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Abstract. The paper presents an overview of linearization methods of the non-linear state equation. The linearization is developed from the
point of view of the application in the theoretical electrotechnics. Some aspects of these considerations can be used in the control theor
In particular the main emphasis is laid on three methods of linearization, i.e.: Taylor’s series expansion, optimal linearization method and
global linearization method. The theoretical investigations are illustrated using the non-linear circuit composed of a solar generator and a D(
motor. Finally, the global linearization method is presented using several examples, i.e. the asynchronous slip-ring motor and non-linear diode
Furthermore the principal theorem concerning the BIBS stability (bounded-input bounded state) is introduced.

Key words: non-linear state equation, linearization, optimal linearization method, global linearization method, Taylor’s series expansion, BIBS
stability.

1. Introduction historical review of non-linear control methods, which also de-

scribes the linearization of non-linear systems, is presented in
The subject of the linearization of nonlinear state equation hasiper [16].

been discussed in a number of papers concerning theoretical |, this work in overview of the basic methods of the

electrotechnics and control theory [1-8]. This problem injnearization of non-linear state equation is presented. The

volves ranges of equivalence of the linear model both in diyerview concerns basic problems of theoretical electrotech-

rect mapping of the systems dynamics as well as their stabilityics dealing with the linearization of the non-linear state equa-

controllability and observability [2,5,9]. The most commonjons The problems presented here can be also used in control
linearization method i.e. expansion in Taylor's series arouq@,eory_

the equilibrium point is a very effective approximation of the In many considerations concerning system dynamics the

non-linear model only for some minor deviation of state vari- hysical systems are treated as linear systems. This fol-

ables from the equil_ibrium_ point [4]. However, this metho ows from assumed simplified statements that say that the
can be a good starting point for other methods that are 99 aracteristics of system elements are linear in character, or

approx'ma“‘?T‘S n 'the whole state space [.4’10’.11]'. In rece at the equation linearized by Taylor's expansion occurs for
years a significantimportance has had the linearization by Vallome small deviations of state variables around the equilib-

able transformation which is based on global diffeomorphisrnum point. However, in many cases, it is impossible to accept
[6-8]. Its fundamental principles will be presented in a fur- ' ’

ther part of this paper. It should be noted, however, that t@i&?nsil;r:gr:ﬁzsegr ggzgggaznalyss we assume the following
continuity of the non-linear functions and their differentiabil- '
ity plays, in this case, the most significant role [6,7,12]. An i = f(z,u,t), (0) =0 (1)
interesting method of linearization was presented in paper [9],

where non-linear state equation was approximated by lineahere f(z, u, t) is the vector of nonlinear functions;(t) €
state model with matrixd = A(t). In this case the sequence R" andu(t) € R™ are the vector of the state variables and
of linear observers is uniformly convergent which results in athe input vector, respectively;, represents the set of initial
observer for a non-linear system. In paper [13] the scalar nooenditions.

linear Bernoulli equation was also approximated by the linear |n practical considerations, to solve Eq. (1) we apply the
model and it was found that there was a good agreement of th@merical methods [17-20]. The problems of the solution of
approximation series = Az (t)"]x, (n = 1,2,...) with the  Eq. (1) are not examined exactly. Alike, the stability of the sys-
numerical solution of the non-linear equation= f(x,t). The tem that is described by Eq. (1) is the open problem [21,22].
linearization of the multi-input, multi-output systems (MIMO) ko this reason, we approximate the Eq. (1) by linear state
by the input-output injection was presented in papers [3’14v158quation

Works [6,7] present little known Frobenius theorem concern-

ing the linearization of partial differential equations. More- i(t) = Az(t) + Bu(t), z(0)= xo. (2)
over, it should be stressed that Frobenius integrability of cer-

tain distributions associated to a control system is equivalent The form of the matricesl and B depends of the method
to its feedback linearizability. It should be also noted that af the linearization of Eqg. (1). Equation (2) has the analytical
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solution the solar generator and DC drive system is analysed. The non-
t linear circuitis presented in Fig. 1. In the tirhe= 0 the switch
2(t) = eAl—to) g /eA(tf‘r)Bu(T)dt. (3) W is closed and the circuit is in a transient state. The non-
linear characteristic of the solar generator is showed in Fig. 2
to
. _ [24,25].

Assumingt, = 0, w obtain

. Ip Iy
z(t) = ety + /eA(t_T)Bu(T)dt. (4)

0

The exact solution of Eq. (2) resulting from Eq. (3) or Eq. (4)
is very important to solve the stability problems in the linear
systems. However, in practice, for the number of state vari-
ablesn > 3 we use the numerical methods to compute the

vectorz(t).
The homogeneous state equation is given as follows Fig. 1. An electric circuit containing a solar generator and a DC motor
z(t) = Az(t), x(0) = xzo. (5)
The solution of (5) takes the form
z(t) = eAltto) g (6)
or 2|24 v,
— p,b
z(t) = ey, it to=0. (7) - £ 4
THEOREM 1. The system described by homogeneous Eq.
(5) is asymptotically stable if and only if the eigenvalues of
matrix A have the negative real parts [22]. 22.15V
In the case of the non-homogenous equation, we can for- . . s
mulate the following theorem: 0 10

U (V)
THEOREM 2. The system described by non-homogenous. ) o
Eq. (2) with inputu(¢) is BIBS (bounded-input bounded state)9- 2- Non-linear characteristic of solar generafgr,o = 22,15 V
stable if and only if the eigenvalues of matrixhave the neg- Is the generator Vc.’ltage prior to switching on switdh V., is the
ative real parts and the inpuft) is limited [8] equilibrium point of the system (steady state)

This theorem is equitable in the case, where we do notmeet 1e transient state of the circuit is described by the follow-

the secular terms [23]. _ _ ~ ing set of equations [24,25].
The linearization of non-linear state equation (1) aims to ] azs
make the linear approach (2) a good approximation of the non- Iy =—ame™ —ar2 tu
linear equation in the whole state space and for ime oco. &g = azg®1 — Q42 — A5T3
In the above case the linear approach can ensure the existence i3 = agTe — arxs; (8)

and an unambiguous solution for the non-linear equation. It

) ) ) ; 0)=V,o, 0) =0, 0)=0,
can also constitute a mathematical model that makes it possi- 71(0) po, 22(0) 73(0)

ble to investigate the stability of the non-linear system. wherez, = V, is the generator voltage, = I, is the rotor

In this paper three linearization methods of the non-linediurrent ande; = €2 represents the DC motor rotational speed.
state equation are defined: The non-linear characteristic of the solar generator is approxi-
— expansion in Tay|0r’s series, mated USing the fO”OWing formula
— optimal linearization method, I, = Iy — I(e"» — 1), (9)

— global linearization method.

The problem of the linearization based on the geometricd} this formula o is the photovoltaic current of the cell
approach will be discussed in another paper. (V,, = 0) dependent on light flux/; is the saturation current

To illustrate the above linearization methods we use th@efined by Shockley equation, whereds the factor that char-

same non-linear electric circuit containing a DC motor Supact?rr;]zes th;splar generator. g 4 by the rel
plied by a solar generator, e coefficientsy, ..., a; andu are expressed by the rela-

tions that combine the parameters of non-linear circuit (Figs. 1

2. Non-linear electric circuit with a DC motor and2)

supplied by a solar generator ap = % ag = % as = % as = RT’”
To illustrate the theoretical results developed for the three K, K, K, Iy + 1, (10)
methods mentioned above, the non-linear electrical circuit with as = I ag = —, a7 = 7 u = c
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In the numerical computations, we use the following values @. Expansion in the Taylor’s series

the parameters: Let z.,, uc, be the equilibrium point of the system (1), i.e.

R, =12045Q, L=0.1H, C =500uF, doq = f(Teqs ieg t) (12)
K,=05Vs, K,=01Vs? J=103Ws’

x T s . (11) and

In=2A, I,=128-107°A, a=054V"", AL =2 — Teq, AU=1U—Ueq (13)

Voo =2215V. are the small differences for the state vector and the input vec-

The system of non-linear Egs. (8) is solved using Runge-KuttQ": respectively. Assuming that
method [20] with the integration stép= 10~% s. The solution

(14)
is presented in Figs. 3, 4 and 5.

Ai =& — Gog = & — f(Teq,Ueq, 1)

and expanding in Taylor’s series the right side of Eqg. (1), and

22.5 neglecting the terms of order higher than first, we obtain the
approximation of this equation in the form of the following
22 \ linear equation
915 Az = AAz + BAu. (15)
s 01 \ We usually write Eq. (15) in the form [4,26]
5 \ #(t) = Az(t) + Bu(t) (16)
20.5
o where
2
0 . g . B= g .
T=Teq T=Teq
19.5 Tl =t vl

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
t(s)

Fig. 3. The diagram of state variahig

Now, we consider the electric circuit presented in Fig. 1.
To simplify the linearization of the equation system (8) in Eq.
(16) we use transient and steady components in our analysis

x(t) = xs(t) + ze(t). (18)
L6 Ty The steady components;(¢) are computed from the set of
L4 / non-linear algebraic equations
1.2 —

: / fas(t), us(t)) =0 (19)
= / and the transient componentg(t) are the solution of homo-
= 0.8 / geneous equations

0.6 . .
o / &y — Eeqg = A(Ty — Zegq). (20)
0'2 / For the stable system we hawg, = z., = 0 and Eq. (20) is

S N

2 (rad/s)

S =N W e Ot

0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

t(s)
Fig. 4. The diagram of state variahie

z3

/

/

/

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

t(s)
Fig. 5. The diagram of state variahig
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reduced to
& = Axy(t), x4(0) = 2(0) — z5(0) (21)

where matrixA is computed using both Eg. (17) and constant
T = Teg = Ts, U = Ueq. 10 illustrate this method we use
the example described in Section 2. In this case the non-linear
circuit is composed with the solar generator and DC motor.

The solutions of the non-linear equation using Runge-
Kutta method with the integration stédp = 10-° s and the
solution of linear equation (16) are represented in Figs. 6—
8. In this case we use the method of decomposition of the
state variables on the steady component&) and transient
componentse(t), (z(t) = x5(t) + x¢(¢)). The equilibrium
point is chosen in the steady state, i.e. in the point where
f(zs(t),us(t),t) = 0. This behaviour is named Taylor’s series
expansion around equilibrium point with the transient compo-
nents.

It is possible to realize the expansion in Taylor's series
around the initial condition:(0) = x,. This procedure gives
us immediatelyc., = = andz., = (¢t = 0). This behaviour
is very convenient for the casg = 0.
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22.5 . The optimal matrices\* and B* are defined in the following
1 — z; Non-linear - th Il diff
22 \ 2 — z; Taylor trans. comp. way. the small aierence
21.5 e = Ax(t) + Bu(t) — f(x(t),u(t),t) (23)
> 921 \ between the right side of linear and non-linear equation is thus
S \\/1 defined.
20.5 Unknown elements;;; andb;; (i,j = 1,2,...,n) of the
00 | / matricesA* and B* are determined by minimizing of the func-
9 tional
19.5 “%
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Tla: b)) — T 21
oo (@i5b) = [ T (0)=(0)de (24)

0
Fig. 6. The diagram of state variable — comparison between solu-
tion of non-linear Eq. (8) and solution of linear Eq. (16)

8I(aij,bij) -0 8[(&@',1),‘]‘) -0
daij ag=aj 7 by bij =b;
1.6 (25)
m To determine the optimal elementg; andb;;, we introduce
: I A2 the basis functions into the formula (23). The basis functions
1.2 / can be defined using Taylor's series expansion of the non-linear
1 equation (1). The time, is chosen on the basis of the steady
g 0.8 / state of the non-linear system and the integrals (24) are deter-
~ 06 / mined by numerical calculations.
' / The formulas (25) represent the necessary conditions of
0.4 / L — 2 Non-linear i optimization, and in practical applications the results received
0.2 2 — @ Taylor trans. comp |- do not require the Hesse-Matrix computations.
To linearize the non-linear systems (1) we used the follow-

0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
t(s)
Fig. 7. The diagram of state variable — comparison between solu-  — Taylor’s series expansion around equilibrium point
tion of non-linear equation (8) and solution of linear Eq. (16) — Taylor’s series expansion around equilibrium point with
the transient components.

ing basis functions:

In this case two different optimal equations were obtained.

8
. The optimal matricesA; and A% with the numerical values
/ of elements taken from the example presented in section 2,
6 1 ——f= 9 are shown belowA; represents the case of Taylor's series ex-
g 5 pansion around equilibrium point, antk represents the case
g 4 of Taylor’s series expansion around equilibrium point with the
E 3 // 1~ 2 NonJinoar — transient components).
. _
2 / 2 — x5 Taylor trans. comp.—— _1466.31 —1919.04 —20.5118
1 Ar = 10 —12045 -5
0 0 500 —100
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
t(s
) —1457.07 —2447.53 —15.8207
Fig. 8. The diagram of state variablg — comparison between solu- A; = 10 —120.45 -5
tion of non-linear equation (8) and solution of linear Eq. (16) 0 500 —100
Matrix B* is the same for both cases:
4. Optimal linearization method B*=[10 o]T

The least square method makes it possible to find the methﬁlﬂe results of computations are presented in Figs. 9—14.

of linearization of Eq. (1) named the optimal linearization . . .
It is necessary to point out that the good results of the lin-

method [4,25,27]. In this case the non-linear equation is ap- rization of nondinear tion with the Tavlor’s expansion
proximated by the optimal equation carization of non-inear equatio © 'aylors expansio

around equilibrium point with the transient components are ob-
z(t) = A%x(t) + B*u(t), x(0) = zo. (22) tained.
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22.5

1.6

22 k3 2 St L —
— z; Optimal Taylor : %
\ HEve
21.5 /
=0\ N
Z 9 < 0.8
RN ) ~ o]
20.5 7 06 /
\ 0.4 / 1 — 25 Non-linear I
20 1 P 0.2 2 — 2 Optimal Taylor trans. comp.|
1
19.5 0
00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Fig. 9. The diagram of state variable — comparison between solu-

t(s)

t(s)

Fig. 12. The diagram of state variable — comparison between so-

Wtion of non-linear Eq. (8) and solution of optimal Eq. (22) based
on Taylor's series expansion around the equilibrium point with the
transient components

tion of non-linear equation (8) and solution of optimal Eq. (22) base
on Taylor’s series expansion around the equilibrium point

1 — z; Non-linear
2 — z; Optimal Taylor trans. comp.

2 (rad/s)

S = N W e OO N

\
\> /’

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
t(s)

Fig. 10. The diagram of state variablte — comparison between so-

lution of non-linear Eqg. (8) and solution of optimal Eq. (22) base

on Taylor's series expansion around the equilibrium point with the
transient components

1 — 23 Non-linear
2 — 23 Optimal Taylor

19.5
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

t(s)

Fig. 13. The diagram of state variakie — comparison between so-
&ution of non-linear Eq. (8) and solution of optimal Eq. (22) based on
Taylor’s series expansion around the equilibrium point

8 2
1.6 7 =
. 5 *
- 6
1.4 1
/1/ > 5 /
1.2 ~
3 /
1 / £ 4 /
<08 / S 3 / .
~ / 2 1 — 23 Non-linear —
0.6 / 1 2 — 23 Optimal Taylor trans. comp.|
0.4 / 1 — x5 Non-linear 7 0
0.2 2 — z Optimal Taylor | 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
t(s)

0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
t(s)

Fig. 11. The diagram of state variahlte — comparison between so-
lution of non-linear Eq. (8) and solution of optimal Eq. (22) based on
Taylor's series expansion around the equilibrium point

Fig. 14. The diagram of state variablge — comparison between so-
lution of non-linear Eq. (8) and solution of optimal Eq. (22) based
on Taylor's series expansion around the equilibrium point with the
transient components
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5. Global linearization method or
5.1. Variables transformation. In several cases, a non- i=Az+ Bv (35)

linear equation (1) can be linearized by means of the staj¢here:
variables transformation that is defined using a global diffeo-
morphism [6-8,28]. Assuming thdt(x, u, t) is the continu-

ous function and n-time differentiable, we apply the following ky = —(asas + asas + agas), ks = as+ az. (36)
variables transformation.

axr
v = biu — cge*t, ¢y = ajazag, k1 = —asazar

The required state variablagt) are determined by means of

z = ¢(x) (26) inverse transformatiom = ¢~1(z). The inverse transforma-
Where tion can be presented as follows
¢y (561, T2, oy Tn) T hiz1 + hozo + h3zs
¢((E> _ ®, (-rh T2, .. l'n) . (27) To | = hazs + hgzo (37)
..................... x3 Zl
@n ) ) ) n
(@1, T2, s n) where:
In this case Eq. (1) is transformed into the linear equation hy = Qa7 | 95 hy = a4 +az
i=Az+Buv, 2(0)=o[z(t=0) (28) “3f6 = a3a61
ar
i i — i i hs = , ha=—, hs=—.
wherev is a new input = u + f(z) and f(z) is a non-linear 3= te’ T e g

combination of state variables , z, ..., z,,. The solution of

linear equation (28) is known: Now we present a linear system, the analysis and solution

of which are equivalent to the analysis and the solution of the

! non-linear system (31)

_ LAt A(t—T1)
z=¢e Z(O)—i—/e Bu(r)dr. (29) i— Az+ Bu, 2(0) = 6(xo) (38)
0
Using the inverse transformation v=biut f(2) = biu—cse™ (39)
—1 T h1z1 + hQZQ + h32’3
= 30

=0 (Z) ( ) To | = haz1 + hszo . (40)

we obtain vectotz(t) that satisfies relatiof(t) = x(t) over T3 2

té‘g V\(/;])O l?l'z?t\?e?t)c?gé)wr Ziru?:s?o?;](:ﬁ((atzolfnt]r&?asgggl(;T\gfis To solve the system (38-40) we use the iterative method
: ) which is explained in the block diagram in Fig. 15.

computed using the iterative method which is presented in the
next section.

5.2. Example of computations. We consider once more the
same example presented in Figs. 1 and 2

T = —a1e™™' —asre +u

5.82 = a3x1 — 4T — a5T3 (31>
e T et T aTts Fig. 15. Block diagram of linear system with the new input
21(0) = Vp0, 22(0) =0, 3(0) =0 v = u+ f(&)

where the coefficients, ..., as are described in Section 2. . . . .
In order to linearize Eq. (31) the following transformation For the numerical solution the following recurrent model is

of variables is applied applied
2 = a3 Vit1 = bju; + f(Z;), i=0,1,2,..,N (41)
Zy = AgTo — A7T3 (32) Ziv1 = Az; + By, 1=0,1,2,..., N (42)
z3 = agdo — ardz = byxy — boxg — baxs 20 = ¢(x0) (43)
21(0) =0, 22(0) =0, 2(0) = b1Vpp Iy hiz1; + hozai + hazs;
where: To| = haz i+ hszs; (44)
by = azag, by = asag, b3 = agas — a? (33) T3 21, 1=0,1,...,. N

. . . .. The iterative solution of equation
on making basic transformations of Eq. (32) we obtain the d

system of linear differential equations zip1 = Az + Bvigr (45)
%1 01 0 2 0 is presented in Appendix 1.
=100 1 2|+ 10w (34) Numerical analysis. For the calculations the parameter
%3 k1 ko —ks 23 1 values (11) of the circuit shown in Fig. 1 are assumed. The

68 Bull. Pol. Ac.: Tech. 54(1) 2006
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difference between the numerical solution of Eq. (31) and thar

of Egs. (41-44) can be characterized by the norm L= Az + g(a,u) (53)
2l max = max |zl (46)  here:
in this case 91(z, u)
z1(t) = Z1(t)] oy < €1 g(z,u) = | g2(x,u) (54)
22(8) = 52(8) o < 2 (47) ga(@,u)
[23(t) — 23(t)|\pax < €3- . O
Comparing the numerical solutions of Eq. (31) with Egs. (41— 92(%: %) = Dy [b1(21) + 22 + g1 (2, w)] + ga (2, ) (55)

44) we notice that the curves of state variable&) = V,,(¢),
xo = Ip(t) andzg = Q(¢) are identical. It results from small

- > from ga(,w) = 222 [y (21) + 22 + g1 (2, W)
error values, s, €3, shown in Table 1, wherg is the inte- 3\ Oxy 2T I

gration step in Runge-Kutta method. This method is also used Do
to solve non-linear Eq. (31) as well as in the numerical imple- + s (@221, 2) + 23 + ga(, u)] (56)
mentation of the algorithm (41-44). + (@1, w2, 73) + g (@, )
Table 1 + klzl + ]CQZQ + ngg.
The dependence of errors (42) on the value of the integration
steph Parameters;, ko andks are chosen in such a way as to

ensure the stability of matrid. These parameters allow us to
analyse the linear circuit dynamics and by the same time the
dynamics of the non-linear system. In practice the choice of
10e-6 2.59553e-03 1.517e-05 2.336€-05 1o harameters;, k, and ks depends on the changes of the
10e-7 2.5924e-04  1.52e-06 2.34 e-06 values of parameters of non-linear circuits, which are deter-
10e-8 2.592e-05 1.6 e-07 2.4e-07 mined by the circuit structure and influence of some physical
quantities e.g. temperature.

The numerical example.We consider once more the same

h €1 €9 €3
1.0e-5 2.62705e-02 1.5124e-04 2.323e-04

5.3. Generalization of a global linearization method. Let

the I example presented in Fig. 1 and described by Eg. (8). Having
= | carried out some basic transformations, we obtain the follow-
T3 ing set of equations:
be the state vector, ande R be a scalar function. We assume 1 0 1 0 21 g1(z,u)
that the state equation can be presented as follows [5,8,29]: Zol=1 0 0 ag ||22]|+ |g2(z,u)
. Z3 —k1 —ko —ks3 || 23 gg(ZC u) (57)
i1 = ¢1(21) + 22 + 91 (7, 1) v ’
Ty = ¢o(T1,72) + 23 + g2(z, 1) (48) 2(0) =V, 2(0) = —a1e™™, 2(0) = a5V,
&3 = ¢3(w1,22,73) + g3(x,u); 2(0) = wo, or
where the functions;, andg, € C; for k = 1,2, 3. To obtain = Az +g(z,u) (58)
the linear equation, we define the following change of Variablev%here
21 T g1 (1‘, u)
2= |2 = dile)ta | =o@), gz, u) = | ga(a,u) | - (59)
(49) /
23 P21, 22) + 23 gs(z,u)

0) = t=20)|. . ..
.Z( ) =olel )]. . In matrix A of Eq. (57) the parameter,(a; = 1/C) is in-
The inverse transformation that expresses the vector  troduced by means of transformation (49) in order to analyse

the function of vector: is the following the influence of capacitg’ on the dynamics of the non-linear
21 7 circuit.
= |20 | = 2 — ¢1(21) =¢"1(2). (50) On the other hand, the transformatien= ¢(z) can be
T3 25 — ¢a(21, 22 — d1(21) built in such a way as to obtain the elementAfass = 1.

. , However, this transformation lengthens the computation time
Using (48) and (49), after necessary transformations, we ha‘fﬁie to a more complex form @ (z, u). In this case, we have

5 0 1 0 1= g1(z,u)

2’52 = O O 1 zZ9 + §2($7U/) 5 (51) ¢1(x1) = _aleaxl

% “h ke =hs 7 ZICAD ¢2(21,22) = azz1 — asxs (60)
z (O) =¢ [I (t = O)} (52) d)g(xl, X9, 1’3) = agTo — a7x3
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gl(xvu) gl(xvu) u Rm: 30
92(z,u) = aare® (a1€"" + azzz — u) 20 K,=05Vs |
— (1 +a9) - (agx1 — agxs — asxs) (61) \:1;1 =7 i: (()).(iOII{WSS
g3(w,u) = agr1 — ajase™? 15 o —
— (agaq + asag)xs + asarrs + azu. 0 \
To analyse the influence of the electric circuit parameters $2\E %
on the circuit dynamics we assume the following fornkef 5 T =
ko andks for matrix A: <
0
K, 1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
k1:a6:77 k2=a4—a3=E(Rm—1), t(s)
62) . . _ . .
o — au — ij Fig. 17. The diagram presenting solution of linear equation with
UL Rp1=3Q

where J is the inertia moment/, and R, denote the induc- 5 4. Another example of the computations. Below we
tance and resistance of the rotor respectively, Ahdis the  \yould like to show other applications of the global lineariza-
coefficient of the DC coil. tion method.

The eigenvalues of matrid are investigated depending onAnalysis of the dynamic of asynchronous slip-ring motor

the hypothetical changes of resistadtg (R, = 12.045Q1is |n this case we consider the following set of the non-linear
the rated resistance). Assumiftg, ; = 3QandR,, > =25Q  equations [18]
we obtain the following eigenvalues:

. dxq(t
Ro1: A1 = —25.08, Ay = —2.46 + j199.68, xc;t( = —a1x1 — a5To + agx3 — byxoxs — b3xsxs + €1
A3 = —2.46 — 199.68
dIQ(t)
Riot A =—2.09, Xy = —123.96 + j681.26, g = 05T~ 12+ a4Ts + bam 25 + b3wsTs + €2
A3 = —123.96 — j681.26. dxs(t
3 J l‘;; ) = a9X1 — A3T3 — A5%4 + boxoxs + bixaxs — €3
If we change the capacity (C' = 500 pF is the rated capacity) dza(t
the eigenvalues are as follows: g = G2%2+as¥s — asTy - bax1x5 — bixgws — €y
_ . _ _ ; dxs(t
C =1000 uF : Ay = —4.45, Xy = —57.95 + j326.44, T;t( N ¥
A3 = —57.955 — 326.44. (63)
For theR,,, = 12.045 Q and the other rated parameters: where:
x1(t), x2(t)—the standard form of the stator current,
A= —4.99, Ay = —57.73 + j443.84, x3(t), x4(t) —the standard form of the rotor current,
A3 = —57.73 — j443.84. x5(t) — the angular velocity.

Using the global linearization method we obtain the fol-
The diagrams showing;(t) = #1(t), z2(t) = Z2(t) and lowing linear equation:

x3(t) = Z3(t) for the rated parameters and f&r,, ; = 3 Q 4 0 1 0 0 01z a1 (z,u)
are presented in Fig. 16 and in Fig. 17. P 0O 0 1 0 0 % o (2, )
z3 | = 0 0 0 1 0 z3 | + |93 (x, u)
25 Z.4 0 0 0 0 1 zZ4 g4 (l’, ’LL)
25 —k1 —ko —ks —ky —ks5 || 25 s (z,u)
20 — (64)
T = & R, =12.045Q An inverse transformation:
15 K,=05Vs [— -
. 1=2
J=0.001 Ws? 1
_ - a
10 5= 5 L=01H Gy = —Ly _ 2
~ as as
5 — a% + a% ay
T3 =23 r3=———"-21— —22+2
"3 3 s 1 . 2 1+ 23
0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 _aas + ag (af + a3) aag as 1
t(s) T4 = 2 21+ —5 22— —23— —24
ag ag as as
Fig. 16. The diagram presenting solution of linear equation withrated ~ aiazas + ((ﬁ + ag) a2 + azazas + (a% + a%) a3
parameters and solution of linear equation with ., = 3 Q Ts = a? 21
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| G205 + aia? + aya3 B Assuming
2 2 .
as (65) 1 =, and xy =ip (67)
2 2
as+a a . . .
— 32 B — S+ Z5. we have the following set of the non-linear equations
as as

The solutions of non-linear and linear equations are pre- 1= —0d1 — Ay — A3d2 (68)

sented in Figs. 18-20. We should note that the solutions of

. . . T = a4y — a2
both equations are identical. ’

x1(0) = Vo, 22(0) =0.

80
Using the change of state variables defined as follows
40
21 = T2
0 , VAN , , - (69)
= 0.25 0.5/t( )0\*5 t 25 Z2 = (4T1 — Q522
S

= 40 and after some transformations, we obtain the linear equations

[ Ak e

-120
where:
-160
k1 = a1as + azasq, ko =a1 +as
Fig. 18. The diagram of stator current . .
9 9 v = (—a1 — 2a2x1)x1 — azTo + klxl (7]_)
+ ky(—arz1 — asx? — azxs).
250

The diagrams of1(t) = v.(t), x=2(t) = ig(t) are shown in
Figs. 22 and 23.

Pl

=
= 50
& \
0.25 0.5 75 1 1.25
50 f\( )/f' v
L (S D
-100 R
-150
Fig. 19. The diagram of rotor current
L
160
140 / ®
0 Fig. 21. Electric circuit with non-linear diode
2100
<
£ 80
& 60 20
40
20 16
0 0.25 0.5 0.75 1 1.25 192
t(s) > \ 5
Fig. 20. The diagram of angular velocity = S \ <
1
The electrical circuit with non-linear diode. The anal- 4 4
ysed non-linear electrical circuit containing a diode with non-
linear characteristic is presented in Fig. 21 [28].

0 . - - - .
In the considered case the non-linear characteristic of the 0 0.0002 0~0004t (5)0-0006 0.0008  0.001
diode is as follows
i = av, + bv? (66) Fig. 22. The diagram of capacitor voltage
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0.2 Appendix 1
0.16 To solve Eq. (35) we can use the following iterative method
\ 2[(k 4+ 1)T] = AT 2(kT)
_0.12 k+1)T
i:/ \ 2 +€A(k‘+1)T | ) e_ATBU(T)dT (72)
~0.08 -
-
/
0.04 where
ET <t < (k+1)T,k=0,1,2,... (73)
0 0 0.0002  0.0004  0.0006  0.0008 0.001 Substituting the following relations into Eq. (72)
t(s) o
ar _ N\~ (AT)*
Fig. 23. The diagram of resistor current e = Z Kl (74)
k=0
and
In this case curve 1 shows both the non-linear solution and AT e — (AT)*
linear solution. Curve 2 shows the solution of the linear equa- (e 1) =T (k4 1)! (75)
tion for b = 0. k=0
we obtain
. e (AT)k
6. Conclusions 2[(k+1)T) = Z o 2(KT)
k=
In this paper several methods of the linearization of non-linear ° . (76)
state equation have been presented. Some basic remarks con- + TZ ﬂBv(kT).
cerning these methods can be made: = (k+1)!
— the Taylor’s series expansion assures a good approximlgfmg equations
tion of non-linear equation for the smallz deviations =\ (AT)k = (AT)k
of the vectorz. In the presented example, using Tay- 1= kz o and Az = T; k+ D) (77)
=0 =0

lor's series expansion around equilibrium point with the _ _
transient components, a good approximation of the noie calculate the sums of the series (77) according to the con-

linear equation has been obtained:; vergence criterion:

- qptimal Iinearize}tion methoq assures agqoq approxima— ISkell = ISkl <e, ie e=10"° (78)
tion of the non-linear equation, however, it is expensive .
(time consuming); |S|| = max )" a;j, wherea;; are elements of matri¥; and

. . . . J 1
— global linearization method assures convergence of lignatrix A,. Finally, we obtain the following recurrent equation
ear solution with respect to non-linear solution with the

norm maximunyz(t) & z(t)]. z(k+1) = Ayz(k) + A2 Bu(k). (79)

In order to obtain suitable formalism of computations foAppendix 2
the global linearization method, we use the following algo-

' : : ) DEFINITION 1. A replacement of the non-linear system
rithm resulting from the example presented in section 5.2:

(1) by its linear approximatiol\#(t) = AAz(t) + BAu(t)

. ) . . is called the “linearization by the Taylor's series expansion”
1) introduce non-linear functiong(x,u,t) — the right-

hand side of the non-linear state equation, of the non-linear system (1), where = 2 r=ve, B =
2) define and introduce functions),, ¢2, ¢3 and gfi' o . eq
% % 5. | #=z., and the non-linear pak = 0.
3) introduce a direct and inverse change of variables: Y , ) ) ,
2= d(z),F = ¢\ (2) DEFINITION 2. The linear equation obtained by neglecting
4) define ar;d introduce coefficients, ks, andks the non-linear park of Eq.(1) is called the linear approxima-

tion of the non-linear system.

In the computations we apply the Runge-Kutta method of DgriNniTION 3. If the norm 25,0 (t) = 2p,NL(E)]|,0y 1S
the 4" order with the integration ste‘p: 107%s fpr the non-  |ess than prescribed valaei.e. l%iL — 2inell,,,, <e€than
linear case and = 10~'" s for the linear case in the global the non-linear system is called weakly non-linear one, other-

linearization method. wise it is called strongly non-linear:
The above method can be generalized for the ne;; — i'" state variable of the linear system,
dimensional spacer € R"™) [8]. z; n1 — it state variable of the non-linear system.
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DEFINITION 4. The system (1) is called BIBS (bounded- [7] R.Marino and P. TomeNon-linear Control Design — Geomet-

input bounded state ) stable if for any bounded (norm) input

the state vectar is also (horm) bounded, i.e.

|lu|| < M implies ||z|| < N for some finite numbers/ > 0

andN > 0 where|||| denotes the norm of vector
(80)

THEOREM 3. (T. Kaczorek) [8]. The closed-loop nonlin-
ear system is BIBS stable if the following conditions are satisf10]

fied.

1) There exists a global diffeomorphism such that (28)

ric, Adaptive, RobusPrentice Hall, 1995.

[8] T. Kaczorek and A. Jordan, “Global stabilization of a class of
non-linear systems”, in.Computer Application in Electrical
Engineeringed. R. Nawrowski, PozialUniversity of Technol-
ogy, (to be published).

[9] C. Navarro Hernandez and S.P. Banks, “Observer designer for

non-linear systems using linear approximationMA Journal

of Mathematical Control and Informatia20, 359—-370 (2003).

A. Jordan et. al., “Optimal linearization method applied to the

resolution of non-linear state equation®RAIRO — Automa-

tique, Systems Analysis and Cont2dl, 175-185 (1987).

holds forv = u + f(z). This diffeomorphism is defined as [11] A.Jordan etal., “Optimal linearization of non-linear state equa-

follows:
¢1(z)
$2(z)

2= 6(a) = (s1)

with the following properties:
i) ¢(x) is invertible, i.e. there exists a functiaim!(z) such
that

¢ H¢(x)) =z forall z in R" (82)

i) ¢(x) andp~1(z) are both smooth mappings (have continues

partial derivatives of any order).

A given transformation (81) is a global diffeomorphism if [16]

it is a smooth function iR™ and the jacobian matrix

0¢1 991
8¢ B oxq ox ., (83)
B % ........... %

oxq ox,

is non-singular for alkc in R™.

2) The functionf(z) is continuous and bounded for ail
in R™.

3) All eigenvalues of matriXd have negative real parts.

4) The functionz = ¢~1(z) is bounded for alt in R™ and
t €0, +o0].
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