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Sensorless speed control including zero speed of non salient
PM synchronous drives
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Abstract. This paper presents a position sensorless drive of non salient pole PM synchronous motors for all speeds including zero speed. Using
adaptive Lyapunov design a new approach for the design of an observer is developed. The resulting scheme leads to a nonlinear full order
observer for the motor states including the rotor speed. Assuming motor parameters known the design achieves stability with guaranteed region
of attraction even at zero speed. The control method is made robust at zero and low speed by changing the direct vector current component to a
value different from zero. In order to verify the applicability of the method the controller has been implemented and tested on a800 W motor.
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.
Nomenclature:

a complex spatial operatorej2π/3

isA,B ,C stator phase currents A,B and C
usA,B ,C stator phase voltages A,B and C
is stator current complex space vector
us stator voltages complex space vector
ψs stator flux
ψr rotor flux
R stator resistances
L stator inductance
ω synchronous angular frequency
ωmech rotor speed
p time derivative operatord/dt
Zp number of pole pair
θ rotor position

1. Introduction

The permanent magnet synchronous motor (PMSM) offers
high power density implying reduced size and less material
to transport. PM motors cannot be operated in open loop due
to the highly unstable behavior of the motor dynamics. This
means that PM motors needs a measurement of the rotor po-
sition in order to control the motor in a robust way. The tra-
ditional method to determine the rotor position is to use an
encoder or resolver, but these components are expensive and
will add additional cost to the motor.

In more than ten years there has been an extensive research
in finding reliable position sensorless methods to estimate the
rotor position from the applied voltages and the consumed cur-
rents. The most significant papers of the research up to 1996
can be found in the reference [1]. In this paper focus will be
on PMSM type of motor due to the fact that the results are
mend for low noise emission applications like pumps for do-
mestic use. In PMSM solutions the rotor position is normally

determined by an open loop or closed loop observer see [2] or
by voltage injection methods exciting saliency or saturation ef-
fects in the motor see [3,5,6]. In [8] sensorless salient-pole PM
synchronous motor drive in all speed ranges are obtained by
switching between a back-emf (BEMF) method in the medium
and high speed range and an injection method in the low and
zero speed range.

For a non salient PM synchronous motor the injection
methods described are not valid and no BEMF is presented
at zero speed. This is normally handled by a start-up procedure
operating the motor in open loop up to a given minimum speed
where BEMF is reliable, and after this point a jump to observer
based field-oriented control takes place. This jump can be noise
full and can give extreme speed transients and pull out can in
severe situations occur.

In this paper a new method based on Lyapunov stability
will be presented operating from zero speed without chang-
ing the control structure. The idea of the method chosen is to
force direct current into the machine in the faulty position the
observer estimates at low speed; this will force the rotor po-
sition to the incorrectly estimated position, and the difference
between the real position and the estimated position will be
reduced.

The method is implemented and verified experimentally on
a800 W motor. The results demonstrate that the method works
successfully from zero to full speed. The method is able to
produce estimates of position and speed with a precision good
enough to replace a shaft sensor.

2. Observer design
2.1. Voltage equations.In the rotor oriented coordinate sys-
temejθ the voltage equation for the motor is

u(R)
s = Ri(R)

s + (p + jω)Li(R)
s + jωψM (1)

with ω = pθ. Wherep is the time derivative operator.
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Fig. 1. Rotor angle observer

Fig. 2. Rotor field oriented control

In the coordinate systemejθ̂ of the estimated rotor anglêθ
the voltage equation is

u(R̂)
s = Ri(R̂)

s + (p + jω̂)Li(R̂)
s + (p + jω̂)ψMej(θ−θ̂) (2)

with ω̂ = pθ̂
Omitting (R̂) in the following and introducing̃θ = θ̂ − θ

(2) gives

us = Ris + (p + jω̂)Lis + jω̂ψM

+(ω sin θ̃ + j(ω cos θ̃ − ω̂))ψM .
(3)

2.2. Observer candidate.From (3) the stator flux linkage is
given by

ψM + Lis = 1
p+jω̂{ u−Ris

−(ω sin θ̃ + j(ω cos θ̃ − ω̂))ψM}
(4)

Because the term
{

ω sin θ̃ + j(ω cos θ̃ − ω̂)
}

ψM is unknown

a feedback observer may be given the form

ψ̂r + Lis =
1

p + jω̂
{us −Ris + v} (5)

where equations forv andω̂ have to be calculated.

From (4) and (5) the error dynamics are becomes

p(ψ̂r − ψM ) = −jω̂(ψ̂r − ψM ) + v

+(ω sin θ̃ + j(ω cos θ̃ − ω̂))ψM .
(6)

Stabilizing withv = −c1(ψ̂rd − ψM ) − c2ψ̂rq and taking the
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real and imaginary part of Eq. (6) gives

p(ψ̂rd − ψM ) = −c1(ψ̂rd − ψM ) + ω̂ψ̂rq

+ω sin θ̃ψM

pψ̂rq = −c2ψ̂rq − ω̂(ψ̂rd − ψM )
−(ω̂ − ω cos θ̃)ψM

(7)

p(ψ̂rd − ψM ) = −c1(ψ̂rd − ψM ) + ω̂ψ̂rq

−ωψ̂rq

pψ̂rq = −c2ψ̂rq − ω̂(ψ̂rd − ψM )
−(ω̂ − ω)ψM + ω(ψ̂rd − ψM )

(8)

Insertion ofω̃ = ω̂ − ω in (8) now gives

p(ψ̂rd − ψM ) = −c1(ψ̂rd − ψM ) + ω̃ψ̂rq

pψ̂rq = −c2ψ̂rq − ω̃(ψ̂rd − ψM )− ω̃ψM .
(9)

2.3. Lyapunov analysis. Stability of the error equations may
be obtained by using a Lyapunov function candidate

P =
1
2

{
(ψ̂rd − ψM )2 + (ψ̂rq)2 +

1
γ

ω̃2

}
. (10)

Using (9) in the time derivative of (10) gives

dP

dt
= −c1(ψ̂rd − ψM )2 − c2(ψ̂rq)2 + ω̃(−ψM ψ̂rq +

1
γ

dω̃

dt
).

(11)
Choosingdω̃

dt = γψM ψ̂rq in (11) then gives

dP

dt
= −c1(ψ̂rd − ψM )2 − c2(ψ̂rq)2. (12)

For c1 > 0 andc2 > 0 the Lyapunov function candidate is
shown to be a Lyapunov function and the following conver-
gence is obtained

ψ̂r = ψ̂rd + jψ̂rq → ψM . (13)

Because we havêψrq = −ψM sin θ̃ it is also shown that
θ̂ → θ.

Now we only have to examine the adaptation condition

dω̃

dt
= γψM ψ̂rq. (14)

If ω is assumed constant the adaptation condition becomes

dω̂

dt
= γψM ψ̂rq. (15)

The assumption of constantω means in practice that the varia-
tion of ω has to be slow compared to the adaptation time con-
stant, which depends ofγ.

With the above assumptions the following observer is ob-
tained

ψ̂r = ψ̂s − Lis
d
dt ψ̂s = us −Ris − c1(ψ̂rd − ψM )− jc2ψ̂rq − jω̂ψ̂s
d
dt ω̂ = γψM ψ̂rq
d
dt θ̂ = ω̂

.

(16)
For known values of the initial rotor position,(R, L, ψM ), no
offset due to drift and perfect dead time compensation the ob-
server converges to the correct rotor angle. Because this is not
to be expected in practice a robustness analysis has to be per-
formed.

2.4. PI adjustment. The adjustment of̃ω given by the Lya-
punov method is an integral controller

ω̃(t) = γψM

∫ t

−∞
ψ̂rq(τ)dτ. (17)

It may be expected that a quicker adaptation can be
achieved by using a PI controller

ω̃(t) = γ1ψ̂rq(t) + γ2

∫ t

−∞
ψ̂rq(τ)dτ. (18)

Since a system with the transfer function

H(s) = γ1 +
γ2

s
(19)

is output strictly passive for positiveγ1 andγ2 it follows from
the passivity theorem [7], that PI adjustment is stable if a trans-
fer function from−ω̃ to ψ̂rq is strictly positive real. From (9)
a transfer functionG(s) is found (20)

ψ̂rq = − p + c1

p2 + (c1 + c2)p + c1c2 + ω̃2
ψM ω̃ = −G(p)ψM ω̃.

(20)
For c1 > 0 andc2 > 0 the transfer functionG(s) is strictly
positive real because it has no poles in the right half-plane, no
poles and zeros on the imaginary axis and

Re{G(jω)} = c1(c1c2+ω̃2)+c2ω2

‖(−ω2+jω(c1+c2)+c1c2+ω̃2)‖ > 0.

The observer with PI adjustment given by (21) is shown in
Fig. 1

ψ̂r = ψ̂s − Lis
ψ̂s =

∫ t(us −Ris − c1(ψ̂rd − ψM )
−jc2ψ̂rq − jω̂ψ̂s)dτ

ω̂ = γ1ψ̂rq + γ2

∫ t
ψ̂rqdτ

θ̂ =
∫ t

ω̂dτ

. (21)

2.5. Robustness.Because the Lyapunov analysis has shown
stability, the robustness is analyzed in steady state withω̂ = ω.
Let us assume that uncompensated dead time compensation
and error inR gives and voltage errorδu. The observer equa-
tions then gives

0 = δu + jωψM − c1(ψ̂rd − ψM )− jc2ψ̂rq − jωψ̂r. (22)

For ‖ω‖ À c1 and‖ω‖ À c2 the real and imaginary part of
this equation gives

ψ̂rd − ψM ≈ δuq/ω

ψ̂rq ≈ −δud/ω
(23)

leading to

sin(θ̂ − θ) ≈ δud

ωψM
. (24)

Because these inequalities calls for small values of(c1, c2)
and the dynamics of the observer calls for(c1, c2) as big as
possible, the practical choice is a compromise between fast
observer dynamics and small steady state estimation error. Ex-
periments and simulations show that best performance is ob-
tained forc2 ¿ c1and that the performance is insensitive for
the choice of the values. In the experiments shown the values
(c1, c2) = (50, 1) are used.
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Fig. 3. Laboratory setup

2.6. Zero and very low speed control.For known values of
the initial rotor position,(R,L, ψM ), no offset due to drift and
perfect dead time compensation the observer converges to the
correct rotor angle. Because this is not to be expected in prac-
tice the robustness analysis has shown that the observer is sta-
ble but gives large error of the estimated angleθ̂ for small val-
ues of‖ω‖. The idea of the method chosen is to force direct
current into the machine in the faulty position the observer es-
timates at low speed; this will force the rotor position to the
incorrectly estimated position, and the difference between the
real position and the estimated position will be reduced.

Figure 2 shows the rotor field oriented control system. At
zero and very low speed the reference value forisd is given a
value different from zero. If the rotor angle is estimated cor-
rectly a value forisd 6= 0 gives no torque. If the rotor angle
is estimated with an error the rotor is forced in the direction
of θ̂ used in the controller. The error at zero speed depends on
isd,ref due to the fact that we haveme = 3/2ZpψM isdsin(θ̃).

This new principle means that no manual mode at zero and
low speed is necessary, closed loop control is obtained for all
values of the speed reference. The function forisd,ref is

isd,ref = iref0e
−|ω̂r|/ω0 (25)

with iref0 determined by the maximal load torque expected at
zero speed andω0 small due to the fact that estimation error of
the rotor angle is only significant at low speed.

3. Experiments
3.1. Laboratory setup. The laboratory setup shown in Fig. 3
is based on Real Time Workshop, Simulink and DSpace. The
drive system is via a signal conditioner connected to a DSP
board in the computer. The control software is Simulink blocks
written in C. The nominal motor parameters are

R L ψM Zp Nmech

Nom. 4.0 Ω 0.013 H 0.3 Vs 3 1500 rpm (26)

3.2. Initial startup. Figures 4a and 4b show the start-up re-
sponse with the rotor angle initialized to the worst condition,
which is to be opposite to the initial value given the estimate of
the rotor position. The initial negative speed in Fig. 4a is due to
the fact that the estimation error of the rotor angleθ̂ − θ > 90
degrees. This situation only occurs the very first time the con-
trol system is started. Next time the reference is set to zero
speed the angle is estimated with a small estimation error due
to theisd,ref value different from zero.

3.3. Rotor speed step responses.Figure 4c shows a step re-
sponse for a very low speed. The scale of the speed axis has to
be noticed showing that the variation of the rotor speed is less
than 5 rpm.

Figures 4d, 4e and 4f show step response for 0–500 rpm,
0–1000 rpm and 0–1500 rpm respectively. The curve form of
the responses are as expected and the sound of the motor also
indicate field orientation during the transients.

3.4. Load step response.Figure 5 shows the response of step
in the load torque both at 0 rpm and at 1000 rpm.

Figures 5a and 5b show the speed variation for step in the
load torque. Even at zero speed reference the speed is equal to
zero in steady state.

Figures 5c and 5d show theisd andisq current. Figure 5d
shows the normal response at 1000 rpm whereisd = 0 andisq

is the torque producing current. Figure 5c shows theisd andisq

at zero speed. Theisd is given a reference value equal to5A
and when the load torque tries to turn the rotor axis the angle
between this current in the estimated rotor angle and the real
rotor angle produces a torque equal to the load torque and the
speed is kept equal to zero as seen from Fig. 5a

Figures 5e and 5f show the error between the estimated and
real rotor angle. The error at zero speed depends onisd,ref due
to the fact that we haveme = 3/2ZpψM isdsin(θ̃). Figure 5f
shows the error at high speed and the scale of the axis has to
be noticed.
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Fig. 4. Experimental waveforms of estimated speed (a,c,d,e,f) and rotor angle (b) during motor starting process: (a) first rotor speed step
response with rotor angle initialized to an180◦ error at startup, (b) convergence of the estimated rotor angle with rotor angle initialized to
an180◦ error at startup, (c) very low rotor speed step response 0–20 rpm, (d) low rotor speed step response 0–500 rpm, (e) rotor speed step

response 0–1000 rpm, (f) high rotor speed step response 0–1500 rpm

4. Conclusions
A new observer for the rotor angle is presented. Stability of the
observer is proven by the Lyapunov method and robustness is
analyzed in steady state. Various papers concerning methods
for starting PMSM without position sensors have been pre-
sented. Most methods have a special mode for start-up and op-
erations at low speeds. The proposed method operates in the
same mode from zero speed to maximum speed, which simpli-
fies the control algorithm and eliminates the lag of robustness

when a controller shifts modes. The method makes it possible
to start from zero speed in closed loop and produce a constant
torque at very low speeds by changing the direct vector current
component as a function of the speed. The method is imple-
mented and verified experimentally on a 800 W motor. The
results demonstrate that the method work successfully over a
wide speed range. The method is able to produce estimates of
position and speed with a precision good enough to replace a
shaft sensor.
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Fig. 5. Torque step at rotor speed 0 rpm (a,c,e) and 1000 rpm (b,d,f), (a) rotor speedNmech, (b) rotor speedNmech, (c) isd andisq, (d) isd and
isq, (e) estimation error̂θ − θ in degrees, (f) estimation error̂θ − θ in degrees
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