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ABSTRACT:

Domańska-Siuda, J. and Bagiński, B. 2019. Magma mingling textures in granitic rocks of the eastern part of the 
Strzegom-Sobótka Massif (Polish Sudetes). Acta Geologica Polonica, 69 (1), 143–160. Warszawa.

Many granitic intrusions display evidence of magma mixing processes. The interaction of melts of contrasting 
composition may play a significant role during their generation and evolution. The Strzegom-Sobótka massif 
(SSM), located in the Sudetes (SW Poland) in the north-eastern part of the Bohemian Massif of the Central 
European Variscides, exhibits significant evidence of magma mingling on the macro- and micro-scales. The 
massif is a composite intrusion, with four main varieties: hornblende-biotite granite (with negligible amount of 
hornblende) and biotite granite in the western part, and two-mica granite and biotite granodiorite in the eastern 
part. Field evidence for magma mingling is easily found in the biotite granodiorite, where dark enclaves with 
tonalitic composition occur. Enclaves range from a few centimeters to half a meter in size, and from ellipsoidal 
to rounded in shape. They occur individually and in homogeneous swarms. The mixing textures in the enclaves 
include fine-grained texture, acicular apatite, rounded plagioclase xenocrysts, ocellar quartz and blade-shaped 
biotite. The most interesting feature of the enclaves is the presence of numerous monazite-(Ce) crystals, includ-
ing unusually large crystals (up to 500 μm) which have grown close to the boundaries between granodiorite and 
enclaves. The crystallization of numerous monazite grains may therefore be another, previously undescribed, 
form of textural evidence for interaction between two contrasting magmas. The textures and microtextures may 
indicate that the enclaves represent globules of hybrid magma formed by mingling with a more felsic host melt. 
Chemical dating of the monazite yielded an age of 297±11 Ma.

Key words: Strzegom-Sobótka massif ;  Grani te ;  Enclave;  Variscides;  Magma mixing;  Magma 
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INTRODUCTION

Mafic magmatic enclaves (MMEs; Barbarin 
1988, 2005), also termed mafic microgranular en-
claves (Didier 1973; Didier and Barbarin 1991; Poli 
and Tommasini 1991) or microgranular magmatic 
enclaves, are common in calc-alkaline granitoid 
plutons (Bacon 1986; Didier and Barbarin 1991), 
and are also abundant in most Sudetic Variscan in-
trusions (Gerdes et al. 2000; Janoušek et al. 2000, 
2004; Słaby and Martin 2008, Słaby et al. 2008; 
Pietranik and Koepke 2014; Michel et al. 2016). 

Their presence in felsic plutons is considered im-
portant evidence of mafic-felsic melt interactions 
and potentially gives us valuable information on 
the origin and evolution of the host magma and its 
influence on the composition of the pluton, min-
eral compositions and growth textures. The en-
claves may also preserve important information on 
the nature of parental magmas (Didier 1973; Didier 
and Barbarin 1991; Vernon 1984, 1991; Castro et 
al. 1990; Barbarin and Didier 1991; Hibbard 1991; 
Orsini et al. 1991; Wiebe et al. 1997; Barbarin 2005; 
Vernon 2010).
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This paper presents new petrographical data as 
well as field observations and age estimates of the bi-
otite granodiorites and their enclaves from the eastern 
part of the Strzegom-Sobótka massif. We describe in 
detail a group of enclaves belonging to one swarm 
and the textures that occur in the contact zone be-
tween them and host granodiorite. We also report on 
monazites of unusually large size (up to 500 μm) which 
grew at the interface between magmas of contrasting 
composition, their growth apparently being promoted, 
or facilitated, by interaction between the magmas. 
The presence of numerous grains of monazite may in-
dicate the mobility of not only the main elements, but 
also the rare earth elements, caused by the interaction 
of compositionally different melts.

GEOLOGICAL SETTING

The Variscan granites of the Sudetes, SW Poland, 
show two distinct age groups, at ~340–330 Ma and 
320–295 Ma (Mazur et al. 2007 and references 
therein). Emplacement of the older granites was 
related to the main stage of nappe stacking within 
the Central European Variscides and the granites 
are thought to have formed by dehydration melting 
at mid-crustal levels through thermal relaxation of 
overthickened Variscan crust (e.g., Franke 2000). The 
younger magmatic event was post-tectonic and re-
sulted in more voluminous granitic plutons, mainly of 
peraluminous composition. The plutons were locally 
accompanied by contemporaneous mafic to interme-

Text-fig. 1. Geological sketch map of the Strzegom-Sobótka massif, with the granitoid varieties distinguished (modified after Majerowicz 
1972 and Puziewicz 1990). The location of the Strzeblów quarry is marked. The triangles mark the deformation zone bordering the intrusion 

to the east
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diate magmatism, in the form of tonalitic to lampro-
phyric dykes and mafic magmatic enclaves and were 
broadly associated with mafic to silicic volcanism in 
intermontane basins (Kryza and Awdankiewicz 2012; 
Awdankiewicz et al. 2014; Turniak et al. 2014). The 
younger phase of magmatism had a clear input of ma-
terial from the lithospheric mantle, perhaps related to 
lithospheric extension following the end of Variscan 
convergence (Henk 1997; Pietranik and Wright 2008; 
Turniak et al. 2014). Most of the granitic bodies are 
composite plutons that crystallized from melts de-
rived from many sources (e.g., Pin et al. 1989; Gerdes 
et al. 2000; Domańska and Słaby 2004; Domańska-
Siuda  and Słaby 2005; Słaby and Götze 2004; Słaby 
and Martin 2008; Słaby et al. 2008; Pietranik and 
Koepke 2009; Pietranik and Koepke 2014; Lisowiec 
et al. 2015; Oberc-Dziedzic et al. 2013; Žák et al. 
2013; Laurent et al. 2014; Jokubauskas et al. 2017; 
Birski et al. 2018; Domańska-Siuda et al. 2019).

The Strzegom-Sobótka Massif is the largest 
granite pluton within the central part of the Fore-
Sudetic block (the NE part of the Variscan belt), about 
50 km southwest of the city of Wrocław (Text-fig. 1). 
Elongated SE-NW and approximately 50 km long, 
the massif has a maximum width of ~12 km. The 
Strzegom-Świdnica fault divides it into eastern and 

western parts. On the northwestern side, the intrusion 
borders on the Sudetic Boundary Fault, separating 
it from the metamorphic rocks of the Kaczawskie 
Mountains. This Tertiary fault separates the moun-
tainous part of the Sudetes in the southwest from the 
Fore-Sudetic Block in the northeast.

The Góry Sowie Massif borders the Strzegom-
Sobótka intrusion on the southeast. The massif is 
mainly composed of gneisses and migmatites, with 
subordinate mafic and ultramafic rocks and small 
granulitic bodies. The protoliths have been dated 
as Late Proterozoic–Early Palaeozoic (Olivier et al. 
1993; Brueckner et al. 1996; Kröner and Hegner 
1998; Kryza and Fanning 2004). No contacts bet-
ween the granitoids and gneisses are seen at outcrop. 
On the eastern side, the intrusion is in contact with 
mafic and ultramafic rocks (gabbros, serpentinites, 
amphibolites and metavolcanics) of the Śleża Massif, 
part of the Central Sudetic Ophiolite. These rocks 
were dated as of Late Devonian–Early Carboniferous 
age (Pin et al. 1988; Oliver et al. 1993; Dubińska 
et al. 2004; Kryza and Pin 2010). On the southeast 
and northern sides, the intrusion is accompanied by 
Palaeozoic rocks (micaceous, sericitic, chlorite and 
quartzitic schists, locally intercalated with dolomite 
and greywacke-argillaceous shales, diabases and 

Text-fig. 2. Field photographs showing the variability in enclave characteristics. a – Microstructurally and compositionally similar enclaves in 
the biotite granodiorite. Note the different shapes and the common orientation of the enclaves. b – Mixed enclave swarm in the biotite granodi-

orite showing distinct textural/compositional types, suggesting different degrees of hybridization with the host rock
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quartzites), which are buried under Cenozoic depos-
its (Majerowicz 1972).

The intrusion is composed of few main litholog-
ical types: hornblende-biotite granite (with negligi-
ble amount of hornblende) and biotite granite, both 
occurring mainly in the western part, and two-mica 
granite and biotite granodiorite, occurring mainly 
in the eastern part (Kural and Morawski 1968; 
Majerowicz 1972; Maciejewski and Morawski 1975; 
Puziewicz 1990) (Text-fig. 1). We focus here on the 
biotite granodiorite in the eastern part of the massif, 
which is exposed mainly in quarries but also forms 
small, isolated outcrops. Little is known about the 
form of the granodiorite; from the overall shape of 
the outcrop it is perhaps boss-like. The biotite gran-
odiorite contains microgranular enclaves with mainly 
tonalitic composition (Text-fig. 2).

The biotite granodiorite has been dated using 
the Rb-Sr whole rock method, with an age close to 
280 Ma (Pin et al. 1988, 1989) and an initial 87Sr/86Sr 
ratio of 0.7058. A Pb evaporation zircon age for the 
biotite granodiorite is 308.4 ± 1.7 Ma, which may be 
interpreted as the time of zircon crystallization from 
the melt (Turniak et al. 2005). K-Ar dating of biotite 
gave ages of 308.8 ± 4.6 and 305.5 ± 4.3 Ma (Turniak 
et al. 2007). U-Pb zircon dating for the biotite gran-
odiorite gave ages ranging between 301.9 ± 3.6 and 
297.9 ± 3.7 Ma (Turniak et al. 2014). Chemical dat-
ing of monazite obtained for the biotite granodiorite 
(Chwałków quarry) gave an age of 300.2±11.2 Ma 
(Turniak et al. 2011). Zircon saturation temperatures 
based on whole-rock compositions are in the range 
702–787°C, taken to be the interval over which mag-
matic differentiation occurred (Turniak et al. 2014).

The depth at which the granodiorite crystallized 
is poorly constrained. Szuszkiewicz (2007) estimated 
3–5 km for monzogranites from the western part of 
the Strzegom-Sobótka massif, perhaps indicative that 
the granodiorite also cooled at upper crustal levels.

ANALYTICAL METHODS

Samples were collected in the Strzeblów quarry 
(Text-fig. 1). Whole-rock chemical analyses were car-
ried out in the ACME Analytical Laboratories Ltd. 
(Vancouver, Canada). Major and some trace elements 
were analysed using ICP-ES, rare earth elements us-
ing ICP-MS, according to procedures described on 
http://acmelab.com.

The chemical compositions of minerals were 
investigated using a Cameca SX-100 electron mi-
croprobe (WDS mode) in the Electron Microprobe 

Laboratory at the Inter-Institute Microanalytical 
Complex for Minerals and Synthetic Substances, 
Warsaw University, Poland. The following instru-
mental conditions were applied: a counting time of 
10–20 s; an acceleration voltage of 15 kV and a beam 
current of 20 nA for major elements and those of 
20–30 kV and 50 nA for trace elements. The follow-
ing standards were used: albite (Na); diopside (Mg, 
Si, Ca); wollastonite (Si, Ca); orthoclase (K, Al); hae-
matite (Fe); rhodochrosite (Mn); apatite (P, F); phlo-
gopite (F); barite (S, Ba); rutile (Ti); zircon (Zr); syn-
thetic strontium titanite (Sr); YAG (Y); end-member 
synthetic phosphates (XP5O14) for each REE; syn-
thetic uraninite (U); synthetic thorianite (Th); croco-
ite (Pb); synthetic chromium(III) oxide, Cr2O3 (Cr); 
synthetic NiO (Ni) and tugtupite (Cl). The typical 
spot size ranged between 2–5 μm depending on the 
analysed mineral. Matrix correction was performed 
using the standard PAP procedure.

The analytical procedures used to obtain the 
highest quality data for monazite chemical dating 
were as follows: (1) An ordinary analysis was done at 
an accelerating voltage of 20 kV, with a beam current 
of 50 nA and a counting time (peak and background) 
of 600 s for Pb, 400 s for U, 200 s for Th. (2) A “trace” 
type of analysis was done at an accelerating voltage 
of 20 kV, with a beam current of 150 nA and a count-
ing time (peak+background) of 600 s for Pb, 400 s 
for U, and 200 s for Th and Y. Only Th, Pb, U and Y 
were measured; the other components were treated 
as a matrix. The most important X-ray lines used for 
contents calculations were Mβ for U and Pb and Mα 
for Th. The correction factor for U content was from 
Scherrer et al. (2000).

Dozens of grains were first mapped with the 
Σigma VP Zeiss FE-SEM equipped with two SDD 
type Bruker XFlash-10 EDS detectors to establish 
Y distribution within the crystals, and the most suit-
able crystals for further dating selected. The relative 
abundance of Y was determined from the interfer-
ence-free YKα line. The maximum available 30kV 
acceleration voltage was used for the most effective 
generation of YKα, but the second largest 60 μm ap-
erture was used to stay below the 25% dead time of 
the EDS signal processing unit. Six monazite grains 
were selected for chemical age determination.

Rock textures and crystal morphology were ex-
amined in thin sections by standard petrographic 
microscopy using a Nikon E-600 microscope and 
by backscattered electron (BSE) imaging on a 
JEOL 6380 at the Scanning Electron Microscope 
and Microanalysis Laboratory, Faculty of Geology, 
Warsaw University.
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PETROGRAPHY AND GEOCHEMISTRY OF 
THE HOST BIOTITE GRANODIORITE AND 
MICROGRANULAR MAGMATIC ENCLAVES

Biotite granodiorite

The biotite granodiorite is light-grey, equigran-
ular and slightly foliated, the foliation locally being 
accentuated by the presence of lens-shaped quartz 
aggregates. It is composed of plagioclase (36–48% 
modally), K-feldspar (20–25%), quartz (23–35%) 
and biotite (3–6%), with accessory zircon, apatite, 
allanite, monazite, xenotime and opaque minerals. 
The plagioclase forms subhedral to euhedral prisms, 
0.5–1.0 cm long on average. Normal zoning is ubiqui-
tous, from An46 in cores to An6 in rims (Text-fig. 3a). 
The zoning can be continuous or discontinuous, lo-
cally oscillatory. Patchy zoning, especially in crys-
tal cores, are also observed. K-feldspar and quartz 
form inclusions (Text-fig. 3b). Alkali feldspar forms 

mainly anhedral crystals, up to two cm across. It is 
microcline, commonly showing perthitic exsolution 
lamellae. Biotite inclusions are present. Quartz oc-
curs as anhedral, interstitial grains showing weak 
shadowy extinction. It is sometimes broken into nu-
merous subgrains and also forms mosaic aggregates.

Biotite forms anhedral flakes, discrete or in ag-
gregates, and is strongly pleochroic from light straw 
yellow to dark red-brown. Some grains are partly 
chloritised. Zircon inclusions are common. The bi-
otite has high IVAl (3.0 apfu) and 100.Fe*/(Fe*+Mg) 
ratios of 63–64. The opaque phases (ilmenite and py-
rite) form inclusions in biotite or interstitial crystals. 
Zircon is less abundant than monazite, and shows 
rectangular, rounded or elongate forms up to 0.1 mm. 
Like monazite, it is present in biotite as inclusions 
and less often in plagioclase. Euhedral, prismatic 
crystals of apatite form inclusions, most commonly 
in biotite (Text-fig. 4a) and less often in feldspars and 
quartz. Allanite is less common and forms automor-

Text-fig. 3. BSE images of different type of plagioclase. a – Euhedral, normal zoning plagioclase (the biotite granodiorite). b – Euhedral, 
patchy zoning crystal of plagiocase with K-feldspar and quartz inclusions (the biotite granodiorite). c – Euhedral laths of plagioclase, building 

a groundmass of enclave. d – Plagioclase xenocryst inside enclave
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phic crystals up to 0.5 mm, many showing oscillatory 
zoning (Text-fig. 4b). Primary xenotime is rare, oc-
curring as inclusions in allanite (Text-fig. 4b).

Detailed petrographical descriptions were given 
by Majerowicz (1963, 1972).

Microgranular magmatic enclaves

The microgranular magmatic enclaves sensu Bar-
barin (1988) in the biotite granodiorite occur as dis-
crete individual bodies or in swarms. Their occurrence 
is not associated with proximity to the margins of the 
intrusion. They range in size from 3 to 50 cm but 
are mostly 5–15 cm in diameter. Their shape is oval 
or sub-spherical, they are finer-grained than the host 
rocks, occasionally porphyritic, and contain higher 

amounts of mafic minerals. Smaller enclaves tend to 
be darker than larger ones. In the Strzeblów quarry the 
enclaves constitute no more than a few percent of the 
body. They are rather uniformly distributed in the host 
but sometimes form several narrow vertical trains, or 
swarms (Text-fig. 2a). The contact between enclave 
and host rock changes from sharp, but unchilled, to 
diffuse over a distance of a few centimetres. Felsic 
areas have sometimes formed on the granodiorite side 
of the contact, seen as a light “halo” round the enclaves 
(Text-fig. 2a). Locally enclaves are mantled by biotite 
crystals (Text-fig. 2b), probably due to the adherence 
of mafic minerals to the border of the enclave by sur-
face tension (Barbarin and Didier 1991).

The enclaves are fine-grained, with crystals, 
0.1–0.5 mm in size, of plagioclase (50–62%), biotite 

Text-fig. 4. BSE images of primary (magmatic) accessory phases. a – Fluorapatite included in biotite in granodiorite contains small inclusions 
of zircon, ThSiO4 and xenotime. b – Oscillatory zoned allanite in the biotite granodiorite. Bright inclusions are xenotime. c – Xenotime with 
uraninite and ThSiO4 inclusions, at biotite-plagioclase contact in enclave. d – Large, originally euhedral monazite-(Ce), showing a combination 
of sector and oscillatory zoning and with one edge heavily resorbed. At plagioclase-biotite contact in enclave. Abbreviations: aln – allanite; 

thr – ThSiO4, urn – uraninite; xtm – xenotime; zrn – zircon
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(30–35%), quartz (5–18%) and K-feldspar (0–5%). 
Accessory phases are apatite, monazite, zircon, al-
lanite, xenotime and opaque minerals. Euhedral laths 
of plagioclase occur mostly as a groundmass phase. 

It shows distinct normal, reverse and/or oscillatory 
zoning (An37 to An9) (Text-fig. 3c).

Sometimes laths of crystals can also be observed 
projecting from the margins of the enclave outwards 

Text-fig. 5. Photomicrographs of the biotite granodiorite and mafic magmatic enclaves. a – The boundary between the biotite granodiorite 
and enclave; lath-shaped plagioclase projecting from the margins of enclave outwards and growth in quartz; inside the enclave is a visible 
large plagioclase xenocryst. b – Plagioclase from the biotite granodiorite crosses the border with enclave. c – Plagioclase xenocryst with boxy 
cellular texture (core) and anorthite spikes (rim) in enclave. d – Ocellar quartz mantled by biotite in enclave. e – Quartz aggregates in enclave. 

f – Acicular apatites in enclave. Abbreviations: ap – apatite; bt – biotite; pl – plagioclase; qtz – quartz
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and growth in K-feldspar or quartz (Text-fig. 5a). 
Large euhedral or subhedral, normal or patchily 
zoned (Text-fig. 3c), crystals up to 5 mm are some-
times present on the border of (Text-fig. 5b) or in-
side an enclave (Text-figs 2b, 3c, 5c). It is generally 
rounded by resorption, and often shows a anor-
thite-rich spike zone in the rim (Text-fig. 5 a, c). The 
cores of plagioclase xenocrysts are less calcic, with 
An contents reaching 38%, similar to the granodior-
itic plagioclases (Text-fig. 3c).

Biotite occurs as elongated, lath-shaped grains or 
as inclusions in plagioclase. It forms from anhedral 
to euhedral flakes, containing inclusions of zircon, 
apatite, allanite, monazite and xenotime. It is compo-
sitionally very similar to biotite in the granodiorite, 
with IVAl = 2.9–3.0 apfu and 100.Fe*/(Fe*+Mg) ratios 
of ~64.

Anhedral quartz is a late-crystallizing phase and 
fills the interstices between plagioclase and biotite or 
forms poikilitic grains. Rare biotite-rimmed quartz 
ocelli and oval to ellipsoidal quartz aggregates a few 
mm in size are observed in some enclaves (Text-
fig. 5d, e)

K-feldspar (0–5%) is usually rare and if present, 
forms interstitial grains between plagioclase and bio-
tite or enclosing them, suggesting a late growth phase.

Apatite is the main accessory mineral, forming 
needles up to 0.5 mm (but most often <0.1 mm), usu-
ally enclosed in plagioclase (Text-fig. 5f). A zone par-
ticularly rich in acicular apatite extends for 1–2 mm 
into the enclaves.

Monazite is the dominant accessory phase located 
on the boundary between host granodiorite and to-
nalitic enclaves (Text-figs 4d, 6). Most are located 
within the rim zone of enclaves and show the clear 
oscillatory zoning typical of a magmatic origin. 
Compositional zoning is most prominent in the Th 
content (in some large crystals varying from 23.8% 
in the core to 2% Th in the rim). As in the granodi-
orite, primary xenotime is rare. The originally mag-
matic crystal shown in Text-fig. 3c contains rounded 
uraninite and ThSiO4 inclusions.

The host biotite granodiorite-enclave contact zone

The contact zones between granodiorite and en-
claves are diverse on the scale of a few centimeters 
(Text-fig. 2b). Compared to the normal granodiorite, 
they are poor in mafic minerals, forming a felsic halo 
around the enclaves (cf. Text-fig. 2b). These zones 
are considered to result from the chemical exchange 
between mafic and felsic melt (Barbarin and Didier 
1991). The plagioclase has commonly been rendered 

turbid by hydrothermal fluids, which have also caused 
partial chloritization of the biotite. It appears that 
the contact zone was a preferential pathway for fluid 
movement. The contact area is also heavily cracked, 
with the partial development of a crudely mosaic 
texture, the texture possibly being due to late-stage 
differential movement between more mafic magma 
blobs and the partially crystallized granitic host.

As noted above, monazite is the dominant acces-
sory phase in the contacts between granodiorite and 
the studied enclaves (Text-fig. 6). The largest crys-
tals occur close to the boundaries of the lithologies, 
particularly where enclaves occur a few cm apart. It 
occurs as inclusions in biotite and plagioclase, imply-
ing that it started to grow early in the crystallization 
sequence, or is interstitial, forming euhedral to sub-
hedral grains. The long dimensions of the crystals 
vary from tens of μm up to 500 μm (Text-fig. 3d). 
Wolf and London (1995) considered monazite >100 
μm as “large” and Förster (1998) considered the size 
of “normal” monazite-(Ce) to be in the range 20 μm 
to >200 μm. Townsend et al. (2000) reported crys-
tals ≥200 microns in the Ireteba granite, Southern 
Nevada, and Broska et al. (2000) found monazites 
of 300–500 μm size in granitoids of the Tribeč 
Mountains, Western Carpathians. Lisowiec et al. 
(2013) recorded monazite up to 300 μm in size in the 
Stolpen granite, Germany. The Strzegom crystals are, 
therefore, relatively large for magmatic monazites. In 
a thin section, the number of monazite crystals larger 
than ~20 μm within the granodiorite-enclave contact 
zone can exceed 50, whilst within the granodiorite 
the number is usually below ten.

The magmatic monazite is almost invariably 
zoned, the zoning textures being divisible into three 
types, rather similar to those recognized by Townsend 
et al. (2000) in monazite from the Ireteba granite, 
southern Nevada. (i) Euhedral, commonly showing 
oscillatory zoning (m1, m4, m6). (ii) Sector zoning, 
comprising angular areas of different brightness on 
back-scattered electron (BSE) images, sometimes as-
sociated with oscillatory zoning (Text-fig. 3d). (iii) A 
notable feature, especially of variants of types 1 and 
2, is strong marginal resorption, often restricted to 
one edge (Text-fig. 3d). In some grains, the oscilla-
tory zoning is disturbed by patchy zones and veins.

WHOLE-ROCK GEOCHEMISTRY

The biotite granodiorites and enclaves are mildly 
peraluminous, with alumina saturation indices (ASI; 
molecular Al2O3/(CaO+Na2O+K2O)) close to 1.05 and 
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Text-fig. 6. Photomicrograph of contact zone between the biotite granodiorite and enclave. Note the large amount of monazite-(Ce) crystals 
with different morphology
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ranging from 1.04 to 1.10, respectively (Table 1 and 
our unpublished data). According to the geochemi-
cal classification of Frost et al. (2001), the rocks are 
mainly magnesian and intermediate between calc- 
alkaline and alkali-calcic. The SiO2 content of the 
granodiorites ranges from 72.6 to 74.1 wt.%, whilst 
the enclaves contain from 62.1 to 68.2 wt.% SiO2. 
The enclaves have higher contents of Al2O3, TiO2, 
total Fe as Fe2O3, MnO, MgO, CaO, P2O5, Co, V, 
Na2O, Cs, Rb, Ga, Zr, Hf, Nb, Ta, REE and Y, and 
lower contents of K2O and Ba. Chondrite-normalised 
REE patterns of the host granodiorite are similar and 
subparallel to those of the enclaves (Text-fig. 7). The 
enclaves generally have higher contents of all REE, 
higher LaN/YbN (for granodiorites from 5.1 to 5.9 
and for enclaves between 5.0 and 7.7; Table 1) and 
similar to, or larger negative Eu anomalies than, the 
host rocks (for granodiorite Eu/Eu* = 0.52–0.56, for 
enclaves: 0.30–0.36).

DISCUSSION

Textural evidence for magma mingling

The presence of microgranular, dark enclaves in a 
felsic host is considered important evidence of inter-
action of contrasting in composition melts. Magmas 
of different compositions, different temperatures, 
and different stages of crystallization can mix and/
or mingle with each other. The term “mixing” is used 
to describe hybrid rocks whose original components 

have been obscured. The term “mingling” refers to 
the interaction of contrasting magmas whose compo-
sition has been changed to some extent but which have 
partly retained their original features. Dark micro-
granular enclaves are produced by mingling between 
mafic and felsic magmas. The different types of inter-
action between coexisting magmas may indicate that 
hybridisation processes occur at different stages in the 
evolution of the magma system. Although mafic mag-
matic enclaves have been identified in many granitic 
bodies, their origin is still debated. Several models 
have been proposed for their origin. The common 
interpretation implies that enclaves represent mafic 
magma “blobs” (Zorpi et al. 1989) or “globules” 
(Vernon 1984), probably produced from the mantle, 
that have mingled or partly mixed with felsic mag-
mas derived from the crust (Didier 1973; Reid et al. 
1983; Vernon 1984, 1991, 2000; Barbarin and Didier 
1991; Castro et al. 1990; Barbarin and Didier 1991; 
Orsini et al. 1991; Poli and Tommasini 1991; Elburg 
1996; Collins et al. 2000; Słaby and Martin 2008; 
Słaby et al. 2008; Perugini and Poli 2012; Chen et 
al. 2015). Another model assumes a restitic origin 
for the enclaves (Chappell et al. 1987; Chen et al. 
1990; Chappell and White 1991; White et al. 1999). 
That model interprets the enclaves as representing the 
solid residues of refractory minerals from the partial 
melting of the source rocks of the granitoid. A model 
suggesting that enclaves represent disrupted cumu-
lates or the fine-grained, chilled margin of the magma 
chamber was proposed by Fershtater and Borodina 
(1977, 1991), Phillips et al. (1981), Dodge and Kistler 

Text-fig. 7. Chondrite-normalised REE patterns for selected biotite granodiorites and enclaves. Normalizing factors from Sun and 
McDonough (1989)
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Sample 021 023 024 022 123 124 125-A 125-B
type granite granite granite enclave enclave enclave enclave enclave
wt %
SiO2 74.08 72.57 73.07 62.76 64.70 65.55 63.06 67.16
TiO2 0.19 0.25 0.27 0.87 0.72 0.69 0.82 0.59
Al2O3 13.97 14.47 14.56 17.48 16.55 16.21 17.10 16.39
Fe2O3 t 1.50 1.85 1.97 5.68 4.88 4.76 5.61 3.97
MnO 0.04 0.06 0.07 0.16 0.15 0.15 0.16 0.12
MgO 0.37 0.49 0.53 1.68 1.38 1.34 1.64 1.13
CaO 1.59 1.89 1.83 3.61 2.97 2.97 3.35 2.96
Na2O 3.78 4.16 4.14 4.64 5.05 4.80 4.79 5.25
K2O 3.87 3.42 3.51 2.13 1.93 1.84 2.11 1.57
P2O5 0.08 0.06 0.06 0.38 0.28 0.24 0.36 0.23
LOI 0.30 0.20 0.25 0.40 0.30 0.60 0.80 0.60
Total 99.82 99.55 100.40 99.80 99.42 99.59 99.80 99.97

A/CNK 1.05 1.03 1.04 1.06 1.05 1.06 1.05 1.04
Mg no. 0.33 0.34 0.35 0.37 0.36 0.36 0.37 0.36

ppm
Ba 584 590 547 507 332 360 463 352
Cs 4 4 6 9 10 10 11 7
Rb 110 115 138 143 157 150 165 119
Sr 230 268 263 355 256 297 355 288
V 13 15 16 55 42 43 58 37
Co 4 3 3 7 6 6 8 5
Zr 84 100 111 155 210 181 170 173
Hf 3 3 4 5 6 6 5 5
Y 19 22 23 43 45 42 47 30

Nb 10 14 17 27 35 36 31 26
Ta 1 1 3 2 3 3 2 2
U 6 5 5 9 4 4 18 4
Th 10 11 11 5 8 9 5 8

La 13.9 17.1 18.5 26.1 34.4 27.7 27.6 26.6
Ce 27.6 36.0 38.0 52.3 71.3 56.4 55.2 53.1
Pr 3.4 3.9 4.25 6.61 7.62 6.4 6.81 6.11
Nd 12.2 15.4 15.7 25.4 28.7 24.4 26.6 22.9
Sm 2.9 3.0 3.4 6.5 6.6 5.7 7.0 5.8
Eu 0.5 0.5 0.6 0.8 0.7 0.6 0.81 0.7
Gd 2.8 2.9 3.2 7.2 7.0 6.1 7.8 5.7
Tb 0.6 0.6 0.6 1.4 1.4 1.2 1.5 1.1
Dy 3.2 3.0 3.3 7.4 7.2 6.4 8.0 5.5
Ho 0.6 0.6 0.7 1.3 1.3 1.2 1.5 1.0
Er 1.7 2.0 2.0 3.6 3.7 3.6 4.1 2.7
Tm 0.3 0.3 0.3 0.5 0.6 0.5 0.6 0.4
Yb 1.8 1.9 2.1 3.3 3.3 3.2 3.7 2.3
Lu 0.3 0.3 0.3 0.5 0.5 0.5 0.5 0.3

(La/Yb)N 5.14 5.86 5.89 5.24 6.97 5.70 4.97 7.67
Eu/Eu* 0.55 0.56 0.52 0.34 0.30 0.33 0.34 0.36

Table 1. Representative composition of biotite granodiorite and enclaves. LOI – loss of ignition; A/CNK = Al2O3/(CaO+NaO+K2O) molar; 
Mg no. = atomic Mg/(Mg+Fe2+); Eu/Eu* = [EuN/√(SmN*GdN)]; N – chondrite normalized to values of Nakamura 1974
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(1990), Flood and Shaw (2014), Dorais et al. (1997) 
Dahlquist (2002), Chen W.S. et al. (2007), Chen S. et 
al. (2015) or Lee et al. (2015). A xenolithic origin for 
the dark enclaves was suggested by Elburg (1996) and 
Clemens and Elburg (2013).

However, we present here textures that point to 
the interaction between the melts of contrasting com-
position and not to the origin of the enclaves. The 
internal textures of the enclaves from the eastern part 
of the Strzegom-Sobótka massif are described for the 
first time. The spherical to ellipsoidal shapes, fine-
grained chilled margins, felsic haloes, and scarce 
zoned enclaves with discontinuous hybrid zones at 
enclave-host contacts may suggest they are quenched 
blobs of silica-poor magma that intruded the granitic 
host (Didier and Barbarin 1991; Barbarin and Didier 
1992; Wiebe and Collins 1998). The presence of 
such textures indicates that the mafic or hybridic, 
with intermediate composition magma was proba-
bly injected into the magma chamber at the final 
emplacement level (Barbarin and Didier 1992) and 
was scattered throughout the pluton by convection. 
The fine grain size of the enclaves is consistent with 
rapid crystallization due to thermal equilibration be-
tween the high-temperature, probably low-viscosity 
magma and relatively low-temperature, high-viscos-
ity granitic magma (Vernon 1984; Fernandez and 
Barbarin 1991).

The local concentration of enclaves into poly-
genic swarms may have been caused by segregation 
(Barbarin and Didier 1992; Collins et al. 2000). The 
appearance of polygenic swarms of enclaves may 
indicate the proximity to the marginal part of the 
magma chamber of the channels with which the more 
mafic magma was injected into almost solidified gra-
nodiorite (Janoušek et al. 2000; Barbarin 2005).

According to Hibbard (1991), no single texture 
can be used to prove the occurrence of magma mix-
ing-mingling processes. We have described the com-
bination of textures pointing to these interactions, 
such as plagioclase with disequilibrium textures from 
the host biotite granodiorite-enclave contact zone 
(Text-fig. 3b), plagioclase xenocrysts with disequilib-
rium textures inside the enclaves (Text-fig. 3d), small 
plagioclase laths and blade-shape biotite building up 
a framework in the enclave matrix (Text-fig. 5a–e), 
quartz ocelli (Text-fig. 5d), ellipsoid quartz aggre-
gates (Text-fig. 5e) and the acicular morphology of 
apatite (Text-fig. 5f).

Megacrysts of plagioclase with disequilibrium 
textures occur in both the host granodiorite and en-
claves. These crystals display patchily zoned cores 
(i.e. boxy cellular texture) and combinations of sev-

eral continuous/discontinuous oscillatory zones in 
the rim. The more calcic, anorthite-rich, zone in less 
calcic plagioclase crystals was described by Wiebe 
(1968) as an anorthite ‘spike’ and linked with magma 
mixing. Between the inner and outer parts of crystals 
resorption zones are observed (Text-figs 3d, 5c). The 
resorption-regrowth textures may be connected with 
local superheating of felsic magma by contact with 
injected mafic magma blobs and reflect rapid changes 
in magma composition (Hibbard 1991). After disso-
lution, they have re-grown in more primitive magma 
by regaining the equilibrium at the crystal-melt inter-
face (Tsuchiyama 1985).

The presence of porphyrocrysts of plagioclase 
inside enclaves can be interpreted as their having 
moved from the granitic into mafic melts (Barbarin 
and Didier 1991; Hibbard 1991; Waight et al. 2000) 
and therefore they will be referred as xenocrysts. The 
process has been documented from many plutons in 
the Sudetes: Janoušek et al. (2004), for example, re-
ported that partly grown plagioclase crystals were ex-
changed, sometimes repetitively, during mixing of ba-
sic and acidic magmas in the Sávaza intrusion, Czech 
Republic, and Słaby and Götze (2004) and Słaby et al. 
(2007) recorded megacryst movement between melts 
in the Karkonosze pluton in the Western Sudetes; 
Pietranik and Koepke (2014) documented plagioclase 
transfer in dioritic and granodioritic rocks from the 
Gęsiniec Intrusion (Strzelin Massif). Such textures 
have also been described from the western part of the 
Strzegom massif (Domańska-Siuda and Słaby 2005; 
Domańska-Siuda 2007; Domańska-Siuda et al. 2019).

The fine-grained enclave matrix is composed 
mainly of small lath-shaped plagioclases (Text-fig. 5a–
e). Most display normal zoning, with core composi-
tions related to an early stage of crystallization from 
more mafic magma and rims reflecting equilibration 
with the new, hybrid melt (Hibbard 1991). Their elon-
gate habit results from relatively rapid crystallization, 
favoured by a high nucleation rate.

Biotite-rimmed quartz ocelli may also be ex-
plained as a result of magma interactions (Hibbard 
1991). Quartz crystals were introduced from a felsic 
to a more mafic, unstable system. Marginal dissolu-
tion of quartz extracts heat of crystallization from 
the adjacent melt, causing local under-cooling and 
promoting nucleation of mafic minerals (Baxter and 
Feely 2002).

The acicular morphology of apatite is different to 
that in granodiorite and reflects growth under condi-
tions of relatively fast quenching of the mafic magma 
(Wyllie et al. 1962; Hibbard 1991). The abundance of 
acicular apatite, especially in the outer parts of the 
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enclaves, can support this process. Another texture 
linking with magma mixing-mingling is the pres-
ence of mixed apatite morphologies, where acicular 
apatites coexist with prismatic forms (Hibbard 1991). 
Prismatic apatite occurs in granodiorite in close 
proximity to enclave (Text-fig. 4a), in the zone un-
doubtedly changed by the interacting melts.

The presence of large monazite-(Ce) crystals 
close to the boundaries between granodiorite and 
dark, microgranular enclaves is an uncommon fea-
ture in the intrusion, occurring only where enclaves 
are closely packed, within a few cms of each other 
(Text-figs 2, 6). This may suggest that their formation 
is also linked to temperatures locally elevated due to 
the presence of the hotter, more mafic and enriched in 
REE melt. This promoted crystal growth by lowering 
melt viscosity and promoting faster diffusion of ele-
ments to crystal faces (Orsini et al. 1991; Wark and 
Miller 1993). It was noted above that the granodiorite 
zones between enclaves commonly show hydrother-
mal alteration of the main minerals and cataclastic 
texture. Hence, fluid ingress and deformation may 
also have promoted crystal growth. Further evidence 
of the growth mechanism may come from oscillatory 
zoning.

Oscillatory zoning in monazite-group miner-
als (Text-fig. 6) is usually ascribed to crystalliza-
tion under magmatic conditions (Broska et al. 2000; 
Townsend et al. 2000; Dini et al. 2004). This type 
of zoning can, in general, be ascribed to two mecha-
nisms (Bottinga et al. 1966): (i) repeated changes in 
the T, P, pH2O and melt composition as conditions 
within or external to the magma reservoir change, or 
when there is relative movement between melt and 
crystals; and (ii) the kinetics of the processes acting 
at the crystal-melt interface. Both mechanisms may 
have acted during growth of the monazites in the 
hybrid magma.

Even when the enclaves had reached the point of 
critical crystallinity (Marsh 1996) and showed no 
internal movement of crystals and residual melt, they 
would still have been plastic. They would also have 
been enclosed in granodiorite magma which was 
still relatively mobile. Due to the differing viscosi-
ties and densities of the two lithologies, the margins 
of the enclaves would have ‘seen’ melts of different 
bulk composition and perhaps pH2O. The compo-
sitional differences between the lighter and darker 
zones thus reflected the contact of the growing 
crystals with melts of varying LREE and Si content 
(Orsini et al. 1991).

Alternatively, the oscillatory zoning was depen-
dent on the kinetics of processes acting at the inter-

face between the melt and the growing crystal faces. 
Where the rate of crystal growth was not balanced 
by rates of element diffusion, chemical boundary 
layers, enriched and then depleted in LREE and Si 
may have developed, represented by the zones in the 
crystals. The large size and abundance of monazite 
seem to argue, however, for relatively rapid crystal 
growth which was facilitated by contact with new, 
more mafic, enriched in REE melt.

The strong marginal resorption shown by some 
grains (Text-fig. 6) can also be ascribed to their being 
brought into contact with melts of different composi-
tion and/or temperature.

The stability of monazite in silicate melts de-
pends on numerous compositional parameters of the 
melt, such as the activities of SiO2, CaO and P2O5, 
the oxygen fugacity, the peraluminosity, and the 
ratios and contents of the lanthanides and actinides 
(Förster 1998). The stability relationships between 
monazite, allanite and apatite are controlled mainly 
by the Ca activity and melt peraluminosity (Wolf 
and London 1995; Broska et al. 2000; Seydoux-
Guillaume et al. 2002; Dini et al. 2004). Budzyń et 
al. (2011), for example, have shown that in the pres-
ence of F, high Ca activity destabilizes monazite 
and promotes the formation of f luorapatite and 
REE-epidote or allanite. Given that the monazite in 
the granodiorite has low CaO contents (0.37–0.81 
wt.%), the inferred high Ca activity must have been 
provided by the fluids.

Chemical dating of monazite-(Ce)

Monazite grains were dated with the EMP 
Cameca SX-100 microprobe (details are given in the 
Analytical methods section), using the Cameca pro-
gramme for chemical dating. 106 points were ana-
lyzed. The most extreme 19 results were rejected, 
leaving 87 point analyses (Text-fig. 8). Statistical 
calculations were executed using Isoplot 3 (Ludwig 
1991). The final result of 297 ± 11 Ma is in good 
agreement with the zircon ages presented by Turniak 
et al. (2014) and monazite (Turniak et al. 2011).

CONCLUSIONS

Petrological observations in the biotite granodi-
orite and enclaves with tonalitic composition lead to 
the following conclusions:
• the enclaves are igneous in origin and comprise 

plagioclase, biotite, and small amount quartz with 
accessory apatite, monazite and zircon;
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• the enclaves show petrographic features that are 
compatible with magma mixing-mingling. The 
textures include numerous acicular apatite micro-
crystals, plagioclase xenocrysts incorporated into 
the enclaves showing distinct reversed and/or oscil-
latory zoning with resorption surfaces, plagioclase 
with anorthite spike zoning, biotite-rimmed ocel-
lar quartz, ellipsoid quartz aggregates;

• we also relate the unusual growth of numerous 
monazite crystals to the process of magma mix-
ing-mingling. Crystallization of monazite might 
be linked to the higher temperatures locally el-
evated due to the presence of the hotter, more 
mafic and enriched in REE melt. This probably 
promoted crystal growth by lowering melt viscos-
ity and increasing the rate of diffusion of elements 
to crystal faces. A change of temperature and/or 
composition of the melt could be also responsible 
for resorption of many smaller monazite crystals.
Petrographic observations demonstrate that the 

microgranular magmatic enclaves represent glob-
ules of hybrid magma formed as a result of mingling 
with more felsic host melt. The local concentration 
of enclaves into polygenic swarms may by caused 
by segregation processes and their appearance may 
indicate proximity to the marginal part of the magma 
chamber.
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