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Linearization of non-linear state equation
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Abstract. The paper presents an overview of linearization methods of the non-linear state equation. The linearization is developed from the
point of view of the application in the theoretical electrotechnics. Some aspects of these considerations can be used in the control theory.
In particular the main emphasis is laid on three methods of linearization, i.e.: Taylor’s series expansion, optimal linearization method and
global linearization method. The theoretical investigations are illustrated using the non-linear circuit composed of a solar generator and a DC
motor. Finally, the global linearization method is presented using several examples, i.e. the asynchronous slip-ring motor and non-linear diode.
Furthermore the principal theorem concerning the BIBS stability (bounded-input bounded state) is introduced.
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1. Introduction

The subject of the linearization of nonlinear state equation has
been discussed in a number of papers concerning theoretical
electrotechnics and control theory [1–8]. This problem in-
volves ranges of equivalence of the linear model both in di-
rect mapping of the systems dynamics as well as their stability,
controllability and observability [2,5,9]. The most common
linearization method i.e. expansion in Taylor’s series around
the equilibrium point is a very effective approximation of the
non-linear model only for some minor deviation of state vari-
ables from the equilibrium point [4]. However, this method
can be a good starting point for other methods that are good
approximations in the whole state space [4,10,11]. In recent
years a significant importance has had the linearization by vari-
able transformation which is based on global diffeomorphism
[6–8]. Its fundamental principles will be presented in a fur-
ther part of this paper. It should be noted, however, that the
continuity of the non-linear functions and their differentiabil-
ity plays, in this case, the most significant role [6,7,12]. An
interesting method of linearization was presented in paper [9],
where non-linear state equation was approximated by linear
state model with matrixA = A(t). In this case the sequence
of linear observers is uniformly convergent which results in an
observer for a non-linear system. In paper [13] the scalar non-
linear Bernoulli equation was also approximated by the linear
model and it was found that there was a good agreement of the
approximation serieṡx = A[x(t)n]x, (n = 1, 2, ...) with the
numerical solution of the non-linear equationẋ = f(x, t). The
linearization of the multi-input, multi-output systems (MIMO)
by the input-output injection was presented in papers [3,14,15].
Works [6,7] present little known Frobenius theorem concern-
ing the linearization of partial differential equations. More-
over, it should be stressed that Frobenius integrability of cer-
tain distributions associated to a control system is equivalent
to its feedback linearizability. It should be also noted that a

historical review of non-linear control methods, which also de-
scribes the linearization of non-linear systems, is presented in
paper [16].

In this work in overview of the basic methods of the
linearization of non-linear state equation is presented. The
overview concerns basic problems of theoretical electrotech-
nics dealing with the linearization of the non-linear state equa-
tions. The problems presented here can be also used in control
theory.

In many considerations concerning system dynamics the
physical systems are treated as linear systems. This fol-
lows from assumed simplified statements that say that the
characteristics of system elements are linear in character, or
that the equation linearized by Taylor’s expansion occurs for
some small deviations of state variables around the equilib-
rium point. However, in many cases, it is impossible to accept
such assumptions and for our analysis we assume the following
system of non-linear equations.

ẋ = f(x, u, t), x(0) = x0 (1)

wheref(x, u, t) is the vector of nonlinear functions,x(t) ∈
Rn andu(t) ∈ Rm are the vector of the state variables and
the input vector, respectively;x0 represents the set of initial
conditions.

In practical considerations, to solve Eq. (1) we apply the
numerical methods [17–20]. The problems of the solution of
Eq. (1) are not examined exactly. Alike, the stability of the sys-
tem that is described by Eq. (1) is the open problem [21,22].

For this reason, we approximate the Eq. (1) by linear state
equation

ẋ(t) = Ax(t) + Bu(t), x(0) = x0. (2)

The form of the matricesA andB depends of the method
of the linearization of Eq. (1). Equation (2) has the analytical
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solution

x(t) = eA(t−t0)x0 +

t∫

t0

eA(t−τ)Bu(τ)dt. (3)

Assumingt0 = 0, w obtain

x(t) = eAtx0 +

t∫

0

eA(t−τ)Bu(τ)dt. (4)

The exact solution of Eq. (2) resulting from Eq. (3) or Eq. (4)
is very important to solve the stability problems in the linear
systems. However, in practice, for the number of state vari-
ablesn > 3 we use the numerical methods to compute the
vectorx(t).

The homogeneous state equation is given as follows

ẋ(t) = Ax(t), x(0) = x0. (5)

The solution of (5) takes the form

x(t) = eA(t−t0)x0 (6)

or
x(t) = eAtx0, if t0 = 0. (7)

THEOREM 1. The system described by homogeneous Eq.
(5) is asymptotically stable if and only if the eigenvalues of
matrixA have the negative real parts [22].

In the case of the non-homogenous equation, we can for-
mulate the following theorem:

THEOREM 2. The system described by non-homogenous
Eq. (2) with inputu(t) is BIBS (bounded-input bounded state)
stable if and only if the eigenvalues of matrixA have the neg-
ative real parts and the inputu(t) is limited [8].

This theorem is equitable in the case, where we do not meet
the secular terms [23].

The linearization of non-linear state equation (1) aims to
make the linear approach (2) a good approximation of the non-
linear equation in the whole state space and for timet → ∞.
In the above case the linear approach can ensure the existence
and an unambiguous solution for the non-linear equation. It
can also constitute a mathematical model that makes it possi-
ble to investigate the stability of the non-linear system.

In this paper three linearization methods of the non-linear
state equation are defined:
– expansion in Taylor’s series,
– optimal linearization method,
– global linearization method.

The problem of the linearization based on the geometrical
approach will be discussed in another paper.

To illustrate the above linearization methods we use the
same non-linear electric circuit containing a DC motor sup-
plied by a solar generator.

2. Non-linear electric circuit with a DC motor
supplied by a solar generator

To illustrate the theoretical results developed for the three
methods mentioned above, the non-linear electrical circuit with

the solar generator and DC drive system is analysed. The non-
linear circuit is presented in Fig. 1. In the timet = 0 the switch
W is closed and the circuit is in a transient state. The non-
linear characteristic of the solar generator is showed in Fig. 2
[24,25].

Fig. 1. An electric circuit containing a solar generator and a DC motor

Fig. 2. Non-linear characteristic of solar generator.Vp,0 = 22, 15 V
is the generator voltage prior to switching on switchW . Vp,b is the

equilibrium point of the system (steady state)

The transient state of the circuit is described by the follow-
ing set of equations [24,25].

ẋ1 = −a1e
ax1 − a2x2 + u

ẋ2 = a3x1 − a4x2 − a5x3

ẋ3 = a6x2 − a7x3;
x1(0) = Vp,0, x2(0) = 0, x3(0) = 0,

(8)

wherex1 = Vp is the generator voltage,x2 = IM is the rotor
current andx3 = Ω represents the DC motor rotational speed.
The non-linear characteristic of the solar generator is approxi-
mated using the following formula

Ip = I0 − Is(eaVp − 1). (9)

In this formula I0 is the photovoltaic current of the cell
(Vp = 0) dependent on light flux,Is is the saturation current
defined by Shockley equation, whereasa is the factor that char-
acterizes the solar generator.

The coefficientsa1, ..., a7 andu are expressed by the rela-
tions that combine the parameters of non-linear circuit (Figs. 1
and 2)

a1 =
Is

C
, a2 =

1
C

, a3 =
1
L

, a4 =
Rm

L

a5 =
Kx

L
, a6 =

Kx

J
, a7 =

Kr

J
, u =

I0 + Is

C
.

(10)
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In the numerical computations, we use the following values of
the parameters:

Rm = 12.045 Ω, L = 0.1 H, C = 500µF,

Kx = 0.5 Vs, Kr = 0.1 Vs2, J = 10−3 Ws3,

I0 = 2 A, Is = 1.28 · 10−3 A, a = 0.54 V−1,

Vp,0 = 22.15 V.

(11)

The system of non-linear Eqs. (8) is solved using Runge-Kutta
method [20] with the integration steph = 10−6 s. The solution
is presented in Figs. 3, 4 and 5.

Fig. 3. The diagram of state variablex1

Fig. 4. The diagram of state variablex2

Fig. 5. The diagram of state variablex3

3. Expansion in the Taylor’s series
Let xeq, ueq be the equilibrium point of the system (1), i.e.

ẋeq = f(xeq, ueq, t) (12)

and
∆x = x− xeq, ∆u = u− ueq (13)

are the small differences for the state vector and the input vec-
tor, respectively. Assuming that

∆ẋ = ẋ− ẋeq = ẋ− f(xeq, ueq, t) (14)

and expanding in Taylor’s series the right side of Eq. (1), and
neglecting the terms of order higher than first, we obtain the
approximation of this equation in the form of the following
linear equation

∆ẋ = A∆x + B∆u. (15)

We usually write Eq. (15) in the form [4,26]

ẋ(t) = Ax(t) + Bu(t) (16)

where

A =
∂f

∂x

∣∣∣∣ x=xeq
u=ueq

, B =
∂f

∂u

∣∣∣∣ x=xeq
u=ueq

. (17)

Now, we consider the electric circuit presented in Fig. 1.
To simplify the linearization of the equation system (8) in Eq.
(16) we use transient and steady components in our analysis

x(t) = xs(t) + xt(t). (18)

The steady componentsxs(t) are computed from the set of
non-linear algebraic equations

f(xs(t), us(t)) = 0 (19)

and the transient componentsxt(t) are the solution of homo-
geneous equations

ẋt − ẋeq = A(xt − xeq). (20)

For the stable system we haveẋeq = xeq = 0 and Eq. (20) is
reduced to

ẋt = Axt(t), xt(0) = x(0)− xs(0) (21)

where matrixA is computed using both Eq. (17) and constant
x = xeq = xs, u = ueq. To illustrate this method we use
the example described in Section 2. In this case the non-linear
circuit is composed with the solar generator and DC motor.

The solutions of the non-linear equation using Runge-
Kutta method with the integration steph = 10−6 s and the
solution of linear equation (16) are represented in Figs. 6–
8. In this case we use the method of decomposition of the
state variables on the steady componentsxs(t) and transient
componentsxt(t), (x(t) = xs(t) + xt(t)). The equilibrium
point is chosen in the steady state, i.e. in the point where
f(xs(t), us(t), t) = 0. This behaviour is named Taylor’s series
expansion around equilibrium point with the transient compo-
nents.

It is possible to realize the expansion in Taylor’s series
around the initial conditionx(0) = x0. This procedure gives
us immediatelyxeq = x0 andẋeq = ẋ(t = 0). This behaviour
is very convenient for the casex0 = 0.
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Fig. 6. The diagram of state variablex1 – comparison between solu-
tion of non-linear Eq. (8) and solution of linear Eq. (16)

Fig. 7. The diagram of state variablex2 – comparison between solu-
tion of non-linear equation (8) and solution of linear Eq. (16)

Fig. 8. The diagram of state variablex3 – comparison between solu-
tion of non-linear equation (8) and solution of linear Eq. (16)

4. Optimal linearization method
The least square method makes it possible to find the method
of linearization of Eq. (1) named the optimal linearization
method [4,25,27]. In this case the non-linear equation is ap-
proximated by the optimal equation

ẋ(t) = A∗x(t) + B∗u(t), x(0) = x0. (22)

The optimal matricesA∗ andB∗ are defined in the following
way: the small difference

ε = Ax(t) + Bu(t)− f(x(t), u(t), t) (23)

between the right side of linear and non-linear equation is thus
defined.

Unknown elementsa∗ij and b∗ij (i, j = 1, 2, ..., n) of the
matricesA∗ andB∗ are determined by minimizing of the func-
tional

I(aij , bij) =

t1∫

0

εT (t)ε(t)dt (24)

∂I(aij , bij)
∂aij

∣∣∣∣aij = a∗ij
= 0 ,

∂I(aij , bij)
∂bij

∣∣∣∣ bij = b∗ij
= 0 .

(25)
To determine the optimal elementsa∗ij andb∗ij , we introduce
the basis functions into the formula (23). The basis functions
can be defined using Taylor’s series expansion of the non-linear
equation (1). The timet1 is chosen on the basis of the steady
state of the non-linear system and the integrals (24) are deter-
mined by numerical calculations.

The formulas (25) represent the necessary conditions of
optimization, and in practical applications the results received
do not require the Hesse-Matrix computations.

To linearize the non-linear systems (1) we used the follow-
ing basis functions:

– Taylor’s series expansion around equilibrium point
– Taylor’s series expansion around equilibrium point with

the transient components.

In this case two different optimal equations were obtained.
The optimal matricesA∗1 and A∗2 with the numerical values
of elements taken from the example presented in section 2,
are shown below (A∗1 represents the case of Taylor’s series ex-
pansion around equilibrium point, andA∗2 represents the case
of Taylor’s series expansion around equilibrium point with the
transient components).

A∗1 =



−1466.31 −1919.04 −20.5118

10 −120.45 −5
0 500 −100




A∗2 =



−1457.07 −2447.53 −15.8207

10 −120.45 −5
0 500 −100


 .

Matrix B∗ is the same for both cases:

B∗ =
[
1 0 0

]T

The results of computations are presented in Figs. 9–14.
It is necessary to point out that the good results of the lin-

earization of non-linear equation with the Taylor’s expansion
around equilibrium point with the transient components are ob-
tained.
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Fig. 9. The diagram of state variablex1 – comparison between solu-
tion of non-linear equation (8) and solution of optimal Eq. (22) based

on Taylor’s series expansion around the equilibrium point

Fig. 10. The diagram of state variablex1 – comparison between so-
lution of non-linear Eq. (8) and solution of optimal Eq. (22) based
on Taylor’s series expansion around the equilibrium point with the

transient components

Fig. 11. The diagram of state variablex2 – comparison between so-
lution of non-linear Eq. (8) and solution of optimal Eq. (22) based on

Taylor’s series expansion around the equilibrium point

Fig. 12. The diagram of state variablex2 – comparison between so-
lution of non-linear Eq. (8) and solution of optimal Eq. (22) based
on Taylor’s series expansion around the equilibrium point with the

transient components

Fig. 13. The diagram of state variablex3 – comparison between so-
lution of non-linear Eq. (8) and solution of optimal Eq. (22) based on

Taylor’s series expansion around the equilibrium point

Fig. 14. The diagram of state variablex3 – comparison between so-
lution of non-linear Eq. (8) and solution of optimal Eq. (22) based
on Taylor’s series expansion around the equilibrium point with the

transient components
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5. Global linearization method
5.1. Variables transformation. In several cases, a non-
linear equation (1) can be linearized by means of the state
variables transformation that is defined using a global diffeo-
morphism [6–8,28]. Assuming thatf(x, u, t) is the continu-
ous function and n-time differentiable, we apply the following
variables transformation.

z = φ(x) (26)

where

φ(x) =




Φ1 (x1, x2, ..., xn)
Φ2 (x1, x2, ..., xn)

.....................
Φn (x1, x2, ..., xn)


 . (27)

In this case Eq. (1) is transformed into the linear equation

ż = Az + Bv, z (0) = Φ [x (t = 0)] (28)

wherev is a new inputv = u + f(x) andf(x) is a non-linear
combination of state variablesx1, x2, ..., xn. The solution of
linear equation (28) is known:

z = eAtz(0) +

t∫

0

eA(t−τ)Bv(τ)dτ. (29)

Using the inverse transformation

x = φ−1(z) (30)

we obtain vector̃x(t) that satisfies relatioñx(t) ∼= x(t) over
the whole state space wheret →∞ andx(t) is the solution of
Eq. (1). The vector̃x(t) results from the formula (30) and is
computed using the iterative method which is presented in the
next section.

5.2. Example of computations. We consider once more the
same example presented in Figs. 1 and 2

ẋ1 = −a1e
ax1 − a2x2 + u

ẋ2 = a3x1 − a4x2 − a5x3

ẋ3 = a6x2 − a7x3

x1(0) = Vp,0, x2(0) = 0, x3(0) = 0

(31)

where the coefficientsa1, ..., a2 are described in Section 2.
In order to linearize Eq. (31) the following transformation

of variables is applied

z1 = x3

z2 = a6x2 − a7x3

z3 = a6ẋ2 − a7ẋ3 = b1x1 − b2x2 − b3x3

z1(0) = 0, z2(0) = 0, z3(0) = b1Vp,0

(32)

where:

b1 = a3a6, b2 = a4a6, b3 = a6a5 − a2
7 (33)

on making basic transformations of Eq. (32) we obtain the
system of linear differential equations




ż1

ż2

ż3


 =




0 1 0
0 0 1
k1 k2 −k3







z1

z2

z3


 +




0
0
1


 v (34)

or
ż = Az + Bv (35)

where:

v = b1u− c4e
ax1 , c4 = a1a3a6, k1 = −a2a3a7

k2 = −(a2a3 + a4a2 + a6a5), k3 = a4 + a7. (36)

The required state variablesx(t) are determined by means of
inverse transformationx = φ−1(z). The inverse transforma-
tion can be presented as follows




x1

x2

x3


 =




h1z1 + h2z2 + h3z3

h4z4 + h5z2

z1


 (37)

where:
h1 =

a4a7

a3a6
+

a5

a3
, h2 =

a4 + a7

a3a6
,

h3 =
1

a3a6
, h4 =

a7

a6
, h5 =

1
a6

.

Now we present a linear system, the analysis and solution
of which are equivalent to the analysis and the solution of the
non-linear system (31)

ż = Az + Bv, z(0) = φ(x0) (38)

v = b1u + f(x) = b1u− c4e
ax1 (39)




x1

x2

x3


 =




h1z1 + h2z2 + h3z3

h4z1 + h5z2

z1


 . (40)

To solve the system (38–40) we use the iterative method
which is explained in the block diagram in Fig. 15.

Fig. 15. Block diagram of linear system with the new input
v = u + f(x̃)

For the numerical solution the following recurrent model is
applied

vi+1 = biui + f(x̃i), i = 0, 1, 2, ..., N (41)

zi+1 = Azi + Bvi+1, i = 0, 1, 2, ..., N (42)

z0 = φ(x0) (43)



x̃1

x̃2

x̃3


 =




h1z1,i + h2z2,i + h3z3,i

h4z1,i + h5z5,i

z1,i




i = 0, 1, ..., N
(44)

The iterative solution of equation

zi+1 = Azi + Bvi+1 (45)

is presented in Appendix 1.
Numerical analysis. For the calculations the parameter

values (11) of the circuit shown in Fig. 1 are assumed. The
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difference between the numerical solution of Eq. (31) and that
of Eqs. (41–44) can be characterized by the norm

‖x‖max = max
16i6N

‖xi‖ (46)

in this case
‖x1(t)− x̃1(t)‖max 6 ε1

‖x2(t)− x̃2(t)‖max 6 ε2

‖x3(t)− x̃3(t)‖max 6 ε3.

(47)

Comparing the numerical solutions of Eq. (31) with Eqs. (41–
44) we notice that the curves of state variablesx1(t) = Vp(t),
x2 = IM (t) andx3 = Ω(t) are identical. It results from small
error valuesε1, ε2, ε3, shown in Table 1, whereh is the inte-
gration step in Runge-Kutta method. This method is also used
to solve non-linear Eq. (31) as well as in the numerical imple-
mentation of the algorithm (41–44).

Table 1
The dependence of errors (42) on the value of the integration

steph

h ε1 ε2 ε3

1.0 e-5 2.62705 e-02 1.5124 e-04 2.323 e-04
1.0 e-6 2.59553 e-03 1.517 e-05 2.336 e-05
1.0 e-7 2.5924 e-04 1.52 e-06 2.34 e-06
1.0 e-8 2.592 e-05 1.6 e-07 2.4 e-07

5.3. Generalization of a global linearization method. Let
the

x =




x1

x2

x3




be the state vector, andu ∈ R be a scalar function. We assume
that the state equation can be presented as follows [5,8,29]:

ẋ1 = φ1(x1) + x2 + g1(x, u)
ẋ2 = φ2(x1, x2) + x3 + g2(x, u)
ẋ3 = φ3(x1, x2, x3) + g3(x, u); x(0) = x0,

(48)

where the functionsφk andgk ∈ C1 for k = 1, 2, 3. To obtain
the linear equation, we define the following change of variables

z =




z1

z2

z3


 =




x1

φ1(x1) + x2

φ(x1, x2) + x3


 = φ(x),

z (0) = φ [x (t = 0)] .

(49)

The inverse transformation that expresses the vectorx in
the function of vectorz is the following

x =




x1

x2

x3


 =




z1

z2 − φ1(z1)
z3 − φ2(z1, z2 − φ1(z1)


 = φ−1(z). (50)

Using (48) and (49), after necessary transformations, we have:



ż1

ż2

ż3


 =




0 1 0
0 0 1
−k1 −k2 −k3






z1

z2

z3


 +




g1(x, u)
ḡ2(x, u)
ḡ3(x, u)


 , (51)

z (0) = φ [x (t = 0)] (52)

or

ż = Az + g(x, u) (53)

where:

g(x, u) =




g1(x, u)
ḡ2(x, u)
ḡ3(x, u)


 (54)

ḡ2(x, u) =
∂φ1

∂x1
[φ1(x1) + x2 + g1(x, u)] + g2(x, u) (55)

ḡ3(x, u) =
∂φ2

∂x1
[φ1(x1) + x2 + g1(x, u)]

+
∂φ2

∂x2
[φ2(x1, x2) + x3 + g2(x, u)]

+ φ3(x1, x2, x3) + g3(x, u)
+ k1z1 + k2z2 + k3z3.

(56)

Parametersk1, k2 andk3 are chosen in such a way as to
ensure the stability of matrixA. These parameters allow us to
analyse the linear circuit dynamics and by the same time the
dynamics of the non-linear system. In practice the choice of
the parametersk1, k2 andk3 depends on the changes of the
values of parameters of non-linear circuits, which are deter-
mined by the circuit structure and influence of some physical
quantities e.g. temperature.

The numerical example.We consider once more the same
example presented in Fig. 1 and described by Eq. (8). Having
carried out some basic transformations, we obtain the follow-
ing set of equations:




ż1

ż2

ż3


 =




0 1 0
0 0 a2

−k1 −k2 −k3






z1

z2

z3


 +




g1(x, u)
ḡ2(x, u)
ḡ3(x, u)




z1(0) = Vp, z2(0) = −a1e
aVp , z3(0) = a3Vp

(57)

or

ż = Az + g(x, u) (58)

where

g(x, u) =




g1(x, u)
ḡ2(x, u)
ḡ3(x, u)


 . (59)

In matrix A of Eq. (57) the parametera2(a2 = 1/C) is in-
troduced by means of transformation (49) in order to analyse
the influence of capacityC on the dynamics of the non-linear
circuit.

On the other hand, the transformationz = φ(x) can be
built in such a way as to obtain the element ofA, a23 = 1.
However, this transformation lengthens the computation time
due to a more complex form of̄g2(x, u). In this case, we have

φ1(x1) = −a1e
ax1

φ2(x1, x2) = a3x1 − a4x2

φ3(x1, x2, x3) = a6x2 − a7x3

(60)
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ḡ1(x, u) = g1(x, u) = u

ḡ2(x, u) = aa1e
ax1(a1e

ax1 + a2x2 − u)
− (1 + a2) · (a3x1 − a4x2 − a5x3)

ḡ3(x, u) = a6x1 − a1a4e
ax1

− (a2a4 + a5a6)x2 + a5a7x3 + a3u.

(61)

To analyse the influence of the electric circuit parameters
on the circuit dynamics we assume the following form ofk1,
k2 andk3 for matrixA:

k1 = a6 =
Kx

J
, k2 = a4 − a3 =

1
L

(Rm − 1),

k3 = a4 =
Rm

L

(62)

whereJ is the inertia moment,L andRm denote the induc-
tance and resistance of the rotor respectively, andKx is the
coefficient of the DC coil.

The eigenvalues of matrixA are investigated depending on
the hypothetical changes of resistanceRm (Rm = 12.045 Ω is
the rated resistance). AssumingRm.1 = 3 Ω andRm.2 = 25 Ω
we obtain the following eigenvalues:

Rm.1 : λ1 = −25.08, λ2 = −2.46 + j199.68,

λ3 = −2.46− j199.68
Rm.2 : λ1 = −2.09, λ2 = −123.96 + j681.26,

λ3 = −123.96− j681.26.

If we change the capacityC (C = 500 µF is the rated capacity)
the eigenvalues are as follows:

C = 1000 µF : λ1 = −4.45, λ2 = −57.95 + j326.44,

λ3 = −57.95j − 326.44.

For theRm = 12.045 Ω and the other rated parameters:

λ1 = −4.99, λ2 = −57.73 + j443.84,

λ3 = −57.73− j443.84.

The diagrams showingx1(t) ∼= x̃1(t), x2(t) ∼= x̃2(t) and
x3(t) ∼= x̃3(t) for the rated parameters and forRm.1 = 3 Ω
are presented in Fig. 16 and in Fig. 17.

Fig. 16. The diagram presenting solution of linear equation with rated
parameters and solution of linear equation withRm.1 = 3 Ω

Fig. 17. The diagram presenting solution of linear equation with
Rm.1 = 3 Ω

5.4. Another example of the computations. Below we
would like to show other applications of the global lineariza-
tion method.
Analysis of the dynamic of asynchronous slip-ring motor.
In this case we consider the following set of the non-linear
equations [18]

dx1(t)
dt

= −a1x1 − a5x2 + a4x3 − b4x2x5 − b3x4x5 + e1

dx2(t)
dt

= a5x1 − a1x2 + a4x4 + b4x1x5 + b3x3x5 + e2

dx3(t)
dt

= a2x1 − a3x3 − a5x4 + b2x2x5 + b1x4x5 − e3

dx4(t)
dt

= a2x2 + a5x3 − a3x4 − b2x1x5 − b1x3x5 − e4

dx5(t)
dt

= −c2x5 + c1x1x4 − c1x2x3 −M

(63)
where:
x1(t), x2(t) – the standard form of the stator current,
x3(t), x4(t) – the standard form of the rotor current,
x5(t) – the angular velocity.

Using the global linearization method we obtain the fol-
lowing linear equation:


ż1

ż2

ż3

ż4

ż5




=




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−k1 −k2 −k3 −k4 −k5







z1

z2

z3

z4

z5




+




g1 (x, u)
ḡ2 (x, u)
ḡ3 (x, u)
ḡ4 (x, u)
ḡ5 (x, u)




(64)
An inverse transformation:

x1 = z1

x2 = −a1

a5
z1 − 1

a5
z2

x3 = −a2
1 + a2

5

a5
z1 − a1

a5
z2 + z3

x4 =
a2a5 + a3

(
a2
1 + a2

5

)

a2
5

z1 +
a1a3

a2
5

z2 − a3

a5
z3 − 1

a5
z4

x5 =
a1a2a5 +

(
a2
1 + a2

5

)
a2
5 + a2a3a5 +

(
a2
1 + a2

5

)
a2
3

a2
5

z1
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+
a2a5 + a1a

2
5 + a1a

2
3

a2
5

z2

− a2
3 + a2

5

a5
z3 − a3

a5
z4 + z5.

(65)

The solutions of non-linear and linear equations are pre-
sented in Figs. 18–20. We should note that the solutions of
both equations are identical.

Fig. 18. The diagram of stator current

Fig. 19. The diagram of rotor current

Fig. 20. The diagram of angular velocity

The electrical circuit with non-linear diode. The anal-
ysed non-linear electrical circuit containing a diode with non-
linear characteristic is presented in Fig. 21 [28].

In the considered case the non-linear characteristic of the
diode is as follows

i = avc + bv2
c (66)

Assuming
x1 = vc, and x2 = iR (67)

we have the following set of the non-linear equations

ẋ1 = −a1x1 − a2x
2
1 − a3x2 (68)

ẋ2 = a4x1 − a5x2,

x1(0) = Vc,0, x2(0) = 0.

Using the change of state variables defined as follows

z1 = x2

z2 = a4x1 − a5x2

(69)

and after some transformations, we obtain the linear equations
[

ż1

ż2

]
=

[
0 1
−k1 −k2

][
z1

z2

]
+

[
0
v

]
(70)

where:

k1 = a1a5 + a3a4, k2 = a1 + a5

v = (−a1 − 2a2x1)ẋ1 − a3ẋ2 + k1x1

+ k2(−a1x1 − a2x
2
1 − a3x2).

(71)

The diagrams ofx1(t) = vc(t), x2(t) = iR(t) are shown in
Figs. 22 and 23.

Fig. 21. Electric circuit with non-linear diode

Fig. 22. The diagram of capacitor voltage
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Fig. 23. The diagram of resistor current

In this case curve 1 shows both the non-linear solution and
linear solution. Curve 2 shows the solution of the linear equa-
tion for b = 0.

6. Conclusions

In this paper several methods of the linearization of non-linear
state equation have been presented. Some basic remarks con-
cerning these methods can be made:

– the Taylor’s series expansion assures a good approxima-
tion of non-linear equation for the small∆x deviations
of the vectorx. In the presented example, using Tay-
lor’s series expansion around equilibrium point with the
transient components, a good approximation of the non-
linear equation has been obtained;

– optimal linearization method assures a good approxima-
tion of the non-linear equation, however, it is expensive
(time consuming);

– global linearization method assures convergence of lin-
ear solution with respect to non-linear solution with the
norm maximum[x̃(t) ∼= x(t)].

In order to obtain suitable formalism of computations for
the global linearization method, we use the following algo-
rithm resulting from the example presented in section 5.2:

1) introduce non-linear functionsf(x, u, t) – the right-
hand side of the non-linear state equation,

2) define and introduce functions:φ1, φ2, φ3 and ∂φ1
∂x1

,
∂φ2
∂x2

, ∂φ3
∂x3

,
3) introduce a direct and inverse change of variables:

z = φ(x), x̃ = φ−1(z)
4) define and introduce coefficientsk1, k2, andk3.

In the computations we apply the Runge-Kutta method of
the 4th order with the integration steph = 10−6 s for the non-
linear case andh = 10−11 s for the linear case in the global
linearization method.

The above method can be generalized for the n-
dimensional space(x ∈ Rn) [8].

Appendix 1
To solve Eq. (35) we can use the following iterative method

z [(k + 1)T ] = eAT z(kT )

+ eA(k+1)T

(k+1)T∫

kT

e−AτBv(τ)dτ
(72)

where
kT 6 t 6 (k + 1)T, k = 0, 1, 2, ... (73)

Substituting the following relations into Eq. (72)

eAT =
∞∑

k=0

(AT )k

k!
(74)

and

(eAT − 1)A−1 = T

∞∑

k=0

(AT )k

(k + 1)!
(75)

we obtain

z [(k + 1)T ] =
∞∑

k=0

(AT )k

k!
z(kT )

+ T

∞∑

k=0

(AT )k

(k + 1)!
Bv(kT ).

(76)

Using equations

A1 =
∞∑

k=0

(AT )k

k!
and A2 = T

∞∑

k=0

(AT )k

(k + 1)!
(77)

we calculate the sums of the series (77) according to the con-
vergence criterion:

‖Sk+1‖ − ‖Sk‖ 6 ε, i.e ε = 10−5 (78)

‖S‖ = max
j

∑
l

aij , whereaij are elements of matrixA1 and

matrixA2. Finally, we obtain the following recurrent equation

z(k + 1) = A1z(k) + A2Bv(k). (79)

Appendix 2
DEFINITION 1. A replacement of the non-linear system

(1) by its linear approximation∆ẋ(t) = A∆x(t) + B∆u(t)
is called the “linearization by the Taylor’s series expansion”

of the non-linear system (1), whereA = ∂f
∂x

∣∣∣∣ x=xeq
u=ueq

, B =

∂f
∂u

∣∣∣∣ x=xeq
u=ueq

and the non-linear partR = 0.

DEFINITION 2. The linear equation obtained by neglecting
the non-linear partR of Eq.(1) is called the linear approxima-
tion of the non-linear system.

DEFINITION 3. If the norm‖xi,L(t)− xL,NL(t)‖max is
less than prescribed valueε, i.e. ‖xi,L − xi,NL‖max < ε than
the non-linear system is called weakly non-linear one, other-
wise it is called strongly non-linear:
xi,L − ith state variable of the linear system,
xi,NL − ith state variable of the non-linear system.

72 Bull. Pol. Ac.: Tech. 54(1) 2006



Linearization of non-linear state equation

DEFINITION 4. The system (1) is called BIBS (bounded-
input bounded state ) stable if for any bounded (norm) inputu
the state vectorx is also (norm) bounded, i.e.

‖u‖ < M implies ‖x‖ < N for some finite numbersM > 0
andN > 0 where‖‖ denotes the norm of vector.

(80)

THEOREM 3. (T. Kaczorek) [8]. The closed-loop nonlin-
ear system is BIBS stable if the following conditions are satis-
fied.

1) There exists a global diffeomorphism such that (28)
holds forv = u + f(x). This diffeomorphism is defined as
follows:

z = φ(x) =




φ1(x)
φ2(x)

...
φn(x)


 (81)

with the following properties:
i) φ(x) is invertible, i.e. there exists a functionφ−1(z) such
that

φ−1(φ(x)) = x for all x in Rn (82)

ii) φ(x) andφ−1(z) are both smooth mappings (have continues
partial derivatives of any order).

A given transformation (81) is a global diffeomorphism if
it is a smooth function inRn and the jacobian matrix

∂φ

∂x
=




∂φ1
∂x1

... ∂φ1
∂xn

.....................
∂φn

∂x1
... ∂φn

∂xn


 (83)

is non-singular for allx in Rn.
2) The functionf(x) is continuous and bounded for allx

in Rn.
3) All eigenvalues of matrixA have negative real parts.
4) The functionx = φ−1(z) is bounded for allz in Rn and

t ∈ [0, +∞].
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