
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES

Vol. 56, No. 1, 2008

Evolutionary methods to analogue electronic circuits yield

optimisation

P. JANTOS∗ and J. RUTKOWSKI

Faculty of Automatic Control, Electronics and Computer Science, Silesian Technical University,

16 Akademicka St., 44-100 Gliwice, Poland

Abstract. Evolutionary computing and algorithms are well known tools of optimisation that are utilized for various areas of analogue

electronic circuits design and diagnosis. This paper presents the possibility of using two evolutionary algorithms – genetic algorithm and

evolutionary strategies – for the purpose of analogue circuits yield and cost optimisation. Terms: technologic and parametric yield are

defined. Procedures of parametric yield optimisation, such as a design centring, a design tolerancing, a design centring with tolerancing, are

introduced. Basics of genetic algorithm and evolutionary strategies are presented, differences between these two algorithms are highlighted,

certain aspects of implementation are discussed. Effectiveness of both algorithms in parametric yield optimisation has been tested on several

examples and results have been presented. A share of evolutionary algorithms computation cost in a total optimisation cost is analyzed.

Key words: evolutionary algorithms, parametric yield, production cost, optimisation, computation cost.

1. Introduction

An increasing complexity and decreasing physical size of in-

tegrated analogue electronic circuits (AEC) has prompted the

necessity of careful choice of elements’ values and tolerances.

It has become very difficult to achieve acceptable manufac-

turing yield even if the nominal design fulfils all design con-

straints. The aim of system design is to find the values of

adjustable element parameters that make the entire system

satisfy design specifications. The answer to the question of

whether a system with chosen values of element parameters

fulfils the specification is obtained with the use of comput-

er simulations [1, 2]. Complexity of analysis increases when

tolerances and statistically distributed parameters are consid-

ered.

In this paper, a new approach to yield and cost optimi-

sation is presented. Evolutionary algorithms such as, genetic

algorithm (GA) and evolutionary strategies (ES) have been

utilized as an optimisation engine. Reference [3] is among the

first to present a similar idea. Author, however, have not anal-

ysed computation cost of the used evolutionary techniques.

The aim of this paper is to propose genetic algorithm

and evolutionary strategies as an alternative method of yield

optimisation, taking into account analysis of factors of total

optimisation cost and an economical sense of such approach

to yield and cost optimisation.

Section 2 of this paper is dedicated to presentation of

standard methods of yield and cost optimisation. In Section 3

basics of genetic algorithm and evolutionary strategies are pre-

sented. Some implementation issues of the above algorithms

for yield and cost optimisation are described in Section 4.

Example circuits and their optimisation results are present-

ed in Section 5. The computation cost of the whole process

is discussed in Section 6 and conclusions are presented in

Section 7.

2. Yield optimization

The manufacturing yield is composed of two factors:

– parametric yield;

– technological yield.

The former is a result of a sensitivity of circuit perfor-

mance to AEC parameters deviations, caused by manufactur-

ing conditions. The latter is a result of catastrophic techno-

logical failure [2]. This paper is orientated to parametric yield

optimisation. In further parts of this paper, the term yield will

be used as a synonym of parametric yield.

Many methods of yield optimisation have been presented

so far. The methods may be grouped as following:

– Monte Carlo methods;

– linear approximation methods;

– quadratic approximation methods;

– simplicial approximation methods;

– statistic methods;

– yield gradient methods.

The information about parametric yield may be obtained

with the use of computer simulations allowing for Monte Car-

lo analysis (MCa), e.g. Spice [2].

The presented method of yield optimisation may be clas-

sified as a member of Monte Carlo group. However, use of

the evolutionary core has caused a great computation cost and

time increase.

∗e-mail: pjantos@polsl.pl

9

P. Jantos and J. Rutkowski

2.1. Circuit description. An optimized circuit may be given

by a set of N elements E and a circuit structure description

(e.g. a node list).

E = {E1, E2, . . . , EN} (1)

Each of the En may be described by number of parame-

ters, that are elements of set P.

P = {P1, P2, . . . , PL} (2)

The number of parameters L, defines parameter space di-

mension. It has been assumed that each parameter is given

by two values: nominal value and design tolerance. Hence,

two vectors may be introduced. Vector of elements nominal

values NV.

NV = [NV1, NV2, . . . NVL] (3)

and vector of element tolerances T.

T = [tol1, tol2, . . . tolL] (4)

In the presented research elements of E are resistors, ca-

pacitors and coils, characterized by a single parameters. Then,

L = N . The circuit is described by M design specifications

Qi, that allow for defining an acceptability region in the pa-

rameter space.

Q = {Q1, Q2, . . . , QM} (5)

One specification is considered (M = 1), that is a circuit

amplitude response deviation from the nominal characteristic.

This specification alone allows for defining the acceptability

region.

The aim of optimisation process is to adjust vectors NV

and T, so that all of the M specifications are fulfilled.

Two optimisation parameters (O = 2) are considered, that

is: parametric yield O1 and circuit cost O2.

2.2. Design Centring and design tolerancing. Generally,

there are three ways of yield and cost optimisation. These

are:

– Design centring;

– Design tolerancing;

– Design centring with tolerancing.

The methodology presented in this paper is based on the

design centring with tolerancing approach.

The design centring and the design tolerancing procedures

are presented in the Fig. 1 (for L = 2, M = 2). An accept-

ability region is defined in the parameter space.

Design centring consists of adjusting NV. This approach

does not allow for changing device production cost.

Design tolerancing consists of modifying T. This proce-

dure allows for both production yield and cost adjusting.

Design centring and tolerancing is a hybrid of the above

two methods. Both NV and T are an object of manipula-

tion and this approach is definitely superior over two previous

ones.

Procedures that are presented in this paper are based on

design centring and tolerancing.

Fig. 1. Design centring and design tolerancing

10 Bull. Pol. Ac.: Tech. 56(1) 2008

Evolutionary methods to analogue electronic circuits yield optimisation

3. Evolutionary algorithms

Evolution is a process of adaptation and optimisation. Scien-

tists have imitated mechanisms of evolution to create an effi-

cient and powerful tool of optimisation – genetic algorithms

(and almost simultaneously evolutionary strategies). Evolu-

tionary algorithms (EA) are well known and commonly used

tools for optimisation, classification, approximation, and oth-

er numerical goals. The very reason to use them is an ease

of implementation for different tasks. It is essential, though,

to find a proper individuals coding and a fitness function. A

general cycle of the EA is presented in the Fig. 2.

Initialization

Reproduction

Genetic

Operations

Evaluation

Termination

Condition

Test

Succession

Da ta Output

Fitness

Function

Fig. 2. General evolutionary algorithms cycle

The evolutionary algorithms are initialized with a set of

randomly generated individuals which are the initial popula-

tion (first parental population). The first phase of the EA cycle

is a reproduction (selection and replication). Individuals are

chosen and copied to the offspring population. With genetic

operations such as (but not limited to) crossover and mutation,

the individuals are modified.

The most important part of the EA is individuals’ eval-

uation and assessment. Individuals’ genotypes are decoded

to phenotype. The phenotype is used to calculate the fitness

function value. If its target value is reached, the algorithm is

terminated. In the alternative case, the entire population (or

certain group of individuals) is copied in the process of suc-

cession to the next parental population and the cycle begins

again.

Evolutionary algorithms are based on probabilistic opera-

tors. This can result in getting as many different solutions of

a task as number of times the evolutionary program is run.

The No-free-lunch Theorem [4] says that there is no one

algorithm that would be applicable to solve all possible tasks.

It is suggested to use EA in situations in which an existing

optimisation algorithm is not satisfactory [4–8].

The cycle presented in the Fig. 2. is common for both ge-

netic algorithm and evolutionary strategies. In the following,

the most important differences between utilized evolutionary

algorithms are presented.

The algorithms used in the presented research are genet-

ic algorithm (GA) and evolutionary strategy (µ, λ) (ES). In

principles, both algorithms are very similar. There are several

differences, though, between these two. The most important

are listed in the Table 1.

Table 1

The most important differences between Genetic Algorithm and

Evolutionary Strategies

Genetic algorithm Evolutionary strategies

Coding
Binary

(natural or Gray’s Code)
Real numbers

Evolutionary

operators range
Constant Self-adapting

Most important

operator
Crossover Mutation

The coding of ES individuals is based on real numbers,

while GA coding is based on binary strings. It is followed

by differences in evolutionary operators, which must fit the

individuals’ coding. Real number coding allows for high pre-

cision, which can be very important in solving some problems.

In this research, the element parameters precision is of a mi-

nor issue. Hence, this ES feature cannot be considered as an

advantage over GA.

The binary coding allows GA to be used in a more flexible

way and in a wider variety of tasks than ES. Unless there is

the floating point coding implemented, the fixed length of the

binary string causes limitations in real numbers precision. It is

suggested to implement Gray’s encoding to avoid convergence

problem, due to crossover process. The mutation in GA may

cause a very large difference between parental and offspring

individual. Gray’s encoding does not influence mutation in

GA at all.

Real number coding allows for an easy encoding of small

numbers (capacitors and coils parameters). In case of the fixed

length binary coding, there are additional arithmetic opera-

tions required, which increase computation cost.

The implementation of evolutionary operators, which in

both algorithms have been mutation and crossover, is related

to the coding. Both crossover and mutation for GA are simple

bit operations, whereas in ES these are arithmetic processes.

Moreover, in ES a self adapting mutation range is used, which

is the main means of finding the optimal problem solution. A

mutation is the main factor of population development in ES,

while in GA it is the.

In the presented work the population size for both GA

and ES is 70. For evolutionary strategies the scheme (µ, λ)

has been chosen, with µ = 10 and λ = 70 (typical values,

suggested by many authors).

For both of the utilized algorithms, a microgenetic algo-

rithm has been implemented in the early stage of the process,

if the convergence is not reached in 20 generations, the whole

process is reinitialized.

4. Implementation

Successful implementation of both GA and ES requires solv-

ing of few problems, prior the EA run.

Firstly, the proper method of individuals coding presented

in Section 4.1. Choosing of the selection method is the next

Bull. Pol. Ac.: Tech. 56(1) 2008 11

P. Jantos and J. Rutkowski

problem. The simple roulette method may not give useful re-

sults in a satisfactory time limit. The use of deterministic or

ranking methods in combination with elitism1 seem to be a

better choice. The deterministic selection method with simple

elitism has been found to be the best.

The other problem is a choice of proper fitness function

(FF). An incorrectly constructed FF may slow down the pro-

cess of finding the global optimum, or even cause it not to be

found at all.

When defining FF, it is important to consider the fact that

two optimisation parameters (criteria) are taken into account.

The first is parametric yield and the second is cost of cir-

cuit. A measure of the latter may be, for example, an average

tolerance of element parameters.

A masking of the aforementioned criteria may be ob-

served, which is followed by a finding individuals that are

inexpensive but do not meet specifications, or individuals that

are expensive and meet specifications. The way to cope with

this problem is by using penalty modifiers to the fitness func-

tion, as presented in Section 4.2.

One of EA advantages over other deterministic optimisa-

tion methods is that they allow the nominal values and toler-

ances of all elements to be adjusted simultaneously.

A flowgraph of the applied algorithm is presented in the

Fig. 3.

Fig. 3. Yield optimisation algorithm

4.1. Input data preparation and coding. Input data is pre-

pared in text files. Optimized circuits are described with a

net-list. Additionally, parameters listed below are predeter-

mined:

– target parametric yield;

– target circuit cost (i.e. the average parameters tolerance);

– number of Monte Carlo analysis runs and analysis range.

The frequency characteristic of the optimized circuit is

computed with the use of a built-in AEC simulator. The simu-

lator allows for Monte Carlo analysis and is used to determine

the parametric yield of the analysed circuits.

The coding process for both evolutionary algorithms, is

illustrated by Fig. 4 example, 20% tolerance assumed.

Fig. 4. Coding process

Genetic algorithm requires binary coding. To gain the sat-

isfactory precision of capacitor and coil value, its scaling has

been implemented. Coding precision for GA is as in Table 2.

Table 2

Coding precisions in GA implementation

Element Precision

Resistor 10−3 Ω

Capacitor 10−10 F

Coil 10−8 H

The output data. The output data is stored in a text file.

It contains the encoded net-list of the optimized circuit, the

expected yield value and the average tolerance.

4.2. Criteria masking and fitness function. An evaluation

stage in the process of a two-criteria optimisation is presented

in the Fig. 5. In the figure, values of optimisation parame-

ters (criteria) O1 and O2 are presented with bars. The fitness

function value is calculated as a average value of both criteria

(Fig. 5a). Some modifications to its calculation are presented

in further figures (Fig. 5b–d).

The criterion O2 is crucial and it has to have value high-

er than required O2. Otherwise, or an individual codes an

unacceptable solution. Criterion O1, with a very high value,

causes a very high fitness function value, even though O2 has

not reached the required value. Moreover, the fitness value is

higher, than in the case presented in the right side of Fig. 5a

(criterion O2 value is higher than required). The situation pre-

sented in the Fig. 5a may be called criteria masking (O1 is

masking O2). A few possibilities of avoiding this problem are

presented in Figs. 5 b-d. At right sides of the aforementioned

figures a case with criterion O2 having value higher than the

required is given for comparison.

1Elitism means copying the best individual (or more) to the next generation without modifying it.

12 Bull. Pol. Ac.: Tech. 56(1) 2008

Evolutionary methods to analogue electronic circuits yield optimisation

An implementation of open-scale criteria values is one

of the reasons for criteria masking and t should be avoided.

Introduction of the criteria maximum Wmax may not solve

the problem completely (Fig. 5b.), though. If O2 is close to

the required value, but doesn’t reach it, and O1 reaches max-

imum value, the fitness function counted as an average may

still overcome a value of better individual (at the right side

of the figure).

Fig. 5. Criterion masking problem (a) and three proposed solutions of avoid-

ing it(b-d)

It is possible suggested to set a criterion critical value

−Omin. In case the criterion doesn’t reach it, FF is cut to the

default value Fmin (Fig. 5c). This is a severe penalty function

(cut-off penalty) and if Omin is very close to required value

it might slow down convergence.

Small gap between Omin and the required value may lead

to criteria masking (Fig. 5d). An unmodified FF is given with

a dashed line. It is higher than one of the correct individual

(in the right side of the figure). A mild penalty is subtracted to

prevent this situation. This penalty does not slow down con-

vergence. It promotes a fully acceptable individuals instead.

Its value K may be calculated in several ways. With this last

modification of a fitness function, a criteria masking may be

successfully avoided. All of abovementioned criteria and fit-

ness function modifications are implemented in the presented

research.

In the process of evaluation of individuals, the MCa is run

for each of them. In this process, information about the para-

metric yield is collected. Additionally, an average tolerance

of all circuit elements is calculated. With this two values, the

fitness function is computed.

Fitness function. For both of the researched evolutionary al-

gorithms the same fitness function has been utilised. The aims

of the function have been listed below:

– algorithm good convergence (prerequisite condition);

– gaining an acceptable parametric yield (prerequisite condi-

tion);

– lowest circuit cost (sufficient condition).

The fitness function is given with Eqs. (6–12).

Ffitness =







(

O=2
∑

i=1

aiOi + K

)

if ∀ (Oi > Omin)

Fmin if ∃ (Oi ≤ Omin)

(6)

O=2
∑

i=1

ai = 1 (7)

max (Oi) = 1 (8)

An equal weight for both optimized parameters has been as-

sumed, a1 = a2 = 0.5. Then:

O1 = 0.025 + 0.975
|nMC| − |bad|

|nMC| − |accbad|

∣

∣

∣

∣

O1>1→O1=1

(9)

|nMC| is a number of Monte Carlo analysis series, |bad| is

number of results exceeding an acceptable deviation from the

nominal circuit performance, |accbad| is an acceptable num-

ber of incorrect Monte Carlo analysis run.

Therefore, the denominator in the Eq. 9 is acceptable para-

metric yield. Next,

O2 = 0.025 + 0.975 y =
< tol >

preftol

∣

∣

∣

∣

O2>1→O2=1

(10)

< tol >= avg (toll) l = 1, 2, 3 . . . N (11)

preftol is a preferable average tolerance of all circuits el-

ements (e.i. cost of the circuit), toll is a tolerance of l-th

element out of N element T set elements.

Equations (9) and (10) allow for limiting values to range

< Fmin = 0.05, 1 > (Fig. 5b). Additionally, both:

– cut-off penalty;

– penalty function K.

have been implemented. Cut-off penalty has been used in the

equation (6).

The following penalty function K has been introduced

(Fig. 5d).

K = −
||dopbad| − |bad||

100

∣

∣

∣

∣

|bad|<|dopbad|→K=0

(12)

The fitness function described with Eqs. (6) to (12) al-

lows for efficient AEC both yield and cost optimisation. The

Bull. Pol. Ac.: Tech. 56(1) 2008 13

P. Jantos and J. Rutkowski

aims of fitness function listed before are accomplished. Satu-

ration allows (introduced Omax) for partial avoidance of crite-

ria masking. The cut-off penalty function allows for removing

individuals, that doesn’t meet one of criterions critically. The

penalty function (12) allows individuals that have been close

to meet yield criterion for further evolution.

All coefficients of the fitness function have been chosen

heuristically, for the best algorithms performance, based on

numerous examples.

The fitness function coefficients are gathered in the Ta-

ble 3.

Table 3

Fitness function coefficients

Coefficient Value

a1,2 0.50

Omax 1.00

Omin 0.20

Fmin 0.05

4.3. EA parameters. Genetic algorithm has been implement-

ed with the following parameters (Table 4)

Table 4

Genetic algorithm parameters

Parameter Value

Population size 70

Crossover probability 0.30 (uniform crossover)

Individual mutation probability 0.30

Gene mutation probability 0.05

Selection type deterministic

Succession type elitism (2 individuals)

Evolutionary strategy has been implemented with the fol-

lowing parameters (Table 5)

Table 5

Evolutionary strategies parameters

Parameter Value

Strategy type (µ, λ)

Population size µ = 10, λ = 70

Selection type multiple draw with returning

Succession type elitism (2 individuals)

Implemented operators mutation, crossover

Evolutionary algorithms parameters have been chosen

heuristically according to hints presented in [4–7]. It has been

decided to enforce the same number of individuals in GA and

ES populations, for better algorithms comparison.

5. Verification on practical examples

Five different passive circuits have been chosen with increas-

ing number of elements. One of the exemplary circuits is

shown in Fig. 6. Number of elements in testing circuits var-

ied between 2 and 12 (2, 3, 5, 7, and 12).

Fig. 6. Test circuit no. 5

The choice of only passive circuits does not determine a

limitation of the method. The EA work only on an element’s

parameters, so whether or not the element is a capacitor, resis-

tor, or an active element does not make any difference as long

as it is possible to describe whole device with relationship(s)

that allow to calculate parametric yield. It may be claimed

that the circuit topology does not influence algorithms perfor-

mance. However, proof of this thesis requires further research.

The obtained results do not allow to categorically decide

which of two the two algorithms is better. Checking the com-

putations cost dependency on AEC complication level and

to determine the economic sense of using evolutionary al-

gorithms for yield optimisation have been the main concern

of the performed research. It has been decided to limit the

number of generations to 200. This number of generations is

enough to decide which of the two investigated algorithms

is more efficient. Each process of optimisation has been re-

peated 5 times and the average values calculated. These are

presented in figures below.

5.1. Comparison of algorithms performance. Figure 7

presents the average fitness value of the best individual in

five separate and independent processes of optimisation after

200 generations. It can be observed that there is no signifi-

cant difference between results of optimisation with the use

of genetic algorithm and evolutionary strategy.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5

Circuitnumber

Fi
tn

e
ss

F
u

n
c

tio
n

Genetic Algorithm Evolutionary Strategies

Fig. 7. Average value of the fitness function of the best individual after two

hundred generations of yield optimisation with the use of genetic algorithm

and evolutionary strategies

The maximum of fitness value depends on parameters of

the process. If the target tolerance was set too high (i.e. much

higher than the possible to achieve with the assumed yield),

the fitness function did not reach the maximum value. Scaling

of the fitness function have been used in more than 60%, for

the best optimisation results.

14 Bull. Pol. Ac.: Tech. 56(1) 2008

Evolutionary methods to analogue electronic circuits yield optimisation

In Fig. 8 the calculated tolerances are presented. Slightly

better results are noticeable with the GA.

0

5

10

15

20

25

1 2 3 4 5

Circuit number

A
v
a
ra

g
e

c
ir

cu
it

e
le

m
e
n
ts

to
le

ra
n
c
e,

%

Genetic Algorithm Evolutionary Strategies

Fig. 8. Average tolerance of the best individuals after two hundred genera-

tions of yield optimisation with the use of genetic algorithm and evolutionary

strategies

6. Implementation

6.1. Computer time spent. All figures in this section show

dependencies between computing time and circuit complexity.

Figure 9 presents the total CTS (Computer Time Spent)

of the entire optimisation process, which includes the evolu-

tionary algorithms cost and the Monte Carlo analysis cost.

Fig. 9. Overall computing cost in the yield optimisation with the use of

genetic algorithm and evolutionary strategies

In this case, processing time for both genetic algorithms

and evolutionary strategy is almost the same for all the cir-

cuits, except the fifth one (Fig. 6.) – the difference has been

caused by the way, the finding of the convergence centre is

enforced (microgenetic algorithm). Algorithms are initialized

with the starting tolerances given in an input file (20% tol-

erances). If the algorithm is unable to find the convergence

centre in the assumed number of generations (200), the whole

algorithm is reinitialized with the smaller input tolerances.

The results presented in Fig. 9 may suggest that the more

complex the circuit is, the longer it takes for EA to find the

convergence area. However, it may be not true, as the majority

of the time involved is consumed by the MCa.

6.2. Cost of evolutionary computation. Only times need-

ed to process one generation are now taken into account and

components of the overall computation time are analysed.

Figure 10 presents the total time of processing of one gen-

eration for both evolutionary algorithms. Evolutionary strate-

gy (µ, λ) appear to be slightly slower.

Evolutionary
Strategies

Genetic
Algorithm

2 4 6 8 10 12

Number of elements

0

1000

2000

3000

4000

5000

6000

7000

8000

T
im

e

Fig. 10. Total cost of one generation processing in the yield optimisation with

the use of genetic algorithm and evolutionary strategies

The total computation time of processing in one genera-

tion has two components: Monte Carlo analysis, and evolu-

tionary algorithm.

It is noticeable that the character of the dependency be-

tween the number of elements and total computation cost is

of exponential character. The question is whether it is caused

by evolutionary algorithms, the Monte Carlo analysis, or both.

Evolutionary algorithms would be an efficient tool and

worth further research – if and only if – the time of process-

ing in one generation would be, at the minimum, in linear

dependency to the number of elements.

Evolutionary
Strategies

Genetic
Algorithm

2 4 6 8 10 12

Number of elements

0

1000

2000

3000

4000

5000

6000

7000

8000

T
im

e

Fig. 11. Monte Carlo analysis computing cost per one generation in the yield

optimisation with the use of genetic algorithm and evolutionary strategies

Relationship presented in Fig. 11 suggests that the Monte

Carlo analysis computation cost increases exponentially with

the number of elements.

Bull. Pol. Ac.: Tech. 56(1) 2008 15

P. Jantos and J. Rutkowski

Figure 12 shows the dependency between the evolution-

ary algorithms CTS in one generation, and the number of

elements. The results presented in the figure are very promis-

ing. The character of dependency between computing costs of

evolutionary algorithms themselves is logarithmic. The com-

putation time rises slower than the circuit complexity. This

fact is one of the most important reasons to keep developing

usage of evolutionary algorithms in yield optimisation.

Evolutionary
Strategies

Genetic
Algorithm

0 2 4 6 8 10 12 14

Number of elements

50

60

70

80

90

100

110

120

130

T
im

e

Fig. 12. Cost of evolutionary computing in the process of yield optimisation

with the use of genetic algorithm and evolutionary strategies

Figure 13 shows that more complicated the circuit is the

more economical is the use of evolutionary algorithms. Also,

it can be concluded that ES is less time consuming than GA

per one generation.

0,0

5,0

10,0

15,0

20,0

25,0

2 3 5 7 12

Number of elements

P
a
r
ti
c

ip
a

ti
o

n
o
f

th
e

c
o

s
t

o
f
e

v
o

lu
ti

o
n

a
ry

a
lg

o
r
it

h
m

s
c
o

m
p
u

ti
n

g
in

th
e

to
ta

l
c
o

s
t

o
f

c
o

m
p

u
ti

n
g

,
%

Gen etic Algorithm Ev olu tionary Strateg ies

Fig. 13. Participation of the cost of evolutionary algorithms processing of

one generation in the yield optimisation with the use of genetic algorithm

and evolutionary strategies

7. Conclusions

A new approach to the yield and cost optimisation has been

presented. This approach uses evolutionary algorithms, such

as genetic algorithm and evolutionary strategy (µ, λ) in the

process of optimal design centring and tolerancing. Results

presented in this paper allow us to claim that evolutionary al-

gorithms may be an alternative method of yield optimisation

to the standard ones. A very important and positive feature

of EA is the fact that they manipulate both tolerances and

nominal values of element parameters, so the device is as in-

expensive as possible with the parametric yield kept at the

specified level.

Efficiency of the method has been verified on practical

passive analogue circuits. It may be easily implemented for

active analogue circuits with no loss of efficiency.

The economic sense of using evolutionary algorithms, in

yield and cost optimisation, is discussed. The MCa is the most

time consuming part of the presented method. It does not in-

dicate, though, that it is not worthwhile to develop the EA

based methods of yield optimisation. The Monte Carlo anal-

ysis is used as the tool of parametric yield calculation. Other

methods of its estimation may be integrated with evolutionary

optimisation engine [3].

It is proven that the EA computation cost is in logarith-

mic dependency to the number of circuit size. This is a good

reason to keep developing EA based methods and to start re-

search for inventing other ways of estimating parametric yield

than MCa. It is not stated which of the two algorithms is bet-

ter in the field of yield optimisation and it has not been the

aim of the paper. Answering this question must be preceded

by more detailed studies.

Acknowledgements. Piotr Jantos would like to thank Ms. S.

Elizabeth Cohen and Miss Aleksandra Wysocka for their help.

REFERENCES

[1] J.M. Wojciechowski, L.J. Opalski, and K. Zamłyński, “De-

sign centring using an approximation to the constraint region”,

IEEE Transactions on Circuits and Systems – I: Regular Pa-

pers. 5 (3), 598–607 (2004).

[2] H. Tian and L. Milor, “Yield optimisation for integrated cir-

cuits”, ISR TR 92-103, http://hdl.handle.net/1903/5284 (1992).

[3] L. Zielinski and J. Rutkowski, “Design tolerancing with uti-

lization of gene expression programming and genetic algo-

rithm”, Int. Conf. Signals and Electronic Systems ICSES,

13-15 (2004).

[4] T. Bäck, D.B. Fogel, and Z. Michalewicz, Evolutionary Com-

putation I – Basic Algorithms and Operators, IOP Publishing

Ltd, Bristol, 2000.

[5] T. Bäck, D.B. Fogel, and Z. Michalewicz, Evolutionary Com-

putation II – Advanced Algorithms and Operators, IOP Pub-

lishing Ltd, Bristol, 2000.

[6] D. Quagliarella, J. Périaux, C. Poloni, and G. Winter, Genet-

ic Algorithms and Evolutionary Strategies in Engineering and

Computer Science – Recent Advances and Industrial Applica-

tions, John Wiley & Sons Ltd, London, 1998.

[7] R. L. Haupt and S.E. Haupt, Practical Genetic Algorithms,

John Wiley & Sons Ltd, London, 1998.

[8] D. Whitley, “An overview of evolutionary algorithms: prac-

tical issues and common pitfalls”, Information and Software

Technology 43 (14), 817–831 (2001).

16 Bull. Pol. Ac.: Tech. 56(1) 2008

