∑
i=1

bi
d4ϕi (X )

dX4 +
(
q + η2ω̂2

) n∑
i=1

bi
d2ϕi (X )

dX2 − ω̂2
n∑
i=1

biϕi (X ) = 0. (34)

In order to use orthogonality of trial functions, Eq. (34) is to be multiplied by
the weight functions ϕ j (X ). Then, integration operation over the interval of the
system leads the Galerkin procedure to the following equation:

n∑
i=1

1∫
0

bi
d4ϕi (X )

dX4 ϕ j (X ) dX +
(
q + η2ω̂2

n

) n∑
i=1

1∫
0

bi
d2ϕi (X )

dX2 ϕ j (X ) dX

− ω̂2
n∑
i=1

biϕi (X )ϕ j (X ) dX = 0, j = 1, 2, 3, . . . (35)

After some mathematical manipulations, Eq. (35) reaches a set of linear algebraic
homogenous equations in the unknowns bi which can be numerically solved and
dimensionless frequencies (ω̂) can be obtained.

5. Results and discussion

In this section, numerical results concerning the vibration behavior of a simply-
supported nonlocal Euler-Bernoulli beam are presented. Thermo-mechanical prop-
erties of the beam are shown in Table 1. It is a major note that modulus of elasticity
(E), and thermal expansion coefficient (α) are varying based on the temperature
shifts. Such variations in the value of E and α explicitly affect the frequency due
to the additional term caused by thermal stresses. Beams length is L = 10000 nm.
Thickness is variable and different values for the ratio of length to the thickness
(slenderness ratio) are considered. Numerical results are obtained using the dimen-

sionless frequency relation
(
ω̂ = ωL2

√
(ρA/EI − (e0a)2S)

)
, in which I = bh3/12

is the second moment of inertia and A = bh is the area of the cross section. In order
to check the validity of the present model, present results are compared with those
of Reddy [36] and Eltaher et al. [20]. This verification given in Table 2 approves
the accuracy and validity of the present results. As it is evident in the formula



16 Alireza Babaei, Arash Rahmani, Isa Ahmadi

Table 2.
Comparison of dimensionless frequencies of first three vibration modes (L/h = 100)

ω̂n η2 0 1 2 3 4

n = 1
Present 9.8696 9.4159 9.0195 8.6693 8.3569

Eltaher et al. (2012) 9.8700 9.4162 9.0197 8.6695 8.3571
Reddy (2007) 9.8696 9.4159 9.0195 8.6693 8.3569

n = 2
Present 39.4784 33.4277 29.5111 26.7115 24.5823

Eltaher et al. (2012) 39.4849 33.4301 29.5117 26.7111 24.5814

n = 3
Present 88.8264 64.6414 53.3078 46.4000 41.6285

Eltaher et al. (2012) 88.8594 64.6429 53.3024 46.3922 41.6199

presented above, existence of S demonstrates that temperature should play a direct
role in the dimensionless frequency.

Table 3 shows dimensionless fundamental frequencies for a system undergoing
temperature shifts. Results are reported for different values of nonlocal parame-
ter (η2 = 1, 2, 3, 4) and for classical case (η2 = 0). Starting from initial surface
temperature (T = 20◦C), an increment of 2.5◦C is exerted and slenderness ration
is supposed to be a fixed one (L/h = 50). Tables 4 and 5 give the similar results
for dimensionless second and third frequencies. The only difference refers to the
fact that temperature increment takes greater values and this is mainly because
of covering more comprehensive frequency domain. Based on Tables 3, 4 and 5;
dimensionless frequency of both classical and nonlocal beam, decreases with tem-
perature rises. Moreover, capturing greater nonlocal parameter ends up in further
decrement in the frequency. For the same thermally-stressed system, dimensionless
fundamental frequency’s dependency on slenderness ratios (L/h = 10, 25, 50, 75,
100) are shown in Table 6. Results are calculated for both classical and nonlocal
beams. Tables 7 and 8 show the same results for dimensionless second and third

Table 3.
Variation of dimensionless fundamental frequencies for different temperatures (based on classical

(η = 0) and nonlocal theories (η , 0), L/h = 50)

ω̂1 η2 = 0 η2 = 1 η2 = 2 η2 = 3 η2 = 4
Ts = 20 9.8696 9.4159 9.0195 8.6693 8.3569
T = 22.5 9.3870 8.9510 8.5698 8.2327 7.9319
T = 25 8.8762 8.4488 8.0739 7.7412 7.4429

T = 27.5 8.3318 7.9019 7.5213 7.1800 6.8705
T = 30 7.7470 7.2996 6.8965 6.5273 6.1839

T = 32.5 7.1116 6.6264 6.1755 5.7466 5.3286
T = 35 6.4108 5.8570 5.3165 4.7683 4.1865

T = 37.5 5.6199 4.9462 4.2326 3.4153 2.3393
T = 40 4.6938 3.7921 2.6554 0 0
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Table 4.
Variation of dimensionless second frequencies for different temperatures (based on classical (η = 0)

and nonlocal theories (η , 0), L/h = 50)

ω̂2 η2 = 0 η2 = 1 η2 = 2 η2 = 3 η2 = 4
T = 20 39.4784 33.4277 29.5111 26.7115 24.5823
T = 25 38.5234 32.6033 28.7689 26.0261 23.9385
T = 30 37.5363 31.7167 27.9369 25.2240 23.1503
T = 35 36.5144 30.7595 26.9968 24.2712 22.1615
T = 40 35.4547 29.7215 25.9239 23.1182 20.8798
T = 45 34.3538 28.5900 24.6849 21.6885 19.1412
T = 50 33.2076 27.3489 23.2322 19.8560 16.6104
T = 55 32.0111 25.9774 21.4946 17.3868 12.3876
T = 60 30.7585 24.4473 19.3573 13.7481 0

Table 5.
Variation of dimensionless third frequencies for different temperatures (based on classical (η = 0)

and nonlocal theories (η , 0), L/h = 50)

ω̂3 η2 = 0 η2 = 1 η2 = 2 η2 = 3 η2 = 4
T = 20 88.8264 64.6414 53.3078 46.4000 41.6285
T = 25 87.8779 63.9378 52.7162 45.8746 41.1475
T = 30 86.9114 63.1923 52.0632 45.2697 40.5686
T = 35 85.9263 62.4009 51.3389 44.5658 39.8586
T = 40 84.9220 61.5592 50.5307 43.7359 38.9666
T = 45 83.8977 60.6620 49.6227 42.7425 37.8116
T = 50 82.8527 59.7034 48.5949 41.5310 36.2546
T = 55 81.7863 58.6766 47.4211 40.0187 34.0341
T = 60 80.6976 57.5735 46.0667 38.0732 30.5825
T = 65 79.5856 56.3849 44.4844 35.4654 24.2995
T = 70 78.4494 55.0996 42.6079 31.7516 0

frequencies. It is inferable that by increasing the length of the beam in comparison
to the thickness, frequencies get smaller. As a result, temperature rises and slen-
derness ratio’s increment, reinforce each other and affect the frequencies in similar
way. Another finding is the fact that, frequencies can be ignored for specific non-
local parameter with initial temperature rise and specific slenderness ratio. Table 3
shows this point when temperature is T = 40◦C and η2 = 3, 4. This means that the
first frequency of the system is zero and there is no vibration when the mentioned
values of temperature and nonlocal parameter are considered. A similar procedure
happens for second and third frequencies with higher temperatures and only when
nonlocal parameter is equal to 4. It can be concluded that the state of zero-frequency
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Table 6.
Variation of dimensionless fundamental frequencies with different values of slenderness ratio and

temperature shifts (based on classical (η = 0) and nonlocal theories (η = 2))

ω̂1 η2 L/h = 10 L/h = 25 L/h = 50 L/h = 75 L/h = 100

∆T = 0
0 9.8696 9.8696 9.8696 9.8696 9.8696
2 9.0195 9.0195 9.0195 9.0195 9.0195

∆T = 2
0 9.8545 9.7750 9.4857 8.9827 8.2270
2 9.0057 8.9327 8.6631 8.1791 7.4118

∆T = 4
0 9.8394 9.6792 9.0842 7.9947 6.1533
2 8.9918 8.8442 8.2784 7.1653 4.9797

∆T = 6
0 9.8242 9.5822 8.6628 6.8620 2.8193
2 8.9779 8.7537 7.8604 5.8782 0

Table 7.
Variation of dimensionless second frequencies with different values of slenderness ratio and

temperature shifts (based on classical (η = 0) and nonlocal theories (η = 2))

ω̂2 η2 L/h = 10 L/h = 25 L/h = 50 L/h = 75 L/h = 100

∆T = 0
0 39.4784 39.4784 39.4784 39.4784 39.4784
2 29.5111 29.5111 29.5111 29.5111 29.5111

∆T = 5
0 39.4407 39.2418 38.5234 37.2953 35.5046
2 29.4828 29.3326 28.7689 27.7229 25.9770

∆T = 10
0 39.4026 39.0020 37.5363 34.9572 30.9880
2 29.4542 29.1480 27.9369 25.3810 19.7783

∆T = 15
0 39.3641 38.7587 36.5144 32.4306 25.6430
2 29.4253 28.9571 26.9968 22.1332 0

Table 8.
Variation of dimensionless third frequencies with different values of slenderness ratio and

temperature shifts (based on classical (η = 0) and nonlocal theories (η = 2))

ω̂3 η2 L/h = 10 L/h = 25 L/h = 50 L/h = 75 L/h = 100

∆T = 0
0 88.8264 88.8264 88.8264 88.8264 88.8264
2 53.3078 53.3078 53.3078 53.3078 53.3078

∆T = 5
0 88.7887 88.5903 87.8779 86.6777 84.9689
2 53.2852 53.1648 52.7162 51.8970 50.5701

∆T = 10
0 88.7506 88.3516 86.9114 84.4566 80.8949
2 53.2622 53.0174 52.0632 50.1294 46.3252

∆T = 15
0 88.7123 88.1104 85.9263 82.1574 76.5698
2 53.2390 52.8654 51.3389 47.8452 38.7104

∆T = 20
0 88.6736 87.8666 84.9220 79.7731 71.9484
2 53.2155 52.7088 50.5307 44.7673 18.1504
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is reachable for small values of nonlocal parameter, if larger temperature shifts are
exerted to the system.

Fig. 4 depicts variations of the fundamental dimensionless frequencies with
temperature. It can be understood that after a critical temperature (T = 60◦C);
nonlocal parameter turns out to be more severe in affecting the frequencies, since
steep variations take place in the mentioned temperature domain. Figs 5 and 6
demonstrate the decrement in the second and the third frequencies by tempera-
ture increment. There are three other points caught from these figures: by taking
greater nonlocal parameters, smaller frequencies should be expected. At an initial
temperature, two frequencies get closer to each other if the corresponding nonlocal
parameters are big values; in other words, as the nonlocal parameter gets greater
the corresponding frequency gets closer to the frequency derived from the previous
nonlocal parameter. Besides, Steep frequency variations in the second and third
vibration modes take place at T = 55◦C, and T = 65◦C. Fig. 7 shows the influence

Fig. 4 Variations of fundamental dimensionless frequency with temperature

Fig. 5 Variations of second dimensionless frequency with temperature
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Fig. 4. Variations of fundamental dimensionless frequency with temperature
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Fig. 5. Variations of second dimensionless frequency with temperature
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Fig. 6 Variations of third dimensionless frequency with temperature 

Fig. 7 Variations of fundamental dimensionless frequency with slenderness ratio: a) 𝜼𝜼 = 𝟎𝟎, b) 𝜼𝜼 = 𝟐𝟐 

Fig. 8 Variations of second dimensionless frequency with slenderness ratio: a) 𝜂𝜂 = 0, b) 𝜂𝜂 = 2 
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Fig. 6. Variations of third dimensionless frequency with temperature

of slenderness ratio upon fundamental dimensionless frequencies of the system
bearing temperature rises. The longer and thinner beam ends up in smaller vibra-
tion frequencies. The other deduced point is the significant effect of the sudden
temperature rises exerted to the upper and lower surfaces of the beam accompa-
nied by the slenderness ratio effects. This figure demonstrates more impressive
consequences caused by slenderness ratio if greater thermal energies are induced
to the system. In other words, temperature rise complements and intensifies the
effects of the slenderness ratio and vice versa. Moreover, Fig. 7b proves the effect
of nonlocal parameter besides to the temperature and slenderness ratio effects. For
the first vibration mode, slenderness ratio with the value of 50 (L/h = 50) is the
changing point. As far as ratio of beam length to beam thickness is smaller than 50,
frequency of the system is around a fixed value. However; for values greater than

Fig. 9 Variations of third dimensionless frequency with slenderness ratio: a) 𝜼𝜼 = 𝟎𝟎, b) 𝜼𝜼 = 𝟐𝟐 
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thermal stresses is presented. To capture the size-dependencies, nonlocal effect is inserted according to 

the Eringen's nonlocal theory. The governing equation of motion is derived based on the principle of 

virtual work and the solution procedure is established based on the Galerkin's approximate method. 

According to the type of the boundary conditions (pinned-pinned), sinusoidal trial functions are chosen as 

mode shape functions. Results prove that frequencies obtained based on the nonlocal theory are smaller 

than those obtained from the classical theory and those reported by Babaei [34], and the difference turns 

out to be more significant in the second and third modes of vibration. Moreover, it is also feasible to reach 

the desired frequency domain by manipulating slenderness ratio. Temperature effect in the form of 

thermal stress is another factor affecting the frequencies of the model remarkably. Finally, considering 
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50 (L/h > 50) significant shifts in the frequency are observed. Figs. 8 and 9 depict
the frequency shifts of the second and third modes of vibration showing that in the
existence of the nonlocal parameter, intense decrement in frequency is expectable.
There is changing point in the frequency value of each mode. By Fig. 8b; for
values L/h > 50 accompanied by temperature rises over 15◦C, frequency starts to
decrease sharply and reaches zero when L/h = 100. Based on Fig. 9b; for the third
mode, the steep decrement in frequency starts at L/h > 50 and temperature rises
greater than 20◦C. It shows that for higher vibration modes, greater temperature
rises cause the frequency to drop significantly. Finally based on the tables and
figures, it is evident that by considering the nonlocal effects, frequency estimations
are less than those calculated based on the classical theory. From a mathematical

Fig. 6 Variations of third dimensionless frequency with temperature 
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point of view, this is because a positive term is being added to the coefficient of
square of frequency. Physically, it can be explained since using nonlocal theory, the
stress at any point is a function of strain at all points of the configuration. Moreover,
by comparison of the results of this paper and those reported by Babaei et al. [34],
it can be concluded that different non-classical theories estimate the frequencies
close to each other. However, this slight shifts can be important through the design
procedure.

6. Conclusions

In this paper, free lateral vibration analysis of a small-scaled Euler-Bernoulli
beam model undergoing thermal stresses is presented. To capture the size-depen-
dencies, nonlocal effect is inserted according to the Eringen’s nonlocal theory. The
governing equation of motion is derived based on the principle of virtual work and
the solution procedure is established based on the Galerkin’s approximate method.
According to the type of the boundary conditions (pinned-pinned), sinusoidal trial
functions are chosen as mode shape functions. Results prove that frequencies ob-
tained based on the nonlocal theory are smaller than those obtained from the
classical theory and those reported by Babaei [34], and the difference turns out
to be more significant in the second and third modes of vibration. Moreover, it is
also feasible to reach the desired frequency domain by manipulating slenderness
ratio. Temperature effect in the form of thermal stress is another factor affecting the
frequencies of the model remarkably. Finally, considering proper surface tempera-
tures and appropriate slenderness ratio leads to a desirable and expectable behavior
of small-sized systems.
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