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Support vector clustering algorithm for identification of glaucoma
in ophthalmology
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Abstract. This paper presents the improved version of the classification system for supporting glaucoma diagnosis in ophthalmology. In this
paper we propose the new segmentation step based on the support vector clustering algorithm which enables better classification performance.
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1. Introduction

This paper presents the improved version of the classifica-
tion system for supporting glaucoma diagnosis in ophthalmol-
ogy, proposed in [1]. Glaucoma is a group of ocular diseases
characterized by the proceeding optic nerve neuropathy which
leads to the rising diminution in vision field, ending with blind-
ness. The optic disk structure (i.e. the exit of the optic nerve
from the eye known as “blind spot” is comprised of a yellow-
ish cup surrounded by a neuroretinal pink rim [2] (e.g. see Fig.
1a)). Glaucomatous changes in the retina appearance embrace
various changes in the cup, as the result of nerve fibers dam-
ages. The method proposed in [1] enables automatic classifi-
cation of digital fundus eye images (FEI) taken from classical
fundus-camera into normal and glaucomatous ones.

In this paper we propose the new segmentation method
based on the support vector clustering (SVC) algorithm which
improves the accuracy of the method for supporting glaucoma
diagnosing, proposed in [1]. The modified method is com-
posed of the following three main stages:

i. Segmentation of the cup region using support vector
clustering.

ii. Selection of the cup features using genetic algorithms.
iii. Classification of FEI using the support vector machine

(SVM) classifier.

2. Support vector clustering algorithm

The support vector clustering (SVC) algorithm [3] is a recently
emerged kernel-based unsupervised learning method [4] in-
spired by the support vector machines [5] and consists of two
main steps: 1) training step for constructing a trained kernel
radius function and 2) a cluster labelling step for assigning to
each data point a cluster index determined by its trained kernel
radius function. Training step Let{xi} ⊂ Rd be a data set of N
points (Rd being a data space). Using a nonlinear transforma-
tion Φ : Rd → Q to some high-dimensional feature spaceQ,
we look for the smallest enclosing sphere of radiusr described

by the constraints:

∀
j
||Φ(xj)− a||2 6 R2 + ξj (1)

where||.|| is the Euclidean norm, a is the centre andξj > 0
are some slack variables allowing for soft boundaries. By in-
troducing the Lagrangian with a regularization constantC in
its penalty term:

L = r2 −
∑

j

(
r2 − ξj − ||Φ(xj)− a||2)βj

−
∑

j

ξjµj + C
∑

j

ξj

(2)

whereβj , µj > 0 are Lagrange multipliers the solution of the
primal problem (1) can be obtained by solving its dual prob-
lem:

maxW =
∑

j

Φ(xj)2βj −
∑

i,j

βiβjΦ(xi)Φ(xj) (3)

subject to:0 6 βj 6 C,
∑
j

βj = 1, j = 1, ..., N .

Only those points with0 < βj < C lie on the boundary
of the sphere and are called support vectors (SV). Points with
βj = C lie outside the boundaries and are called bounded sup-
port vectors (BSV). All other points lie inside the boundary.
Following the SV method [5] we can represent the dot prod-
ucts by an appropriate Mercer kernel:

K(xi, xj) = Φ(xi) · Φ(xj) (4)

The Lagrangian can now be written as:

maxW =
∑

j

K(xj , xj)βj −
∑

i,j

βiβjK(xi, xj) (5)

Setting to zero the derivative ofL with respect toa leads
to: a =

∑
j

βjΦ(xj). The trained kernel radius function, de-

fined by the squared distance of the image of x from the sphere
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centre, is then given by:

r2(x) = ||Φ(x)− a||2 = K(x, x)− 2
∑

j

βjK(xj , x)

+
∑

i,j

βiβjK(xi, xj)
(6)

The radius of the sphere iŝr = r(xi) wherexi is a support
vector.
Labelling step. To differentiate between points that belong to
different clusters a geometric approach involving r(x) is used.
It is based on the following observation. Given a pair of data
points that belong to different clusters, any path that connects
them must exit from the sphere in feature space. Therefore,
such a path contains a segment of points y such that r(y)>r.
This leads to the definition of the adjacency matrix Aij between
pairs of points xi and xj whose images lie in or on the sphere
in feature space:

Aij =





1 if for all y on the line segment
connectingxi andxjr(y) < r

0 otherwise
(7)

Clusters are defined as the connected components of the graph
induced byA. Checking the line segment is implemented by
sampling a number of points (20 in our experiments).

3. Feature selection using genetic algorithms
In our approach, 30 geometric features were computed on the
extracted cup region ([1]). These are: Hu moment invariants,
compound invariant moments, circular coefficients, different
shape coefficients including Danielsson, Haralick and Feret
ones. Genetic algorithms were used to select the most signifi-
cant features characterizing the shape of a cup region. A given
feature subset was represented as a binary string with a zero or
one in positioni, denoting the absence or presence of featurei
in the set. The initial population was randomly generated. We
used the following fitness function:

Fitness =104 accuracy + 0.4 zeros (8)

where “accuracy” is the accuracy rate that the given subset
of features achieves (i.e. the performance of a classifier on
a given subset of features), “zeros” is the number of zeros in
the chromosome. Overall, higher accuracy implies higher fit-
ness. Fewer features used imply a greater number of zeros, and
as a result, the fitness increases. As a classifier we used SVM
with Gaussian kernel ([5]). The accuracy of the SVM classi-
fier on a given subset of features required for the calculation of
the fitness function is measured as a generalization errorGe,
calculated using the k-fold cross-validation method (k = 10)
[6]:

Ge =
(TP + TN)

(TP + TN + FP + FN)
(9)

whereTP – true-positive,FN – false-negative,TN – true-
negative,FP – false-positive. The parameters we used in all
the experiments are as follows:

1) the length of each chromosome: 30,
2) the population size: 120,

3) the maximum number of generations: 500,
4) the cross-over rate: 0.6,
5) the mutation rate: 0.005.
The best chromosome (i.e. the best feature subset) is the

one which is the most frequent among the chromosomes in the
last generation.

4. SVM classifier
Having a training setS = {(xi, yi), 1 6 i 6 N} composed
of the examplesxi ∈ Rn, each belonging to a class labelled
by yi ∈ {1,−1}, the goal of the SVM classifier [5] is to find
the optimal separating hyperplane (OSH) – i.e the one which
maximizes the separation margin which is a distance between
the hyperplane and the closest data point. In the case when
the data points are not linearly separable, a non-linear trans-
formationΦ (x) is used to map the data vectorx into a higher
dimensional space using a kernel function. In our experiment,
a nonlinear SVM with a Gaussian radial basis kernel:

K (x, z) = exp
(
−γ · |x− z|2

)
(10)

whereγ is a constant, was used. The problem of finding the
OSH in general is equivalent to the maximization of the func-
tion:

W (α) =
N∑

i=1

αi − 1
2

N∑

i=1

N∑

j=1

αiαjyiyjK (xi, xj) (11)

subject to the constraints:
N∑

i=1

yiαi = 0, 0 6 αi 6 C (12)

whereαi are theN nonnegative Lagrange multipliers,C is
a regularization parameter. Finally, the decision function for
classifying a new data pointx can be written as follows:

f (x) = sgn

(
Ns∑

i=1

yiαiK (xi, x) + b

)
(13)

whereNs is the number of support vectors,αi, b are con-
stants, all determined through the numerical optimization dur-
ing learning.

5. Experiments
5.1. Segmentation of the cup region.The data set used for
this research consists of 100 digital fundus eye images of pa-
tients with glaucoma and 100 images of normal patients. These
images are part of the data set acquired from the Department
of Ophthalmology, Friedrich-Alexander-University Erlangen-
Nuremberg, Prof. Dr George Michelson. To produce a “gold
standard” segmentation, an ophthalmologist marked manually
the boundary of the cup in each of the images. To decrease
the computational time, the cup segmentation was performed
in a window, automatically computed based on the cup local-
ization procedure described in [1]. Moreover, we performed
the subsampling procedure of the computed window, i.e. we
chosen every 10-th pixel. The 3-dimensional feature space
(L, a, b) was used for clustering, i.e. each image pixel was de-
scribed by three components of Lab colour model. All features
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were normalized using z-score normalization [7]. The remain-
ing pixels in the window were assigned to the groups revealed
during clustering based on the distance from representatives of
the groups. The cup in the segmented image was chosen as
the region having the smallest value ofa. Fig. 1b) presents
the segmented image from the FEI shown in Fig. 1a) with the
segmented white cup region in the central part.

Fig. 1. The automatically selected window from input FEI with the
cup in the central part a), the segmentation result b)

5.2. Model selection and testing. The set of 200 segmented
cup regions was divided into two disjoint subsets: 1) the train-
ing set: 150 images, 2) the testing set: 50 images. In each of
those sets there were equal numbers of glaucomatous and nor-
mal cups. The training set was used for model selection: the
suboptimal feature vector calculation based on genetic algo-
rithms, setting SVM classifier parameters (performed by 10-
fold cross-validation method) and final SVM learning. The
feature selection described in subsection 3 was performed for
different combinations of the classifier parametersC, a regu-
larization parameter andγ, a Gaussian kernel one. For each
such combination we noted down the best subset of features
with the corresponding value of the generalization errorGe.
As the final subset of features we took the one with the small-
est value ofGe:

υ0 = (φ2, I3, RF ) (14)

where:
φ2 = (η20 + η02)

2 + 4η2
11 (15)

is Hu invariant moment, in whichη20, η02, η11 are normalized
central moments all computed on an image functionf(x, y),

I3 = µ20

(
µ21µ03 − µ2

12

)− µ11 (µ30µ03 − µ21µ12)

+ µ02

(
µ30µ12 − µ2

21

) (16)

is compound, invariant moment,

RF =
Lh

Lv
(17)

is Feret coefficient, where:

Lh – the maximal diameter in the horizontal direction,
Lv – the maximal diameter in the vertical direction.
The selected feature vectorυ0 corresponds to the combina-

tion of the classifier parameters:C = 100, γ = 2.5. Finally,
the classifier was trained on the set composed of feature vec-
torsυ0 computed on the training set.

Classifier performance was tested on the feature vectorsυ0

calculated on the testing set. The following results were ob-
tained: the mean sensitivity which is the percent of the cor-
rectly classified glaucomatous cases:

sensitivity=
TP

TP + FP
= 94, 5% (18)

and the mean specificity which is the percent of the correctly
classified normal cases:

specificity=
TN

TN + FN
= 97, 5%. (19)

6. Conclusions
In this paper we described a novel cup segmentation method
FEI which is based on support vector clustering algorithm for
the purpose of supporting glaucoma diagnosing in ophthalmol-
ogy. The proposed method can find clusters non-linearly sep-
arable as well as clusters of varying shapes and sizes. The
proposed method enables automatic classification of digital
FEI into normal and glaucomatous ones. The obtained clas-
sification results are encouraging. It is expected that the new
method, after clinical tests, would support glaucoma diagnosis
based on digital FEI obtained from fundus camera.
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