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Abstract. In the calculations presented in the article, an artificial immune system (AIS) was used to plan the routes of the fleet of delivery 
vehicles supplying food products to customers waiting for the delivery within a specified, short time, in such a manner so as to avoid delays and 
minimize the number of delivery vehicles. This type of task is classified as an open vehicle routing problem with time windows (OVRPWT). It 
comes down to the task of a traveling salesman, which belongs to NP-hard problems. The use of the AIS to solve this problem proved effective. 
The paper compares the results of AIS with two other varieties of artificial intelligence: genetic algorithms (GA) and simulated annealing (SA). 
The presented methods are controlled by sets of parameters, which were adjusted using the Taguchi method. Finally, the results were compared, 
which allowed for the evaluation of all these methods. The results obtained using AIS proved to be the best.
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fleet and for scheduling the delivery of different types of food 
that require different storage temperatures. In [8], the authors 
used the tabu search (TS) algorithm to solve a vehicle routing 
problem (VRP). In [9], the authors also used this algorithm for 
delivery routing of distribution of perishable food. A genetic 
algorithm (GA) is used to determine the optimum routes for 
given time windows and researchers showed the effectiveness 
of their method for small and medium tasks in [10]. A combi-
nation of evolutionary methods and simulated annealing (SA) is 
used to solve the problem of routing with time-windows in [11]. 
An artificial immune system (AIS) was used to determine the 
order of receipt of cars from an automatic garage to minimize 
service time in [12]. In [13], ant-based clustering time series 
data are presented.

In the article, an artificial immune system is used, namely 
the algorithm of clonal selection. It is a relatively new method 
used for optimization. It was described for the first time in 
article [14]. In article [15], the authors applied AIS to solve 
the TSP problem. In order to evaluate the efficiency of the 
AIS algorithm, the same calculations were carried out using 
methods more widely known and applied for a longer time 
now, such as the genetic algorithm, where publication [16] 
is considered to be the first description of this method while 
simulated annealing is described as an optimization algorithm 
for the first time in article [17]. Besides, in paper [18], the 
authors used the same methods to solve the vehicle routing 
problem with time windows (VRPWT) for delivery of agri-
fresh produce to retailers.

The paper is organized in such a way that Section 2 contains 
the problem description and introduces the numerical model 
and solution methods, Section 3 describes the calculations and 
obtained results, with special attention paid to the selection 
of suitable values of controlling parameters. The same section 
also includes the considerations on numerical complexity of 
the selected algorithm while Section 4 contains the final con-
clusions.

1.	 Introduction

The presented work deals with the urgent problem related to 
the delivery of fresh food on time. The specificity of the pre-
sented issue is the timely delivery of very small quantities of 
the product to multiple recipients scattered over a large area of 
the entire city in a short time interval in such a manner so as 
to avoid delays and minimize the number of delivery vehicles. 
This task boils down to the problem of the traveling salesman, 
which is an NP-hard task, and for a larger number of recipients 
it cannot be solved with strict methods. It is classified as an 
open vehicle routing problem with time windows (OVRPWT) 
because vehicles are not required to return to the depot and 
a fleet of vehicles have to deliver goods to customers within 
fixed time intervals. A similar problem in which the maximum 
time spent in the vehicle by the driver must be minimized is 
solved in [1] as a variant of the open vehicle routing problem.

Due to the above-mentioned huge complexity of the tasks, 
the heuristic and metaheuristic approaches are often used. The 
advantage of such an approach lies in the ability to obtain an 
almost optimum solution, without the need for fully understand-
ing or even knowing about all internal dependencies character-
izing the problem. The only required feature is the existence of 
an objective function that describes the quality of each solution 
variant. Just for this reason, artificial intelligence methods are 
widely used in various fields of science [2], technique [3] and 
medicine [4]. In [5], the authors present a hybrid evolution strat-
egy for solving the open vehicle routing problem (OVRP). They 
use GA to solve the transportation network design problem for-
mulated as a bi-level programming model in [6]. In [7], the 
authors have proposed a procedure for optimizing the vehicle 
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The main contribution of the paper is the comparison of 
three well recognized methods of AI to the important prob-
lem of delivery planning. The key finding is the undeniable 
advantage of AIS in this field, but the importance of proper 
selection of the values of controlling parameters was shown, 
too. Efficiency of the algorithms was assured by adjusting their 
parameters using the Taguchi method [19]. The same method 
allowed to compare all results. Through the calculations, routes 
were obtained along with lists of delivery vehicles serving cus-
tomers on these routes.

2.	 Problem description and numerical model

Stress, sedentary lifestyle and bad eating habits are factors 
considered to be a serious threat to human health. People who 
take care of themselves exercise and try to eat healthy food. 
It is fashionable to use diets arranged by individual orders by 
dieticians. The problem may be the preparation of diet meals, 
but in large cities, food companies prepare meals according to 
individual needs for the whole day. The “box diet” continues 
to gain popularity.

Since most orders are delivered to the customer in the morn-
ing, for large companies a logistics problem can arise here. At 
this point, a serious issue arises for the service provider of 
how to deliver the desired goods to a large number of custom-
ers waiting for the delivery at various locations in the city, at 
a specified time and, obviously, at as low the cost as possible. 
The presented case study makes use of the data published in 
[20]. Figure 1 shows the graph presenting a simplified struc-

ture of the transportation network with the layout of customers 
and location of the supplier company. There is a driving time 
assigned to each edge and a service time assigned to each node.

The presented problem is similar to the travelling sales-
man problem: the shortest (herein: fastest) path which visits the 
given set of the graph nodes should be found. If all the nodes 
to be visited are numbered in a range from 1 to n (where n 
denotes the total number of such nodes) and the starting point 
is marked as 0, each series of such numbers is a valid schedule 
of visiting the nodes:

	 (k1, …, ki, …, kn)� (1)

where ki – number of the node which will be serviced as i-th, 
ki 2 N.

In the considered task, there is a number of vehicles sent 
out to service the nodes. Each of the vehicles (in predetermined 
order) passes through successive nodes in the order specified in 
sequence (1). The nodes through which, for example, vehicle vi 
moves, are the subsequence of sequence (1), denoted as follows:
	 ³

ki1
, …, kini

´

vi
� (2)

where kij – number of the node which will be serviced by the 
vi-th vehicle in the j-th order, j = 1, …, ni, ni – the number of 
nodes serviced by the vi-th vehicle.

During the optimization process, the route of each delivery 
van is adjusted. The route of one van is regarded as subsequence 
(2) of sequence (1). All vehicles always start at the same node 
– the delivery company (node 0). The route ends at the starting 

Fig. 1. Graph of the delivery network
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Fig. 1. The graph of the delivery network 
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Final assessment is calculated by multiplying two 
partial evaluation factors: 

max( ) ( )T P Pf f T f N=    (6) 

In herein computation using AIS, the successive 
customers are being served by a vehicle until the time 
limit is not exceeded. Then the next vehicle serves 
subsequent customers. Thus the time limit is always met. 
Under such assumptions, the function determined by 
expression (4) takes always the value equal 1. 

2.2 Solution methods. As was mentioned in the 
introduction section, the considered problem is NP-hard, 
therefore artificial intelligence methods were used for 
solving: Artificial Immune System, Genetic Algorithm 
and Simulating Annealing.  
The approach involving the artificial intelligence has the 
fundamental advantage: there no need to fully understand 
all inner dependencies of the model or even to know some 
of them. It is only one demand: the model must allow to 
calculate the value of the objective function. The objective 
function is the function defined in the solution domain and 
determines the solution quality. The objective function 
does not need to be differentiable and any of its gradients 
does not need to be known. 

2.3.1. Artificial Immune System. In general Artificial 
Immune Systems mimic the immune system of mammals. 
Interesting attempts of understanding of the immune 

features in biology were done by [21]. It shortly appeared 
that the ideas could be applied in science and technology 
[14]. Commonly, due to the very high complexity of 
biological immune systems just some their elements are 
adopted for optimization. The optimization algorithm used 
herein is based on the clonal selection paradigm. The 
primary aim is to recognize the enemy called antigen by 
antibodies - the cells of organism immune system. For this 
purpose, the affinity of antibody and antigen cells is rated. 
The best-matched antibodies neutralize antigens.

Herein the antibody is represented by the sequence 
described by formula (1). The affinity of antigen-antibody 
interactions is calculated using formula (4) for every 
solution. A block diagram of a clonal selection algorithm 
is presented at Fig. 2. 

Fig. 2. A clonal selection algorithm 
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node again, but the service time is calculated just to the last 
serviced point.

The delivery of boxes with food takes place in a narrow 
time span of 40 minutes.

Working time of the delivery van is defined as the time 
required for visiting all the planned nodes on the route. It is 
measured from departure from the starting point to the end of 
the service of the last node on the route. This time includes also 
the nodes service time for all planned nodes for each vehicle 
route. For one vehicle it is described in the following way:

	 twk = tdkij + tskj� (3)

where twk – working time of the k-th delivery van, tdkij – driving 
time from i to j node, tskij – service time in j node.

Time constraints are included in the AIS algorithm. After 
servicing the current node, it is checked if the vehicle going to 
the next node does not exceed the acceptable time. If it does, it 
does not leave and returns to the base. The next vehicle leaves 
the base and serves subsequent nodes.

2.1. Solution evaluation. Each solution variant is evaluated, 
where the assessment takes account of both the duration of the 
delivery process and the number of vehicles involved.

As the evaluation criterion, the longest of the delivery times 
(Tmax) calculated in accordance with formula (3) were adopted. 
This time is compared with the set time limit (Q) to determine 
the first rating factor. For this purpose, the following rules were 
assumed (Equation 4):
1.	if  Tmax is less than the limit established, then evaluation (fT) 

is equal to 1 (satisfying time),
2.	if  Tmax is longer by more than a half of the established limit, 

the assessment is equal to 0 (time completely unsatisfac-
tory),

3.	in other cases, the assessment is linearly dependent on the 
value of  Tmax (intermediate evaluation).

	fT (Tmax) = 
	 1	 Tmax ∙ Q

	(1.5Q ¡ Tmax)/0.5Q	 Q < Tmax < 1.5Q

	 0	 Tmax   ̧1.5Q

.� (4)

The second factor of the assessment (fp) is associated with 
the number of vehicles involved (NP) referred to the expected 
maximum number of vehicles that are potentially available 
(NP max):

	 fP(NP) = 
(NP max ¡ NP)

NP max
.� (5)

Final assessment is calculated by multiplying two partial 
evaluation factors:

	 f = fT (Tmax) fP(NP).� (6)

In this computation using AIS, the successive customers 
are being served by a vehicle until the time limit is exceeded. 

Then the next vehicle serves subsequent customers. Thus the 
time limit is always met. Under such assumptions, the function 
determined by expression (4) always takes the value equal to 1.

2.2. Solution methods. As was mentioned in the introductory 
section, the problem under consideration is NP-hard, therefore 
artificial intelligence methods were used for solving it, i.e. artifi-
cial immune system, genetic algorithm and simulating annealing.

The approach involving artificial intelligence has a funda-
mental advantage: there is no need to fully understand all inner 
dependencies of the model or even to know some of them. 
There is only one demand: the model must allow to calculate 
the value of the objective function. The objective function is 
the function defined in the solution domain which determines 
the solution quality. The objective function does not need to 
be differentiable and none of its gradients needs to be known.

2.3.1. Artificial immune system. In general, artificial immune 
systems mimic the immune system of mammals. Interesting 
attempts at understanding of the immune features in biology 
were made by [21]. It promptly appeared that the ideas could be 
applied in science and technology [14]. Commonly, due to the 
very high complexity of biological immune systems just some 
of their elements are adopted for optimization. The optimization 
algorithm used herein is based on the clonal selection paradigm. 
The primary aim is to recognize the enemy called antigen by 
the antibodies – the cells of the organism’s immune system. For 
this purpose, the affinity of antibody and antigen cells is rated. 
The best-matched antibodies neutralize antigens.

Herein the antibody is represented by the sequence described 
by formula (1). The affinity of antigen-antibody interactions is 
calculated using formula (4) for every solution. A block diagram 
of a clonal selection algorithm is presented in Fig. 2.

Fig. 2. Clonal selection algorithm
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The starting population of antibodies is obtained randomly. 
The solutions received differ in the order of the elements of 
sequence (1). The objective function (4) is used as the affinity 
function.

Clonal selection involves the cloning of cells with a high 
degree of affinity. Artificial cloning is inspired by cell division. 
In the algorithm, cloning involves copying solutions. Next, most 
of these cells will be mutated. Somatic hypermutation is a cellu-
lar mechanism by which the immune system adapts to recognize 
the enemy [22]. In real clonal selection, from a certain moment 
cloning and mutation of antibodies have a rapid course: the cells 
are cloning in very large quantities. Then some of them are 
released into the bloodstream, where they work more efficiently. 
In artificial hypermutation, a great amount of small changes 
are introduced in randomly selected solutions. The following 
mutation operators were used in the algorithm [23]:
●	 position based mutation (PBM) – the randomly cho-

sen element km was put on the randomly chosen position 
between element ki and kj:

(k1, …, ki, kj, …, km, …, kn)
PBM

(k1, …, ki, km, kj, …, …, kn),
� (7)

●	 order based mutation (OBM) – the randomly chosen ele-
ments kj and km have mutually changed their positions:

	 (k1, …, kj, …, km, …, kn)
PBM

(k1, …, km ¡ 1, kj, …, kn),
� (8)

●	 adjacent two-job exchange mutation (ATM) – the ran-
domly chosen element km has changed its position to the 
place before the previous element km ¡ 1

	(k1, …, km ¡ 1, km, …, kn)
ATM

(k1, …, km, km ¡ 1, …, kn),
� (9)

●	 drawing a new antibody.
Each mutation operator and drawing the antibody can be used 
with equal probability.

The advantage of optimization algorithms based on clonal 
selection lies in their efficiency. The improvement of the solu-
tion is based on small changes which are introduced more 
frequently. The subtlety of changes reduces the probability of 
omitting the best solutions, and the large number of them results 
in a wide spectrum of solutions.

2.3.2. Genetic algorithm. Optimization methods using genetic 
algorithms mimic the process of evolution in the world of living 
nature and were first described by Holland [16]. Their advan-
tages have allowed for wide application in science and technol-
ogy [24]. The optimization procedure implementing a genetic 
algorithm is based on the following assumptions:
●	 different versions of solutions are individuals, which com-

pete with each other,

●	 the structure of each individual is determined by the 
sequence of genes called genotype,

●	 genotype is subjected to accidental changes – mutations,
●	 random pairs of individuals can exchange parts of their gen-

otypes – crossover,
●	 fit function, which is a measure of solution quality (adap-

tation), determines the probability of transition to the next 
generation – selective pressure,

●	 a combination of random mutation and crossover with tar-
geted selection pressure leads towards the optimum solution.
In the presented calculations, the chromosome is represented 

by sequence (1). The single element of the sequence represents 
a single gene. The objective function (4) is used as the fit func-
tion.

Because of the given structure of an individual, four differ-
ent mutation operators are designed:
●	 swapping the position (SPM) for a pair of randomly cho-

sen nodes for a randomly selected vehicle:

	

³
ki1

, ki2
, …, kij

, …, kim
, …, kin

´
vi

SPM

³
ki1

, ki2
, …, kim

, …, kij
, …, kin

´
vi

,
� (10)

●	 moving the randomly selected subsequence of nodes 
(MSM) within a pair of randomly selected vehicles:

	

µ
…, 

³
ki1

, …, kil
, kil + 1

, …, kil + m
, …, kin

´

vi
, …, 

³
kj1, …, kjn

´

vj
, …

¶
 

MSM
 
µ

…, 
³
ki1

, …, kin

´

vi
, …,

³
kj1, …, kjl

, kjl + 1
, …, kjl + m

, …, kjn

´

vi
, …

¶
,

� (11)

●	 changing the order (COM) of a random nodes subset for 
a randomly chosen vehicle:

	

³
ki1

, kij
, kij + 1

, …, kij + m
, …, kin

´

vi

COM
 

³
ki1

, ki2
, …, kij + m

, …, kij
, …, kin

´
vi

,
� (12)

●	 increasing or decreasing the number of vehicles
○	 in the case of decrease, the nodes assigned to the removed 

vehicle are transferred to a random vehicle,
○	 in the case of increase, the randomly selected nodes sub-

set assigned to a randomly selected vehicle is transferred 
to a new vehicle.

If a mutation is to be done, they are randomly selected with 
equal probability. The cross-over operator used herein is the OX 
operator, typical for such permutation genotypes [25]. Gener-
ally, for the OX cross-over the parent genotypes are cut at the 
same randomly selected position, then the children genotypes 
are created in such a way that the first part remains unchanged 
and the other is sorted in order of appearance at a partner 
(Fig. 3).

In practice, the genetic algorithm investigating only a neg-
ligible portion of the solutions’ space is able to find a solution 
close to the optimum one. Meanwhile, if the population size 
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F H E A D B G C

and other parameters are properly selected, the probability of 
the process to remain at a local optimum is very low. Specific 
for the genetic algorithm, the cross-over operation allows for 
the creation of a very good solution basing on a pair of average 
quality solutions, which contain just the promising fragments of 
the genotype. This determines the generally faster convergence 
of genetic algorithms in comparison with other methods based 
on solutions’ space exploration.

Selective pressure can be implemented in many ways, but it 
is always that individuals with a higher value of the fit function 
are preferred to pass to the next generation. In the present study 
the method of the roulette wheel was used, in which the proba-
bility of passing to the next generation is directly proportional 
to the value of the fit function. In addition, a certain number 
of the best individuals pass unconditionally (elite selection). 
The size of the elite should not be too large to avoid ousting 
of currently worse individuals from the population, which are 
candidates to become good solutions.

Additionally, the current leader of each generation is com-
pared with the stored general leader. The better of the two 
becomes the general leader. This stored solution does not take 
part in the optimization process, but eventually it contains the 
result.

2.3.3. Simulated annealing. The principle of simulated anneal-
ing is based on an analogy to the physical phenomena occurring 
during slow cooling and solidification of crystals. The process is 
characterized by a transition from a high-energy state (hot fluid) 
into a highly structured state of minimum energy (crystal). At 
high temperatures the molecule having a plethora of energy can 
freely jump to any position. Then, as the temperature decreases, 
transitions towards the states of lower energy are preferred [26].

Simulated annealing algorithm is a modification of simple 
iterative methods, which are based on the replacement of the 
current solutions with a randomly generated neighboring solu-
tion (in solution space), when this leads to the increase of the 
objective function value. Simulated annealing also permits for 
replacement with a worse solution under certain conditions. 
This modification increases the ability to avoid getting stuck 
in a local optimum and allows for continuing the search for the 
global optimum. The probability of replacement with a worse 
solution is not constant and is slowly decreasing during the 

optimization process. The probability ( p) is determined by 
a quantity, called, by analogy, the temperature:

	 p = e
– fx ¡ f0

T � (13)

where f0 denotes an objective function of the current solution, 
fx denotes an objective function of the modified solution and T 
denotes temperature. High temperature at the beginning allows 
for intensive exploitation of the solutions’ space, and then it is 
decreasing with time, so that finally the probability of selecting 
a worse solution is negligible. Generally, geometric temperature 
decrease in subsequent iterations is assumed:

	 Ti + 1 = qTi   q < 1.� (14)

The q factor may be determined by an empirical relationship, 
wherein n is the number of iterations:

	 q = 1 ¡  5
n

.� (15)

Simulated annealing can be an effective way to optimize for 
those problems where the solution space has a low “effective 
diameter” in all dimensions. This means that the used operator 
generating the neighboring solution should be able to cross the 
whole domain of each degree of freedom of the problem in 
a relatively small number of steps. The number of degrees of 
freedom (the dimensions of solution space) can however be 
large. The terms “small” and “large” are of relative importance 
and their specific values depend on the optimized problem.

Three modifications to the classical simulated annealing 
algorithm are introduced, which significantly improves its 
efficiency:
●	 the algorithm works in parallel mode, which means that the 

predetermined number of individual processes run simul-
taneously,

●	 additionally, the best solution obtained in all processes in the 
hitherto steps is stored, and this stored solution is not taking 
part in the optimization, but eventually it contains the result,

●	 these parallel processes are independent, but sporadic infor-
mation exchange among them is allowed (similar to cross-
over operator in the case of genetic algorithm – parts of the 
structure between a pair of solutions are exchanged).

The introduction of the parallel mode requires modification of 
the factor determining the rate of temperature decrease, rp used 
herein denotes the number of the parallel processes:

	 q = 1 ¡ 
5rp

n
.� (16)

The intensity of information exchange is determined by the 
cross-over probability. This value should be very low in order 
to keep the individual processes independent. In each step of the 
optimization, the current solutions in each of the parallel pro-
cesses can be crossed-over with a current solution from another 
randomly selected process.

Fig. 3. OX permutation cross-over

intersection

parent 1

parent 2

child

A B C D E F G H

A B C F H E D G



974

B. Mrówczyńska, A. Król, and P. Czech

Bull.  Pol.  Ac.:  Tech.  67(5)  2019

The simulated annealing requires operators changing the 
structure of the solution: generation of the neighboring solution. 
It is “mutation” in the nomenclature for genetic algorithms, and 
operators described in 2.3.2 were used herein.

2.4. Significant differences in the algorithms used. In the task 
being considered, there is a number of vehicles sent to service 
the nodes (customers are located at graph nodes). For GA and 
SA, the initial solution is generated in the same way: first the 
number of vehicles in service is randomly drawn, then the nodes 
to be serviced are sequentially assigned to the vehicles. Thus, 
the number of nodes assigned to a vehicle is approximately the 
same. The methods applied differ slightly regarding their inner 
structure. Genetic algorithm and simulated annealing try to 
minimize the number of vehicles required and the time needed 
for service.

For the artificial immune system the method of solution 
generating assures keeping the time limit, and the number of 
required vehicles is minimized. In the presented implementation 
of AIS, successive customers are being assigned to a vehicle 
until the time limit is exceeded, then a next vehicle is taken 
into account. Under such assumptions, the function determined 
by expression (2) always takes the value of 1, and the final 
assessment (4) is just expression (3). So the task comes down 
to minimization of the number of required vehicles (the time 
limit is always met).

3.	 Calculation

All the calculations were performed on a computer with an 
Intel® Core™ processor i7‒3630QM CPU @ 2.40GHz. The 
calculations were made using implementations of own pro-
grams written in C++.

3.1. Selection of optimum values of parameters. The opera-
tion of the optimization methods used is controlled by a number 
of parameters. These parameters are collected in Table 1. Their 
values should be adjusted in such a way so as to ensure as good 
quality of obtained results and as high repeatability as possible. 
The last feature is very important because all the methods are 
non-deterministic.

For this purpose, the operation of all optimization methods 
for different values of these parameters should be examined. 
It was assumed that each parameter will accept two values in 
the typical range. Despite this limitation of the level number 
for each of controlling parameters, the number of possible 
parameter sets, and thus the number of test series to perform, 
is still very high. It is 25 = 32 for the genetic algorithm. For 
simulated annealing and artificial immune system, it would be 
significantly less because only 23 = 8 test series are necessary. 
Thus the Taguchi method of experiment planning was used to 
diminish the number of test series to perform [27].

Taguchi assumed that each process is influenced by two 
groups of factors: controlled parameters, which can be used to 
the process management, and uncontrolled, random disturbing 
factors. The main idea behind Taguchi’s approach is to find such 

values of the control parameters which allow for minimizing 
the impact of confounding factors and for achieving the highest 
result quality.

When considering some statistical relationships, Taguchi 
demonstrated that there is no need to carry out the tests for all 
potential sets of parameters. He suggested the use of orthogonal 
arrays containing representative sets of parameters, allowing for 
formulation of general conclusions by means of some tools of 
statistical analysis.

In the first step, after determining the number of parameters 
and the required number of levels values the relevant orthogonal 
array is chosen (Table 2).

Table 2 
Fragment of the selector of orthogonal tables

No. of levels
No. of parameters

2 3 4 5 6 7 8 9

2 L4 L4 L8 L8 L8 L8 L12 L12

3 L9 L9 L9 L18 L18 L18 L18 L27

4 L’16 L’16 L’16 L’16 L’32 L’32 L’32 L’32

The test series must therefore be planned using orthogonal 
arrays L8 (GA) and L4 (SA and AIS). Orthogonal array L8 
describes a series of 8 tests by supplying adequate levels of 
parameter values for each series. As it can be seen, instead of 
the 32 series of tests it is sufficient to perform just 8 of them. 
Meanwhile, array L4 allows to reduce the required number of 
series from 8 to 4. Required parameter values for all series of 
tests are summarized in Table 3.

To obtain reliable results, single series should contain at 
least a few tests. Basing on an analysis of similar cases [28], it 
was assumed that each series will consist of eight runs of opti-
mization procedure. The value of the objective function after 

Table 1 
Parameters controlling the optimization

AIS

Population size POP
Mutation variant VM
Cloning variant VC

GA

Population size POP
Cross-over probability PX
Mutation probability PM
Number of initial mutations MUT0
Elite size EL

SA

Number of processes POP
Cross-over probability PX
Number of initial mutations MUT0
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200 steps for GA and AIS and 2000 steps for SA was regarded 
as a reliable result (at such numbers of steps, the fit function 
stopped to change). All results are summarized in Table 4.

The key concept of the Taguchi method is taken from the 
signal theory: it is the so-called signal to noise ratio (S/N ). 
Signal corresponds to the desired value while noise represents 
the undesirable random distortions. For a quantity which is to 
be maximized, the value of S/N for i-th series of tests is given 
by [29]:

	 SNi = –10log10
1
n j =1

n

∑ ¡  1
X2

ij
� (17)

where: n – series size, Xij – result of  j-th test of i-th series.
Table 5 summarized the calculated values of the signal to 

noise ratio for all series of tests. This table also includes the 
levels of various parameters in each series, as in orthogonal 
arrays L4 and L8. The calculated values seem not to differ too 
much, but it should be remembered that the logarithmic scale 
is used here. The highest value of the signal to noise ratio SNi 
indicates the set of parameters that is most favorable for the 
operation of the optimization procedure. The next step is to test 
the impact of each parameter on the quality of the solution. For 

this purpose, the average value of the signal to noise ratio SNmn 
for each value level (m) for each parameter (n) is calculated.

This is illustrated by highlighting relevant cells of Table 5 
as an example of SN52 for GA:

	 SN52 = 
SN2 + SN4 + SN5 + SN7

4
.� (18)

For each parameter, the maximum and minimum values of 
averaged signal to noise ratio and the difference (∆) have to be 
calculated. The value of this difference describes the relative 
influence of the parameter on the result quality. The results of 
this phase of the analysis are summarized in Table 6. As it may 
be noted, the greatest impact for GA is exerted by the number 
of initial mutations, the population size and the probability of 
mutations.

In the case of SA, the population size is most important. In 
the case of AIS, the mutation variant and cloning variant are 
most important, although their dominance over the population 
size is not significant. Other parameters are of less importance.

The Taguchi test result for AIS indicates that the number of 
clones should be proportional to the value of the affinity func-
tion, which is consistent with the literature [15]. The obtained 
value of the second of the tested parameters confirmed the 

Table 3 
Selected parameter values

Series
L4 (AIS)

POP VM VC
1 30 1 PROP
2 20 2 PROP
3 30 2 MAX
4 20 1 MAX

Series
L8 (GA)

POP PX PM MUT0 EL
1 100 0.2 0.2 15 1
2 100 0.2 0.2 20 5
3 100 0.8 0.5 15 1
4 100 0.8 0.5 20 5
5 200 0.2 0.5 15 5
6 200 0.2 0.5 20 1
7 200 0.8 0.2 15 5
8 200 0.8 0.2 20 1

Series
L4 (SA)

POP PX MUT0
1 10 0.01 15
2 10 0.05 20
3 20 0.01 20
4 20 0.05 15

Table 4 
Values of the fit function for test series

Se
rie

s AIS

1 2 3 4 5 6 7 8

1 0.50 0.50 0.53 0.50 0.50 0.50 0.53 0.50
2 0.50 0.50 0.50 0.50 0.53 0.50 0.50 0.50
3 0.50 0.50 0.50 0.53 0.50 0.50 0.50 0.53
4 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47

Se
rie

s GA

1 2 3 4 5 6 7 8

1 0.53 0.40 0.43 0.40 0.53 0.50 0.53 0.40
2 0.40 0.40 0.40 0.40 0.43 0.43 0.50 0.43
3 0.51 0.47 0.40 0.53 0.50 0.53 0.40 0.53
4 0.47 0.40 0.43 0.43 0.53 0.47 0.40 0.53
5 0.53 0.47 0.50 0.50 0.51 0.57 0.53 0.53
6 0.47 0.44 0.52 0.45 0.46 0.43 0.53 0.50
7 0.40 0.53 0.40 0.53 0.53 0.53 0.53 0.47
8 0.43 0.40 0.50 0.40 0.53 0.43 0.42 0.53

Se
rie

s SA

1 2 3 4 5 6 7 8

1 0.46 0.31 0.38 0.40 0.31 0.40 0.32 0.21
2 0.22 0.16 0.23 0.47 0.30 0.35 0.23 0.15
3 0.45 0.40 0.47 0.48 0.37 0.45 0.50 0.47
4 0.43 0.50 0.50 0.51 0.47 0.50 0.47 0.47
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effectiveness of the mutation model, in which three mutation 
operators described by formulas (7–9) and the generator of 
a new antibody with the same probability are used.

These relationships are shown graphically in Fig. 4 and 
allow for further conclusions on the values of parameters, which 
actually have a significant impact on the efficiency of the opti-
mization procedures. This analysis allows for selection of the 
best sets of parameters for all optimization procedures, which 
are collected in Table 7.

Table 7 
Optimum parameter sets

AIS GA SA

POP 20 POP 200 POP 20

VM 1 PX 0.2 PX 0.1

VC PROP PM 0.5 MUT0 5

MUT0 5

EL 5

3.2. Comparison of optimization results. All the optimiza-
tion procedures were repeatedly run for the above-shown best 

parameters sets, then the results were compared. These data are 
summarized in Table 8.

The results proved that the artificial immune system gave 
the best effects. It reached the best possible value of the fit 

Table 6 
Analyses of parameters impact on the solution quality

SNnm
AIS

POP VM VC

1 –5.9544 –6.2535 –5.9207

2 –6.1313 –5.9207 –6.2535

min –6.1313 –6.2535 –6.2535

max –5.9544 –5.9207 –5.9207

Δ –0.1769 –0.3328 –0.3328

SNnm
GA

POP PX PM MUT0 EL

1 –6.9303 –6.6529 –6.9265 –6.3607 –6.7048

2 –6.4112 –6.6886 –6.4150 –6.9808 –6.6366

min –6.9303 –6.6886 –6.9265 –6.9808 –6.7048

max –6.4112 –6.6529 –6.4150 –6.3607 –6.6366

Δ –0.5192 –0.0357 –0.5116 –0.6201 –0.0682

SNnm
SA

POP PX MUT0
1 –11.4936 –8.4974 –8.1492

2 –6.7492 –9.7453 –10.0935

min –11.4936 –9.7453 –10.0935

max –6.7492 –8.4974 –8.1492

Δ –4.7444 –1.2480 –1.9443

Table 8 
Results for multiple runs of AIS, GA and SA

Test No. AIS GA SA

1 0.6 0.533 0.515

2 0.6 0.533 0.492

3 0.6 0.538 0.467

4 0.6 0.500 0.499

5 0.6 0.524 0.467

6 0.6 0.533 0.467

7 0.6 0.533 0.433

8 0.6 0.500 0.413

9 0.6 0.533 0.467

10 0.6 0.533 0.467
f avg 0.6 0.526 0.469

σ 0 0.014 0.030

Table 5 
Values of signal to noise ratio for test series

Series
AIS

POP VM VC
1 2 1 1 –5.8871
2 1 2 1 –5.9544
3 2 2 2 –5.8871
4 1 1 2 –6.6199

Series
GA

POP PX PM MUT0 EL SNi

1 1 1 1 1 1 –6.8376
2 1 1 1 2 2 –7.4989
3 1 2 2 1 1 –6.4711
4 1 2 2 2 2 –6.9137
5 2 1 2 1 2 –5.7567
6 2 1 2 2 1 –6.5184
7 2 2 1 1 2 –6.3773
8 2 2 1 2 1 –6.9922

Series
SA

POP PX MUT0
1 1 1 1 –9.8974
2 1 2 2 –13.0897
3 2 1 2 –7.0974
4 2 2 1 –6.4010
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function in every run. In turn, the genetic algorithm provides 
much better results than simulated annealing (the average value 
of the fit function was higher by 12%), and its results are much 
more consistent (standard deviation was twice smaller). Figure 5 
shows the convergence of two best solutions for each examined 
method. For AIS and GA values of function (6) are shown for 
each generation from 0 to 200. To make the comparison possible, 
every tenth result for SA is shown in the range of 0 to 2000.

As it can be noted, AIS immediately reaches high values and 
in the interval of 50th to 200th generation does not change them. 
The final result was achieved in the later generations. Genetic 
algorithm quickly comes to the final solution, thus increasing 
the number of generations will not significantly affect the qual-
ity of the solution. In the case of simulated annealing, getting 
closer to the final solution requires a much larger number of 
steps, and in a few cases it was done just at the end of the 
optimization process. Therefore, for SA another series of tests 
for the two-fold increased number of steps was carried out. As 
a result, greater reproducibility of results was obtained, but the 
standard deviation was still higher than for GA.

The average value of the objective function in this series 
has not increased significantly. It is therefore concluded that 

SA is not an appropriate optimization procedure for the exam-
ined issue.

As was mentioned above, both AIS and GA ensure high 
reproducibility of the obtained value of the fit function (it con-
cerns GA not so clearly), but it does not mean an identity of the 

Fig. 4. Relative impact of parameters on optimization efficiency

a) GA b) SA

c) AIS

Fig. 5. Comparison of optimization convergence for all methods
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generated solutions. Table 9 shows the best solutions for both 
methods, the assumed time limit was 40 minutes. For the AIS 
method, the value of affinity function reached 0.6 and only 12 
vehicles were required.

3.3. Numerical efficiency of AIS. Numerical efficiency was 
also tested for AIS. For this purpose, at least 5 tests were 
performed for each of 5 different size graphs with vertices 

from 55 to 275. The results of the calculations are presented 
in Table 10.

Figure 6 shows the dependence of the average time of 
obtaining the best solution as a function of the number of ver-
tices. The calculation time is a function of a higher order. The 
trend has been expressed by function (19):

	 y = 7.34 ¢ 10–7x4.� (19)

Table 10 
Results of calculations using AIS for graphs of various sizes
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55 97 11.2 8.26

1 25 199500 50.125313 186 13

2 9 186600 53.590568 189 12

3 5 197720 50.576573 194 13

4 12 193260 51.743765 165 12

5 5 196500 50.890585 178 13

110 198 128 172.52

1 58 464070 21.548473 390 28

2 37 450670 22.189185 433 27

3 435 430290 23.24014 456 25

4 33 469920 21.280218 405 28

5 77 435390 22.967914 456 26

165 299 519.8 264.83

1 847 746950 13.387777 768 44

2 643 721120 13.867318 794 40

3 233 753890 13.264535 777 43

4 261 725290 13.787588 754 41

5 615 720350 13.882141 695 39

220 400 1499.4 1103.00

1 853 1458130 6.858099 1157 58

2 1076 1451590 6.888998 1254 59

3 3325 1472830 6.78965 1163 59

4 551 1491460 6.70484 1048 59

5 1692 1496210 6.683554 1150 60

275 531 4293.2 2267.81

1 3775 1553170 6.438445 1557 73

2 7876 1583040 6.31696 1497 75

3 2174 1597300 6.260565 1397 75

4 2696 1594150 6.272935 1423 74

5 4945 1584710 6.310303 1330 74

Table 9 
Best solutions for AIS and GA

AIS

Value of affinity function 0.6
Number of vehicles 12
Delivery duration 39’35’’

Vehicle Nodes
1 7 25 24 28 34
2 16 23 33 35 36
3 44 43 38 45 41
4 6 12 11 15 14 13 9
5 410 2 815
6 53 51 50 54
7 21 37 20 18
8 17 30 32 29
9 27 31 39 52

10 42 40 46
11 3 19 26 22
12 48 47 49

GA

Value of fit function  0.533
Number of vehicles 14
Delivery duration 39’ 46”

Vehicle Nodes
1 1 2 49 47 
2 7 6 8 5
3 10 9 11 12
4 14 13 15 16
5 22 23 24 20 19
6 21 17 18 
7 28 27 26 25 
8 31 29 32 30
9 34 33 35 36

10 40 38 39 37
11 41 42 43 44
12 46 48 45
13 3 4 50 51 52
14 53 54
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number of vertices

Figure 7 shows the dependence of the minimum number of 
vehicles which serve customers as a function of the number of 
vertices. Its trend is linear.

The polynomial computational complexity of the order of 
four may seem to be a drawback of the presented approach. 
However, the factor 7.34 ¢ 10–7 guarantees the acceptable cal-
culation time for reasonable data.

4.	 Conclusions

In the article, the task classified as OVRPWT was solved. Such 
problem comes down to the task of a traveling salesman, which 
belongs to NP-hard problems.

The case study: the scheduling of routes of a fleet of deliv-
ery vehicles supplying food products to customers waiting for 
delivery within a specified, short time, in such a manner so as as 
to avoid delays and minimize the number of delivery vehicles, 
was determined.

Scheduling deliveries in a large catering company may 
require the use of quick methods for determining the routes 
of vehicles, which results in the implementation of artificial 
intelligence algorithms for solving the problem.

Herein, the artificial immune system was compared with 
two other methods: genetic algorithms and simulated annealing.
●	 The high efficiency of the calculations was assured by 

application of the Taguchi method of experimental design 
to determine the optimum values of control parameters. 
The main calculations were carried out using such adjusted 
parameters.

●	 The best results were obtained for the artificial immune 
system, which appeared to be the most effective. Genetic 
algorithm achieved the value of the fit function that was 
worse by 12%, and simulated annealing was worse by as 
much as 23%.

●	 The advantage of the artificial immune system was also 
expressed in the dispersion of the fit function values 
– although it generated different solutions, their quality was 
always the same. Also here genetic algorithm is rated worse, 
and again the worst is simulated annealing.

●	 The best results of AIS confirm the legitimacy of developing 
the presented method towards large, dynamic VRP tasks. 
This method can also be used for planning routes of electric 
cars, and the location of the recharging points of vehicles 
[29, 30]. The introduction of electric delivery vehicles, and 
in the future, autonomous vehicles, will bring ecological 
benefits to the centers of big cities [31].
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