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Abstract. The paper presents the application of the newly developed method of the solution of nonlinear equations to the
adaptive modelling and computer simulation. The approach is suitable when the system of equations can be arranged in such
a way that it consists of a large number of linear equations and a smaller number of nonlinear equations. This situation occurs
in the case of adaptive modelling of mechanical systems using finite elements or finite differences techniques. In this case the
classical least square method becomes very effective. The paper presents several examples of the application of the method.
A solution to the, so called, “black box” problem is also presented.
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1. Introduction

The most basic step in performing the computer simu-
lation and filtering of the data obtained from physical
experiments is the selection of a model itself. Very often
the model is based on incomplete empirical data. Selec-
tion of an inadequate model and parameters, that char-
acterize it, can be the most important cause of errors in
the computer simulation. A systematic approach for se-
lection of appropriate models from a well-defined class of
models can be very beneficial for the process. Using the
iterative approach it is possible to correct the model as
well to eliminate the noise and systematic errors from the
measurement data.

Any data obtained from the measurements as for ex-
ample, displacements, strains or temperature carry some
experimental errors due to inherent inaccuracies and defi-
ciencies in the experimental techniques and measuring de-
vices used. However, the quantities being measured must
obey some laws of physics. In the cases involving Thermo-
dynamics and Structural Analysis, these laws represent
the equations of motion of thermo-elastic material and
the equations of heat transfer. The quantities measured
with errors do not satisfy the required model equations.
However, this measured set of data can be enhanced sub-
stantially by determining a new set satisfying the model
equations being at the same time as close as possible to
the measured set. The transition from the measured set
containing the experimental errors and noise, to the en-
hanced set is referred to as filtering. The proposed tech-
niques and filters are based on the deterministic approach
called Adaptive Matrix Filter (AMF). The algorithm can

be achieved using the mathematical optimization tech-
nique in which the distance norm between the measured
and calculated experimental data is selected as the objec-
tive function and then minimized subject to constrains of
the state equations.

Recently developed photo-cameras for infrared pho-
tography make possible very precise detection of the tem-
perature changes. It is also possible to measure the fields
of the displacement using laser devices. The direct re-
sponse of the system can be used as the source of infor-
mation for defining the model. For example, the heat con-
duction equations, thermo-elasticity equations and equa-
tions of motion (elasto-dynamic equations) can be used
as model equations if the thermal properties of the ma-
terial are to be defined.. At present the method of neu-
ral networks is often used to solve this type of problems.
However, the most important drawback of this approach
are difficulties with implementation and easy utilization
of the model of the analyzed system.

2. Numerical solution method

Application of the Adaptive Modelling in mechanical
problems requires the solution of large systems of linear
and nonlinear equations. Very often the solution that is
based on the Finite Element Method is accompanied by
a system of nonlinear equations. In this case the whole
system becomes nonlinear and is solved using methods
for the solution of non-linear equations. The method of
Newton-Raphson [1–4] iterations is most commonly used.
This method needs the calculation of first derivatives and
the Jacobian of the matrix for the system. The solution is
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obtained by means of consecutive iterations. If the func-
tions are differentiable with respect to all variables and
behave well it is possible to find the solution in a reason-
able number of iterations. However, this needs the initial
approximation for all the variables taken sufficiently close
to the simultaneous roots of the nonlinear system. This
approach becomes not effective if the number of equations
is large. There are problems with the convergence to cor-
rect solution and problems with the initial approximation
for the variables [5–7].

This paper presents a new method [8] for the solution
of a system of m+n nonlinear equations when the system
of equations can be presented as two groups of equations.
The first group of m equations is linear with respect to
the selected m variables; the second group of n equations
is nonlinear. The solution for the first group does not re-
quire any iterative procedures and can be found by means
of any method for the system of linear equations. The pro-
posed method uses iterations only for the nonlinear part
and needs fewer numbers of initial approximation as com-
pared to those needed in Newton-Raphson method.

The general system of equations can be presented in
the following form

f(x, t) = 0, φ(x, t) = 0,

where the system fi is linear with respect to the variables
xi with the assumption that the values of the variables ti

are known. Equations ϕn are non-linear with respect to
the variables xi and ti. Suppose that the vector t is the
initial guess solution to the nonlinear variables of the sys-
tem of the equations. Similarly, the vector x is the vector
of initial solution for the linear part of the system equa-
tions based on known t. The vector x can be found by
means of any method for the system of linear equations.
Let x + ∆x and t + ∆t be a better approximate solution.

Representing the functions f and φ by Taylor expan-
sion in vector notation, we have

φ(x, t) +
∂φ

∂x
∆x +

∂φ

∂t
∆t = 0, (1)

f(x, t) +
∂f

∂x
∆x +

∂f

∂t
∆t = 0. (2)

Solving Eqs. (1) and (2) with respect to ∆x and ∆t
gives:

∆t = −
[
I − (

∂φ

∂t
)−1(

∂φ

∂x
)(

∂f

∂x
)−1(

∂f

∂t
)
]−1

×
[

∂φ

∂t

]−1

[φ(x, t)]

(3)

∆x = −
[

∂f

∂x

]−1 [
f(x, t) +

∂f

∂t
∆t

]
.

The equation for ∆t is reduced the above form be-
cause f(x, t) = 0 in each iteration. The method is based
on consecutive iterations. Only the initial values of the
variables t have to be assumed. The variables x can be

found solving equations f(x, t) = 0. Then the new values
of t are calculated from: ti+1 = ti + ∆ti.

Equation (4) is used to calculate the increments in
nonlinear variables in two consecutive iterations. I is the
unit diagonal matrix of the order of n. The procedure of
the suggested method for the solution of a system of equa-
tions is as follows. Initial approximations for the nonlinear
variables t0 are assumed. By substituting this set of initial
approximation in Eq. (1), the corresponding initial guess
for linear variables x0 is found without any iteration by
means of any method used for linear system of equations.
Now, by using Eq. (3), ∆t is calculated and the next it-
eration is repeated using t0 + ∆t for t. This procedure
proceeds until the following equation is satisfied:

Max |∆xi| 6 δ and Max |∆ti| 6 δ

where δ is a small number which is chosen according to
the required accuracy.

Below the following simple example is presented to ex-
plain the method. Let us consider the following system of
equations. The variables to be found are x, y, z and t.

tx + 2y − z = 21,

2x − y + 5z = 26,

−2x + 3y − z = 0,

tx2 − 2xy + y2 − tz2 = −213.

(4)

The first and last equations are clearly nonlinear. How-
ever, following the procedure explained in the previous
section, if we consider t as the variable to be found by
iterations, then the first three equations will be linear in
terms of x, y and z can be solved for any given t. Now we
have: the first three equations can be solved for x, y and
z as follows for any given t:

x =

 x
y
z

 =

 t
2
−2

2
−1
3

−1
5
−1

−1  21
26
0

 . (5)

The required derivatives of the equations can be cal-
culated as follows:

∆t = −
[
1 − (

1
x2 − z2

)[2tx − 2y − 2x + 2y − 2tz]

×

 t
2
−2

2
−1
3

−1
5
−1

−1  x
0
0

−1

(
1

x2 − z2
)

× (tx2 − 2xy + y2 − tz2 + 213).

(6)

The solution of the system of equations only needs the
initial values of t. Table 1 presents the solutions obtained
for x, y, z and t using Eq. (12). The results are obtained
using δ = 0.001. Table 1 also records the number of iter-
ations.

The method found three independent solutions for
x, y, z, and t. It was proved that the method is very effec-
tive [8]. It needs less number of initial approximations and
much less iterations as compared with needed in Netwton-
Raphson method.
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Table 1
Results

Initial approximation for t x y z t No. of iterations
0.5 15.6300 10.7900 1.1036 0.0331 7
1 –10.6594 –4.2339 8.6170 –3.5729 8
1.5 2.0000 3.0000 5.0000 10.0000 6
2 2.0000 3.0000 5.0000 10.0000 5
5 2.0000 3.0000 5.0000 10.0000 4
9 2.0001 3.0001 5.0000 10.0000 3
10 2.0000 3.0000 5.0000 10.0000 1
100 2.0000 3.0000 5.0000 10.0000 4
1000 2.0001 3.0000 5.0000 10.0000 4
10000 2.0001 3.0000 5.0000 10.0000 4

3. Examples of adaptive modelling
In order to demonstrate the application of the proposed
method in the field of adaptive modelling, let us consider
the following simple examples.

Example 1. Modelling of a simple beam. A steel
beam simply supported on two end bearings is under pure
bending. The lateral deflection at 9 equally spaced nodes
along the beam length has been measured. The Young’s
modulus of the beam is to be found using these mea-
surements. The measured data are affected by the noise
caused by inherent inaccuracies and deficiencies in the ex-
perimental techniques and measuring devices used.

Let us assume that u∗
i (xi) is a vector of measured lat-

eral deflection of the beam at nine nodes that contain
errors, i is the number of total measurements (i = 9).
The model equations providing the additional informa-
tion about the system are:

D ≡ EI
d2u

dx2
+ M0 = 0, with u1 = 0, u9 = 0, (7)

E, I and M0 are Young’s modulus, moment of inertia
and applied bending moment respectively. Vector ui rep-
resents the corrected values of u∗

i . u1 and u9 are deflec-
tions at left and right bearings respectively. By using the
method of least square with Lagrange multipliers, the
global error R in the interval of interest can be defined.
R is calculated as the square of the differences between
the measured data and data predicted by the model. The
derivatives of R with respect to ui and λj , where λj are
the Lagrange multipliers, must be zero.. The finite dif-
ference representation of the differential operator is used
for seven internal nodes. It can be shown that the set of
equations obtained in this way can be presented in the
matrix form:

IU + Nλ − U∗ = 0, (8)

NT U − F ∗ = 0. (9)

where U and U∗ are the vectors of corrected and measured
variables respectively. I is the unit, diagonal matrix with
the order of 9. λ is the vector of Lagrange multipliers,
N is system matrix and F ∗ represents the applied loads.
N is a linear matrix while F ∗ is a nonlinear function of
E, the Young’s modulus of the beam. Equations (8) and

(9) represent 18 linear equations in terms of 9 corrected
node deflections, ui(i = 1−9) and 9 Lagrange multipliers
λj(j = 1 − 9). These equations, however, are nonlinear
in terms of the unknown E, the Young’s modulus of the
beam.

In order to follow the same procedure as explained be-
fore, equations (8) and (9) can be written in the form that
is more similar to previously explained notations:

f(u, λ,E) = Ax − B = 0, (10)

where:

A =
[

I
NT

N
0

]
, x = [u1 u2 . . . u9 λ1 λ2 . . . λ9]

T

and
B =

[
U∗

F ∗

]
.

The vector x represents the linear part of variables;
the nonlinear part of variables consists only of E, the un-
known Young’s modulus of the beam.

For any given value of E, the matrix representation
provides the unique solution for λ and U as:

λ = (NT
N)−1(N

T
U∗ − F ∗), (11)

U = (I − N(NT N)−1NT )U∗ + N(NT N)−1F ∗, (12)

The matrix
(I − N(NT N)−1NT ) (13)

is referred to as the filter matrix [9].
Considering the fact that E is unknown, the derivative

of R with respect to E should also be zero. This leads to
a nonlinear equation in the following form:

ϕ1(u,λ,E) =
∂R

∂E
= (u − u∗)T ∂u

∂E
+

∂λT

∂E
(NT

u − F ∗)

+ λT (NT ∂u

∂E
− ∂F ∗

∂E
) = 0.

(14)
The system of equations in this example consists of 19

equations totally with 19 unknown deflections at 9 nodes,
9 Lagrange multipliers and Young’s modulus of the beam.
The first 18 equations represented by Eq. (10) are linear
in terms of ui(i = 1− 9) and λj(j = 1− 9) if the Young’s
modulus is given a certain value. This set can be solved
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without any iteration. The only nonlinear equation is Eq.
(14). In this case the vector of nonlinear variables consists
only of one variable, E that is to be found by iteration.
Solution of the system of equations with the suggested
method only needs the initial approximation for E. Sub-
stituting the corresponding derivatives as follows in Eq.
(3) gives the equations for E increment (for t = E).

∂f

∂x
= A,

∂f

∂t
=

∂f

∂E
= −∂B

∂E
,

∂φ

∂x
=

∂φ1

∂x
,

∂φ

∂t
=

∂φ1

∂E
,

In this example a steel beam with a length of 600 mm,
a width of 50 mm and a thickness of 5 mm has been
considered. The bending moment was assumed as 10000
Nmm. The theoretical lateral deflections at 9 equally
spaced nodes along the beam length were used as mea-
sured values using value of 200 GPa as Young Modulus.
This data were randomly modified by introducing a mea-
surements error of the order of 5%. The expected value
for E was 200 GPa. Table 2 presents the calculated E for
different initial approximations when a value of 0.00001
is used for δ. The calculated values for corrected deflec-
tions are almost identical with the theoretical values. Re-
gardless of the initial approximation for E, the program
converged to the value 201 GPa, the expected value was
200 GPa. The difference between expected and calculated
values can be attributed to the errors intentionally in-
troduced while simulating the measurements data. The
number of iterations is small which indicates good con-
vergence rate of the method. The range of initial approx-
imation program is also very wide.

Table 2
Calculated Young Modulus for the steel beam under pure

bending

Initial
approximation

(GPa)

Calculated
E (GPa)

No. of
iteration

Residue
of

φ1 (10−7)

0.001 201.24 65 –9.5
1 201.23 34 –9.8
5 201.31 27 –8.3
10 201.35 24 –7.4
100 201.45 13 –5.5
200 201.26 5 –9.2
330 201.28 18 –8.4

Example 2. Modelling of the sucker rod in the
oil well. Rod pumping is the oldest and still the most
common method of artificial lift used extensively in the
oil well industry. In this example an adaptive modelling
method has been used to model the dynamic behaviour
of the rod of the sucker string (Fig. 1), [10–14]. The main
concept was to replace the solution of the exact compli-
cated mathematical model of the pumping system by a
simple matrix operation in which the bottom-hole values
were obtained as the product of the vector of the data at

the top of the well and by a certain matrix of the sys-
tem. It means that we were looking for the equation in
the form:

{U}bottom = F · {U} top + {C} (15)

where F is a unknown matrix and {C} is an unknown
vector but {U}bottom and {U}top are known data at the
top and the bottom of the rod respectively. The motion of
the sucker rod in the oil well is affected by many unknown
and unpredictable factors, as for example: friction in the
well, oil viscosity and temperature, pressure at the bottom
of the well etc. Using adaptive modelling technique, the
calculations of the bottom-hole values can be performed
faster and in a simple way. In the example presented here
we found that to create the system matrix for the well
it was enough to replace the real rod system by a two-
segment rod with appropriate dimensions. The simplified
model was solved using D’Alembert’s method [15]. The
technique used the field dynamometer data measured at
the top (polished) rod and the calculated force and dis-
placement at the plunger end from the analysis of the
actual model for the same data. Then, the parameters of
the equivalent two-segment rod were found by minimizing
the error calculated as a difference between the results of
two models. Using the equivalent model the system ma-
trix was created. The equivalent mathematical model was
simple, however it could replace the multi-segment actual
rod working in unpredictable environment. The Adaptive
Transfer Matrix (ATM) F was created for this model us-
ing Eqs. (12), (13).

Fig. 1. A typical telescopic sucker rod with 6 segments

The data at the top of the sucker rod string were col-
lected in a real oil well. The force and displacement at the
top of the well (polished rod) were measured using a dy-
namometer. Then these data were used as the boundary
conditions for the calculation of forces and displacements
at the bottom of the rod string. The forces and displace-
ments at the bottom of the well define the conditions of
the pump, effectiveness of pumping, production rate, etc.
The governing Eq. (1), for one dimensional motion of i-th
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segment of the rod, ui(x, t), is

a2 ∂2ui

∂x2
=

∂2ui

∂t2
+bi

∂ui

∂t
, where a2 =

E

ρ
, bi =

η

EAi
. (16)

E and ρ are Young’s Modulus and density of the rod ma-
terial respectively. Ai is the cross section of i-th segment
of the rod and η is the damping per unit length.

The D’Alembert’s solution for the two-segment rod is
given By setting x = L, the total length of the rod, dis-
placement, u2 and force, F2 at the plunger end at any
given time can be calculated.

u2(x, t, b) =
1
4

{
α12

[
Σu(t + ξ, b) − a

EA1
∆̂Y (t, ξ, b)

]
+ ᾱ12

[
Σu (t + ξ − 2λ1, b) +

a

EA1
∆̂Y (t + ξ − 2λ1, b)

]}
,

(17)
F2(x, t, b)

=
1
4

{
α12

[
A2

A1
ΣF (t + ξ, b) − EA2

a
∆V (t, ξ, b)

]
− ᾱ12

[
A2

A1
ΣF (t + ξ − 2λ1, b) +

EA2

a
∆V (t + ξ − 2λ1, b)

]
− b

2
EA2

a
[α12∆u(t + ξ, b) + ᾱ12∆V (t + ξ − 2λ1, b)]

}
were the functions ∆u, ΣF , ∆V are defined by Eq. (18)

In Eq. (17) V is the known velocity at the rod at the
surface which is and other symbols are defined as follow-
ings:

ξ =
x

a
, α12 = 1 +

A1

A2
, ᾱ12 = 1 − A1

A2
, λ1 =

l1
a

,

where l1 is the length of the first segment of the rod, a is
given by Eq. (16)

Σf(t + θ, b) = f(t + θ)e
b
2 θ + f(t − θ)e−

b
2 θ,

∆f(t + θ, b) = f(t + θ)e
b
2 θ − f(t − θ)e−

b
2 θ, (18)

where f = u, V and F and θ are a parameters that can
have different values.

Y (t, θ, b) =

θ∫
0

F (t + τ)e
b
2 τdτ,

∆̂Y (t, θ, b) = Y (t, θ, b) − Y (t,−θ, b) =

θ∫
−θ

F (t + τ)e
b
2 τdτ,

(19)
where τ is the integration variable.

Equation (17) can be represented in a compact matrix
form as: {

U

F

}
bottom

= F


U

V

F


top

+
{

C
0

}
(20)

where F is a matrix which allows to calculate the displace-
ments and forces at the bottom of the well if the forces
and displacements at the top of the well are known.

Fig. 2. Comparison between exact dynamic displacement at
the plunger rod in the oil well of the 6 segment-rod and its

2-segments equivalent rod

Fig. 3. Comparison between load-displacement curves at the
plunger rod of the 6-segment rod (+) and its 2-segment equiv-

alent model (Adaptive Transfer Matrix)

The matrix F is a matrix of coefficients of the right
hand sides of the Eq. (17) over one full cycle of opera-
tion. We called it an Adaptive Transfer Matrix (ATM).
This matrix depends only on the parameters of the sys-
tem that were found through an optimization technique.
Matrix F remains constant for a given system and was
established only once. The vector C represents the con-
stant terms of Eq. (17). The calculation of force and dis-
placement at the plunger end has been reduced to the
simple multiplication of matrix F and the vector of data
from field dynamometer. The results of this approach were
very successful. An ATM has been developed to predict
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the dynamic behaviour of a multi segment rod. The pro-
gram successfully found the system matrix for equivalent
2-segment rod that gives the same displacement and force
at the plunger end as those of the actual six-segment rod
when the same input data at the top (polished) rod are
applied to both systems. The equivalent model was used
to develop the ATM (Eqs. 12, 13).and estimate the load
and displacement at the plunger for any other dynamome-
ter readings. The details of this work are presented in
paper [16]. In order to demonstrate how the proposed ap-
proach reduces the amount of calculations, the equivalent
model has been used with a different set of data at the
top of the rod string. (Figs. 2, 3) show load-displacement
curves at the polished rod and plunger obtained from ex-
act calculations. This time, neither the exact data at the
plunger nor the optimization program is used. The results
were obtained from ATM for the equivalent model using
the different dynamometer data. These results have been
compared with the exact solution of the actual model in
Fig. 4. The figure clearly shows that the equivalent model
and adaptive transfer matrix is capable of estimating load
and displacement at the plunger end for any other dy-
namometer data without loosing much accuracy. It was
only necessary to multiply the data at the polished rod
by the matrix F calculated for the analyzed system using
the simplified model to obtain the results for the plunger.
This operation was fast and simple.

Fig. 4. Comparison between Force-Deflection curves at plunger
rod from the actual model and the equivalent model (Adaptive

Transfer Matrix)

The above described method could be used to find the
ATM for any system for which we know the input and
output data. This presents the solution for, the so called,
“black box” problem.

Example 3. Modelling of thermal properties of
a heated plate. The third example of adaptive modelling
of a mechanical system presents the solution for a thermal

problem. A layered plate heated at one surface is consid-
ered (Fig. 5). The purpose of the analysis is to define the
material properties of the each layer using temperature
distribution measured over the surface of the plate versus
time is the source of information. Finite element method
is used to solve the space-temperature equations of the
theory of thermo-elasticity and finite difference method
for the solution time-temperature equations. For a multi-
layered plate with simple support and isotropic material,
the governing equations in a quasi-static problem are [17].

Fig. 5. 2D Model simplified from 3D model

kI∇2T − (cρ)I Ṫ + Q̇I = 0, (21)

σij,i = 0, (22)

σij = λIeµµδij + 2GIeij − βIδijT, (23)

eij =
1
2
(ui,j + uj,i), (24)

where I = 1, 2, . . . , N , N is the total number of layers,
T is the temperature, eij is the strain tensor and σij is
the stress tensor. The corresponding initial and boundary
conditions for temperature T , heat flow q and displace-
ments are given by:

T (x, 0) = T 0(x), (25)

q(x0, t) = hA(T − T∞), (26)

u(x, 0) = u0, (27)

where the physical parameters are defined as

βI =
EIaI

1 − 2νI
, GI =

EI

2(1 + νI)
, λI =

2GIνI

1 − 2νI
(28)

Here, for the i-th layer, ρI , cI , kI , Q̇I , aI denote mass
density, coefficient of the specific heat, heat conduction
coefficient, volumetric heat generation rate, and coeffi-
cient of linear thermal expansion respectively, λI and GI

are Lame’s constants, νI and EI are Poisson’s ratio and
Young’s modulus. The strain tensor must satisfy the com-
patibility condition:

eij,kl + ekl,ij − eik,jl − ejl,ik = 0. (29)

The stress strain relations can be presented in the fol-
lowing matrix form

σ = EIε + βIT, (30)
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Table 3
Material properties

Young’s
Modulus
E (Pa)

Poisson’s
ratio

ν

Heat conduction
coefficient

k (W/m K)

Coefficient of the
specific heat
c (W/kg K)

Density
ρ (Kg/m3)

Thermal expansion
coefficient
a(m/mK)

2.0e11 0.3 12 480 7800 2.65e-6
0.69e11 0.25 3 800 2330 1.5e-6

where

σ =
[
σx σy σz σxy σyz σxz

]T
,

ε =
[
εx εy εz εxy εyz εxz

]T
,

EI =


λI + 2GI λI λI 0 0 0

λI λI + 2GI λI 0 0 0
λI λI λI + 2GI 0 0 0
0 0 0 GI 0 0
0 0 0 0 GI 0
0 0 0 0 0 GI

 ,

βI =
[
−βI −βI −βI 0 0 0

]T
.

After applying FEM, the following governing equation
for a whole body can be obtained in the following form:

KU = F .

By representing the derivatives of element tempera-
ture T e and QI using the explicit finite difference scheme,
difference equations are

kI∇2T em − (cρ)I
T em+1 − T em

∆t
+

Qm+1
I − Qm

I

∆t
= 0,

(31)
−kIA∇2T em|L = hA(T em − T∞).

At time steps m and m+1, the governing equation and
boundary condition of the whole body can be obtained as
follows by assembling element governing equations and
boundary conditions:

K1T + CT + Q = 0, (32)

K2T + H(T − T∞) = 0, (33)

where

T =
[

T m

T m+1

]
, K1 =

[
kI∇2 0

]
, K2 =

[
kI∇2 0

]
|L,

C =
[

(cρ)I

∆t − (cρ)I

∆t

]
, H =

[
h 0

]
.

(34)
with the initial condition T = T 0 and the boundary con-
dition Eq. (32). Here T 0 is the initial temperature distri-
bution. T∞ is the environment temperature that causes
convection at the boundary. h is the coefficient of convec-
tion. A is the boundary area where convection occurs.

The global error functions for displacement u and tem-
perature fields are

Rm =
1
2
[W (BDU−U∗)]T [W (BDU−U∗)]+λ(KU−F )

RT =
1
2
[W (BDT T − T ∗)]T [W (BDT T − T ∗)]

+ λT (K1T + CT + Q)

+ ηT (K2T + H(T − T∞)).

(35)

By minimizing Rm and RT with respect to system ma-
terial properties and responses, a set of linear-nonlinear
algebraic equations for all identified parameters have been
obtained. The above set of equations generates a correct
solution for a given problem. The model problem repre-
sented in Fig. 5 has been used as an example to demon-
strate the capability of the unified finite element-finite
difference (FE-FD) approach. Figure presents the cross-
section of 3D multi-layered rectangular plate with simple
supports. The length of the plate was assumed infinite,
therefore the problem is simplified to 2D model. It has
been assumed that the material in layer 1 and layer 3 is
steel and the material in layer 2 is ceramic, and their true
material properties are shown in Table 3. The material
data EI , ρI , cI , and kI have been treated as temperature-
independent parameters.

In the model presented in the Fig. 5 the heat source h
= 10 W/m2 ◦C is applied at the middle of the top surface
and keeps constant temperature 80◦C all the time. The
fixed ends are at room temperature 250◦C.

Fig. 6. Distribution of temperature in time step 1

Fig. 7. Distribution of displacement x in time step 1
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In order to find global minimum points, material prop-
erty scale parameters have been introduced for every pa-
rameter as the ratios of expected value to the to the cal-
culated values. The initial value of a material scale pa-
rameter is set to be 1. This guarantees that the minimum
points obtained from Eq. (34) are the global minimum
points. In this case the nonlinear set of equations was
solved using Newton-Raphson method. The errors in the
obtained result were less than 1%. The initial values of
displacements and temperature distribution were calcu-
lated using computer software ANSYS (Figs. 6,7) with-
out introducing any additional errors into the “measured
data”

4. Conclusions
The described method of Adaptive Modelling [5] using the
hybrid method of the solution of linear-nonlinear equa-
tions [8] proved to be effective tool in the modelling of
the mechanical systems. In all examples the convergence
was fast and the algorithms converged to the correct val-
ues. The method has also been successfully used in several
other problems that are not presented here. This approach
can be used to solve any, so called black box problems,
where the input and output data are known but the sys-
tem is unknown (sucker rod example). It has also been
shown that the new method of the solution of linear –
nonlinear equations makes this approach very effective.
The solution needs smaller number of initial approxima-
tions as compared with those needed in Newton-Raphson
method. The method is most useful for solving engineer-
ing problems in which a large number of linear equations
are coupled with a limited number of nonlinear equations.
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