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Axi-symmetric ice sheet flow with evolving anisotropic fabric
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Abstract. An axially symmetric, gravity driven, steady flow of a grounded polar ice sheet with a prescribed temperature field is considered.

The ice is treated as an incompressible, non-linearly viscous, anisotropic fluid, the internal structure (fabric) of which evolves as ice descend
from the free surface to depth in an ice sheet. The evolution of the ice fabric is described by an orthotropic constitutive law which relates the
deviatoric stress to the strain-rate, strain, and three structure tensors based on the current (rotating) principal stretch axes. The solution of t
problem is constructed as a leading-order approximation derived from asymptotic expansions in a small parameter that reflects the small rat
of stress and velocity gradients in the lateral direction of the ice sheet to those in the thickness direction. Numerical simulations of the flow
problem have been carried out for various sets of rheological parameters defining the limit strength of the anisotropic fabric in ice. The result:
of calculations illustrate the influence of the ice anisotropy, basal melt conditions and temperature field in ice on the glacier thickness and latere
span, and on the depth profiles of the flow velocity.
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1. Introduction general relation between the flow field and the observed fab-
ric is used throughout a whole ice sheet. An example are the
Ice cores retrieved from large polar ice caps in Antarctica angapers by Mangeney et al [3,4], who adopted the transversely
Greenland show strong anisotropic fabrics, in which individisotropic fabric corresponding to that drilled in Central Green-
ual ice crystak-axes (axes of crystal hexagonal symmetry) arand to solve numerically a steady-state flow problem of the ice
aligned along some preferential directions [1]. These fabricgheet under isothermal conditions. In these papers, however,
develop, and subsequently evolve, in the material in respontte empirically derived fabric is a function of the ice depth
to changing stress and deformation states which ice expeoinly, since no constitutive equation that relates the fabric evo-
ences during its descent from the free surface to depth in &stion to the flow field is included in the analysis. Hence, the
ice sheet. As a result, the microscopic structure of the matkbric adopted in the latter paperssitic that is, uncoupled
rial varies with ice depth, and this translates into considerabfeom the flow field.
changes in the macroscopic properties of the medium. For in- In this work we make a step further, and solve a more dif-
stance, macroscopic shear viscosity of ice that is found nefizult problem, in which the flow field is not only a function
a glacier base is, typically, by up to one order of magnitudef the anisotropic fabric, but also the fabric itself is a func-
smaller than the viscosity of initially isotropic ice that is de-tion of the flow field variables which determine how the fab-
posited on the free surface. Smaller, but also significant, differic evolves to adjust to varying local flow conditions. Accord-
ence between the surface and the basal ice occurs in terms ofiigly, there is full coupling between the flow and t&eolving
axial viscosity. Such dramatic changes in the viscous propdabric, so that the fabric determination constitutes an integral
ties of the medium with increasing depth must have importamiart of the problem solution. To this aim, we describe the ice
consequences for the overall flow of polar ice masses (whicfabric evolution by applying a constitutive law formulated by
on geophysical scales, deform mainly by viscous creep); ther8taroszczyk and Morland [5], in which the medium is treated
fore, the mechanism of evolving anisotropy should be incogs an anisotropic viscous fluid with orthotropic material sym-
porated into realistic models describing the behaviour of icenetries, and which expresses the deviatoric stress in terms of
However, in current large-scale numerical models used to sirthe strain-rate and the current strain. The law involves two ice
ulate the past and future climatic scenarios and their effeatgssponse coefficient functions which have been determined by
on the flow of ice caps, the evolving anisotropy of ice is comeorrelation with the observed viscous behaviour of ice at in-
monly ignored and, for simplicity, the material is treated aslefinitely large deformations. Furthermore, the adopted law
isotropic. In such models, in order to account for the variatiomcorporates strong non-linear effects of temperature and the
of creep properties of ice to reflect its anisotropy, the materidleviatoric stress magnitudes on the viscous behaviour of ice.
rheology is described in terms of so-called enhancement fac- We analyse a steady flow of a radially symmetric ice sheet
tors [2], the values of which are chosen ad hoc to fit availabMhich slides on a rigid bedrock, and whose motion is driven by
empirical data (measurements of the free surface velocities agivity forces. At the free surface of the sheet a snow accumu-
ice core fabrics). Only few attempts have been made to ebation rate distribution is assumed, defining the mass fluxes into
tend this approach by employing a method in which a singlend out of the glacier across its top surface. Similarly, an ice
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melt rate is assumed at the base of the sheet to define the malssre can also be heat fluxes across the glacier boundaries, but
flux across the bottom surface. The temperature field withithese are neglected in this analysis.
the ice sheet is also prescribed, so that the mass and momen-
tum balance equations are uncoupled from the energy balance 4 zW. %W
equations. For the above input conditions, the unknown geoméo |
etry of the glacier, that is, the free surface profile (including
the maximum glacier thickness and the lateral span) is deter-
mined. The main purpose of the analysis is to investigate how | temperature T(r.z)
the anisotropy of ice influences the overall flow of the ice sheet, gravity
and, in particular, how it affects the ice velocity field (which is
important to know when choosing locations for polar stations |
or ice core drilling sites).

accumulation

melt / refreezing

The solution of the problem is constructed by a method of bedrock
asymptotic expansions. Hence, we take advantage of a smalb i >
parametet reflecting the small ratio of stress and velocity gra- Ru nuRU
dients in the lateral direction to those in the ice thickness direc- Fig. 1. Ice sheet geometry
tion, and use this parameter to scale the ice flow equations and
the boundary conditions. Then, all terms of ordand smaller The velocity fieldv in our steady flow is described by

compared to unity are neglected in the ensuing equations wite radial and vertical componentér, z) andw(r, z), respec-
the aim to reduce them to simpler, leading-order, forms. Thively. The rate of deformation of ice, the viscous fluid, is mea-
reduced equations are subsequently integrated through the sceed by the strain-rate tensfi}, the non-vanishing compo-
thickness to eliminate one spatial coordinate. This gives riseents of which are expressed in terms of the velocities by

to a two-point boundary-value problem for a second order o w

parabolic differential equation, which is solved numerically to D, = o Dyg = o

calculate the free surface profile. Simultaneously, a set of dif- ow 1 /00  Ow (2)
ferential equations of a hyperbolic type is also integrated along D, = 5 D, = 5 <6z + 6r> .

the ice particle paths (characteristics) to determine the evolu-
tion of the material properties as ice moves inside the glacidt.is commonly assumed in glaciology that the viscous defor-
The results of calculations, carried out for different sets of icenation (creep) of ice does not depend on the mean pregsure,
rheological parameters, different basal melt rates and diffe3o that the medium can be treated as an incompressible mate-
ent temperature distributions, illustrate the effects of the lattéial, the behaviour of which is governed by the stress deviator,
factors on the glacier geometry (thickness and span), and the Hence, the mass balance equation becomes the ice incom-

depth profiles of the ice velocities. pressibility conditiortr D = 0 (tr is the trace operator), which
in components reads
2. Flow problem formulation Ou T w _ @
or r 0z

Thtﬁ ;t)rzoblem 'S solt\éedhm _cylln:jrllca;l polar cg?rr]dlna(f_se,lz ), . The deviatoric stress is defined in terms of the Cauchy stress
wi er axis on the horizontal plane, and the vertical axis anéj the pressure by the decomposition

directed upwards. Itis assumed that the ice sheet geometry an
all variables involved are symmetric about thexis, so that S=o+pl, p=—3tro, 3)
they are independent of the polar anglend, hence, they are | nare 1 is the unit tensor. Relations (3) give the non-zero de-
functions of onlyr andz. The ice sheet cross-section, with theviatoric stress components

adopted coordinates and other relevant notations, is sketched

in Fig. 1. The ice sheet geometry is defined by the free surface Spr = 0rr + D, Soo = 090 +p, @)
elevationz = h(r) and the bed elevation = f(r). The ice S.: =0, +Dp, Srz= 0.

sheetends at the margin, where the ice thickness becomes 2902 horizontal radial and vertical momentum balances, in the

h=f.The freg surface is tractlpn free, with the stress in IC8hsence of inertia forces in our extremely slow flow, become
measured relative to atmospheric pressure assumed to be s equilibrium relations under gravity

form. At the free surface there is an ice accumulation, a mass

flux per unit areagq, as ice enters the glacier due to precipita- 9Srr + Srr — Soo + 95, _ 9p =0 (5)
tion or ablation/melting, respectively. The accumulation gate or T 0z or ’
in general a function of andr, is regarded positive (snowfall) 0Sr. n Sz 0S.. Op 09 =0 ©)
at higher altitudes in central regions of the sheet, and negative or r 0z 0z ’

(ablation/melting) at lower altitudes near the margins. At thand the circumferential balance is automatically satisfied be-
bed, there is also a mass flux, denotedpgue to ice melting cause of the radial symmetry of the problem. In the latter equa-
(b > 0) or refreezing § < 0). Moreover, depending on lo- tions, o denotes the ice density, ads the gravitational ac-
cal conditions, basal sliding may, or may not, occur at the bedeleration.
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The mass and momentum balances (2), (5) and (6) are suh- Orthotropic constitutive law
ject to boundary conditions at the free surface and the bed, ex- ) )
pressing the interactions of the glacier with the atmosphere ah@€ solution of the momentum balance equations, (5) and (6),
the bedrock. Define the unit outward normal and tangent veteduires a constitutive law for the deviatoric stress — the mean
torsn ands in a right-hand sense, as depicted in Fig. 1. TherPréssurep is not prescribed by the constitutive relation due
the zero traction condition at= /() is expressed in terms of 0 the ice incompressibility. Various aspects of the constitu-

vanishing normal and tangential componenpts= n - on and  tive modelling of anisotropic ice are discussed in detail by
t, = s - on in theOrz plane. Accordingly, Staroszczyk [7], below we briefly present only those elements

which are relevant in the context of this work.
z=h(r): We adopt here the law in the orthotropic form proposed in
Alt, = —Ap + [0 (1)]?Syr + S.. — 20 (r)S,. =0, (7) [5], which is a modification of an earlier constitutive model
z=h(r): f(r)‘rmulated by Sta;o;zczyklang Mc&rlgnd [8]; ank alte[sr)?ati\r/]e
theory is presented by Morland and Staroszczyk in [9]. The
Ajts =B (1)(Sez = Sr) + {1 = [W(N]}S- =0, (8) adopted law is expressed in an additive form, in which the
where(-)’ denotes differentiation with respect to the argumen¥iscous response of the material is decomposed into isotropic
and and anisotropic parts, with the latter describing the evolution of
Ap={1+ [h/<r)]2}1/2. (9) the oriented fabric from its initial isotropic state. The isotropic
o ) art relates the deviatoric stress to the strain-rate only, alike the
The prescription of mass flux across the free surface yields tgnyentional isotropic viscous fluid flow law. The anisotropic
kinematic condition in the form part, apart from the strain-rate, also includes the dependence
z=h(r): K()u—w= Ay (10) on the strain, introduced to allow the evolution of the oriented
structure of the medium to be followed while the ice under-
Atthe prescribed bed = f(r), normal and tangential trac- goes changing stress/strain regimes during its motion. Hence,

tions,t,, andt, respectively, are expressed by we apply the law
z = f(r) : S —
Ajtn = =A3p+ [ (NS + 8oz = 2f/(r) S, (A1) 3
2= f(r) : 1o {21) +3 F(b)[MOD + DM® — 2 t2(M© D)I|
Mt = /0N = Se) + L= OIS @ .
where +§(K)[BD + DB - 5 tx(BD) }}7 (18)
Ap= {1+ (P, (13)

whereyy is the viscosity of isotropic icef (b,) (s = 1,2, 3)
and normal and tangential velocities at the bgdandv, re- and g(K) denote fabric response coefficienf8, is the left
spectively, are given by Cauchy-Green deformation tensor, dndand K = tr B are
, , the invariants ofB. M (®) (s = 1,2, 3) are three structure ten-

2= fr): Apon = fHu—w, Ao = —u—f(rw. 556 which describe the orientation in space of the privileged

. . . - (14) directions in the material. The latter are aligned along the cur-
The kmem_atlc condltlo_n prescribing th_e normal basal Ma&nt directions of the principal stretch axes, and define the three
flux due to ice melt (drainage} or refreezing becomes (rotating) planes of the orthotropic symmetry of the medium.
z=f(r):  fl(r)u—w= Agb. (15) Thus, they are defined by the outer products of the normalized

. . . eigenvectors oB, that is,
At the bed either no-slip or sliding can occur. In the former

case, the ice particle velocity component tangential to the sur- p1(s) — e(*) g e(*),  Be(®) = be®, |e®| =1
face f(r) is zero, that isp, = 0. This, in view of (14), is (s=1,2,3)
equivalent to T

(19)

u+ f(r)w=0. (16)  whereb,, the invariant arguments of the functiofisindg, are

In the case of sliding, the basal tangential tractipis related the eigenvalues aB, ande(*) are the eigenvectors of the latter.
to the tangential velocity, and the normal pressupe= —t,, | he specific forms of the fabric response functions have been

by a sliding law. We adopt a linear form of the latter, define@onstructed by first deducing some of their general properties,
by and then by correlating them with empirical results describing
2= fr):  ty= Anvs, (17) the viscous behaviour of ice [8]. The form ffadopted in this

. - . ) ~ work is defined by
where\ is a constant friction coefficient. The proportionality

of t, to ¢, ensures that, as a margin is approached and thef(b,) = foo — (foo — fo)exp (=Cb), ¢ >0, n >0,

pressure approaches zero, the free surface slope at a margin (20)
is bounded (Morland and Johnson [6]); in the case of no-sliwheren is a free parameter, ards determined by the condi-
basal conditions, the slope at the margin is unbounded. tion f(1) = f'(1) [5]. The fabric response functignis related
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to f by 4. Scaled equations

~ f(b) _ f(b‘l) The solution of the complete set of equations governing the ice
9(K) = Tyt 2b=K-1+ \/m sheet flow, as given in Section 2, encounters serious numerical
(21) difficulties, and in fact is still beyond the reach of theoreti-
The constantg, and f.., appearing in (20), are given by cal glaciology, even in the case of isotropic ice. The numerical
~ _ ~ _ _ difficulties arise, first of all, due to the presence of mowing
Jo=ET =1, fuo=6E 5B~ 1, (22) boundaries in the problem, so that the equations are solved on
where E, and E, denote so-called enhancement factors foan unknown domain. An additional difficulty is due to the ice
compression and shear, respectively. These two factors admgompressibility condition, as it gives rise to unstable solu-
measured in laboratory tests and their values denote the ratisgs when standard numerical techniques are applied. There-
of the isotropic ice viscosity to the anisotropic ice viscosity afore, instead of attempting to solve the full equations, a more
indefinitely large, axial or shear, strains. effective approach is to construct an approximate solution by
The isotropic ice viscosity,, depends on temperature andemploying the method of asymptotic expansions. The method
the stress/strain-rate magnitude. This, strongly non-linear, dexploits the small aspect ratio of natural ice masse®f a
pendence is expressed here in the form obtained by correlatityipical magnitude of ordet0~?), and, by integration of the

with experimental results balance equations through the ice sheet to eliminate one spa-
o0 4 ) tial coordinate, enables significant simplification of the flow
po(T,J) = 2Dy (T) = (J), (23)  equations. Such an approach, known as the Shallow Ice Ap-

) . proximation, or Reduced Model, was pioneered by Fowler and
whereT denotes absolute temperatureis t?e second prin- | 4r50n [11], Morland and Johnson [6], and Hutter [12,13], and
cipal 1deV|ator|c stresss w;vanant, anq = 10° PaandDo = 55 found numerous applications ever since. For axially sym-
Lyr— =3.17x 107" s~ (where ‘yr’ stands for the year) aré eyric flows, but of the isotropic ice, the approach was em-

normalizing stress and strain-rate magnitudes. The dimensmﬁ]byed by Morland [14] and Cliffe and Morland [15]. Here we
less functions andi have the representations derived in [10]'apply it to the anisotropic ice flow.

a(T) = 0.68 exp(12T) + 0.32 exp(37T), The basis of the method is to perform appropriate scalings:
T = (T - 273.15 K)/ [20 K] ( first, to eliminate physical dimensions from the equations by

’ using typical magnitudes of quantities involved, and second,

Y(J) = 0.3336 + 0.32J + 0.0296.J2, (25) to stretch the horizontal coordinate and velocity so that both,

J= %tr(S/ao)g. radial and verti_cal, cpordinates and velocity c_omp_onents be-
come order unity. This enables the proper estimation of rela-
The ice fabric is described in (18) by the left Cauchy-Greefive magnitudes of all terms appearing in the flow equations,
tensorB, and this requires the deformation gradient teror 5o that those terms which are less important than other can be
sinceB = FF" (the superscripf’ denotes the transpose). Ineliminated from the analysis. Hence, we adopt characteristic
our axially symmetric flowF" has five non-trivial components magnitudesh*, a typical ice thickness, used as a length unit,

or r Oz andv*, a typical accumulation rate, used as a velocity unit.
Frr=o20 Feo=—, Fo= o, These two units determine other scaling parameters: a stress
or 92 (26)  unit 7* = ggh*, a strain-rate uniD* = v*/h*, a time scale
Fro=o20 Fa=52 t* = h*/v* = 1/D*, and a viscosity unii* = 7*h*/v*.

. . By using the adopted scales, we introduce dimensionless vari-
wherer* andz* denote the particle reference (material) coor- y g P

dinates. The evolution of the deformation field with times ables, indicated by a superposed bar, defined by

governed by the kinematic relation (7, 2) = (r,2)/0*, (@,0) = (u,w)/v*, (S,p) = (S,p)/T",
. . . g (I—’aD):(LaD)/D*a{:t/t*a ﬂOZMO/N*'
F=LF, F;= (9;;1 + v ZFZJ (i,j,k=r,0,z2), (27) (30)
Lk

Further, by means of the parametewe stretch the radial co-

where the superimposed dot denotes material time derivativdinate and the radial velocity, leaving the vertical counter-
andL is the velocity gradient tensor. The latter has five nofparts unchanged, to obtain

zero components given by

5 5 R=er, Z=2z U=¢eu W=mw. (31)
Ly = a—u, Loy = 3, L,, = a—w, This results inR, Z, U and W all being order unity. We
" 8; 85} (28) also introduce the normalized free surface and bed profiles,
L,,= 2 L, = e H(R) = h/h* and F(R) = f/h* respectively, and their
z r

) . ) o . ~ slopesH’(R) = I'(R) and F'(R) = B(R), all being order
The relation (27) is equivalent to five first-order differentialnity as well. The dimensionless stresses defined by (30) are
equations, though only four of them are independent due to thescaled in an analogous manner, so that

ice incompressibility constraintet F'=1, that is, _ _ _
P Y Sr'r = EET’I") 500 = 6200; Szz = 62z27

FGG(FTTFZZ _Frzer) =1 (29) Srz :EErza p= P, (32)
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whereX;; are order unity components of a normalized deviashowing that the dominant component, of oreet, is D, ..

toric stress tensak. After applying the scalings (30) and (32), the orthotropic con-
Application of the above scalings to the mass balance relatitutive law (18) takes the dimensionless form

tion (2) yields

ou U oW =
orR "R Tz = (33) :
and the momentum balance equations, (5) and (6), give ~ €/o { Z MYD+DM® — 2tr(M® D)I
827’7’ er - 290 827’2 8P -0 34 =t _
oR R oz ~or~ " B9 44 [BD+DB- gtr(BD)I]}a (46)
0x,.., X 0x oP S : , . . : ,
2 Tz Tz 22 = wherefi is a dimensionless normalized viscosity defined b
€ ( R 7 > 57 97 (35) 10 y y
In normalized variables, the zero traction conditions (7) and fip = %afl(T) Y. (47)
(8) become

Z=H(R): — A2P +¢5,, — 2T'%,, + 25, =0, By construction ofz(7") andy(J), fig is, at near-melting tem-

(36 peratures, an order unity quantity. Sintg,) and the compo-

5o nents ofg(K)B and M (*) (s = 1,2, 3) are all of order unity,

Z=HR):(1=eT7) 2 +el(Xe: = 20) =0, 37 the maximum components dd are of ordere—, and on ac-
and the free surface kinematic condition (10) takes the form count of the scalings (30) and the definition (23), the value of

Z=H(R): TU-W=2AQ, (38) the small parameteris determined by
where@ = ¢/v* is a normalized ice accumulation rate. Sim- 1 [ oov* \/?
ilarly, the scaled relations for the basal normal and tangential €= 09Dy (48)

tractions, (11) and (12), become ) ) ] ] )
B AT — _A2P 4 er. 9235 3425 Choosing typical magnltu_des of the ice thicknesshés=
Z=F(R): A5Ty = —ApP + Xy = 2620 + €572, 9000 m and the accumulation rate as= 1 myr—! =3.17 x
(39)  10-8 ms!, with the ice density = 917 kgm ™ andg =
Z=F(R): AJT, = (1 - €6°) 2. + (2. — Xoy), 9.81 ms~2, the latter relation yields = 0.00167 ~ 1/600.
(40) The invariantJ, required to calculatg@,, when expressed in

terms of the normalized stressEs;, becomes
whereT;, = t,,/7* andT,; = ¢~ 't/7* are scaled basal trac- &

tions, both of order unity. The normal and tangential comp
nents of the basal velocity, given by (14), are
Z=F(R): AV, =pU -W, A;Vy=-U—épW,
(41)
whereV,, = v, /v* andV; = evy/v* denote order unity com-
ponents of the basal velocity. The kinematic condition at the,, = 2jqe [(1 + 2C1)D,, — C2Dgg — C3D.. + CuD,.] ,

F the t [

bed, (15). Is defined by o0 = 2five [~C1 Dy + (1 +2C5) Dy — C5D... — 204 D]
[~
[

=V [SL +5 (P + T+ 22)], 9=
(49)
The deviatoric stress components, prescribed by the constitu-
tive law (46), are given by

Z=F(R): pU-W = A;B, (42) 5.. = 2jige [~C1 Dy — C3Dgg + (1+ 2C5) D, + CyD,..] ,
where B = b/v* is a normalized melt rate. The expression o
for A, and Ay, see (9) and (13), now have the forms . = 2fioe [Ca(Dry + Dos) + (14 C5) Dr],

Ap=Q0+ErHY2 Ap=1+6H)Y2. (43)
Further, the sliding law, in physical variables given by (17), in

(50)

where the coefficient§’; (: = 1, ..., 5) are defined by

the normalized dimensionless form becomes Cr=1i1f Fb)MD + f(bs) MB) + g(K)B ,
T, = AT, Vs, (44) ) i
where A = e~2v*) is an order unity or greater normalized ] [ (ba) + (K )B%}
basal friction coefficient. = % Fb)MD + fbg) M) + g(K)Bzz- . (51
Finally, we need the constitutive equation, given by (18), to L -
be expressed in the scaled variables. This requires the strain- Cy = 1 | f(b1) MY + f(b3) M2 + §(K)B,.|,
rate components (1) to be defined in terms of the stretched vari-
ables (31). Accordingly, Cs =3 [ (b1) + f(b3) + G(K) (B + Bzz):| :
_ ou - v - oW - . .
D,, = IR’ Dygg = R D, = 57" The above coefficients describe the strength of anisotropy of

(45) the fabric. In undeformed state, whd® = I, all these co-
Hoo_ 1 ¢ 15U 3W efficients become zero, which is ensured by the construction
2 of the functionsf and g [5,7]. Then, the relations (50) yield
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X = 2fieD;;, which is the viscous flow law for an isotropic and the basal kinematic condition, (42), is

fluid.
In order to follow the evolution of the fabric, described by Z=F(R): pU-W=B. (60)

(27), we also need the componentgdandL to be expressed With the basal tractions and velocities defined by (58) and (59),

in the stretched coordinates. These are the leading-order form of the sliding law (44) is expressed by
F.. = 8—R, Fyg = E, F,,= a—Z, Z=FR): X..,=APU. (61)
OR* R 0Z* (52)
P! OR P Eal The deviatoric stress components are prescribed by expres-
" 0zx’ ~ " TOR*’ sions (50) and (51). The coefficient§ (: = 1,...,5) define
whereR* = er*/h* andZ* = z* /h* are the stretched refer- changes in the viscosities relative to unity as ice evolves from
ence coordinates, and initially isotropic to fully anisotropic fabric. Experimental evi-
B U U oW dence shows that the ice viscosities do not vary by more than a
Ly =—, Logg=—=, L,.,=—, factor of 10. On the other hand, as indicated by relations (45),
8_R 8UR ) 8?42/ (53) the shear strain-ratd3, . are by the factor of~* ~ 600 > 10
L,=¢'—, L., =e—. greater than each of the axial strain-rates. This implies that in
0z OR strongly anisotropic fabrics all the componeats are of the

same order, governed by the magnitudelpf. Accordingly,

5. Leading-order solutions _ . T .
the leading-order relations for the deviatoric stresses are given

We now construct an approximate solution of the equatio

that are derived in the preceding section in the form of expan-

sions in the small parametek< 1. To this aim, we firstneglect ~ 2rr =222 =
in the full equations all terms which are of ordeor smaller
compared to unity, and then solve the simplified equations to
obtain the leading-order solution of the flow problem. The ap;here
proximate solution is constructed under the stand®duced

Model assumption that the bed slopggr) are of ordere or Crr = Cy,

less, that is, the normalized slop8s= F'(R) are of order 17~ . .

unity or less [6,13]. The situations in which the bed slopes are Crz =1+ 9 [f(bl) + f(b3) + g(K) (Brr + BZZ)} - (63)

of larger magnitudes have been treated, for isotropic ice, . . _ _ L :
Morland [16] and Schoof [17]. tfyor the isotropic ice(C,,, = 0 andC,., = 1. With increasing

S . . trength of anisotropy(’,,, grows, whileC,., decreases (but
He.”‘?e- we simplify Fhe relevant equ2at|ons ;rom Sgctlon gemains positive). The normalized stress invaridngiven by
by omitting all terms with the factors, ¢ ande?, consider- ‘

ing them to be negligibly small. The mass conservation ba 49), becomes, to leading order,

ance equation (33), as it does not involyés solved in its full J=9X2 (14+3a%), a=Cp/Ch.. (64)
form. The horizontal and vertical equilibrium equations, (34)
and (35), become

ouU ou (62)

1
— =Yoo = [ Y Erz:~ rZ 37
5269 fioC, 97 e 57

In order to solve the above leading-order equations, we,
essentially, follow the method applied in [14,16]. The new fea-
b _ 0%, 0P _ 1. (54) turesinthis analysis are: (1) the inclusion of the ice anisotropy
OR 0z’ 0Z in the flow problem, (2) no stream function is used to construct
The expressions (43), due to the assumption that the normtie solution, and (3) a different method is applied to solve
ized free surface and bed slopésand g respectively, do not the ensuing differential equation for the free surface elevation
exceed unity, yield function H(R). Hence, we start from integration of equations
(54) with the boundary conditions (56), which yields the pres-

An=1, 4r=1 (55) sure and shear stress fields
Therefore, the free surface zero traction conditions, defined b
(36) and (37), become, to leading order, (R,Z2) = H(R) = Z, 2:(R,Z) = —I'(R)[H(R) *(gé'
Z=H(R): P=0, X,.=0, (56) These two relations define the pressutgeand shear stress
and the free surface kinematic condition is Lz atthe base = F(R) as
Z=H(R): IU-W=Q. (57) Py(R) = A(R), Y(R) = —I'(R)A(R), (66)

Atthe bedZ = F'(R), the normal and tangential traction com- A(R) = H(R) - F(R),
ponents, (39) and (40), are expressed, to leading order, by whereA(R) is the ice thickness. With the latter stress compo-

Z=F@R): Ty=-P, T,=5,., (58) nents, the s!iding law (61) determines the leading-order hori-
zontal velocity at the baséj,, as
the velocity components, (41), are now given by
Up(R) = L(R) 67
Z=F(R): V,=BU-W, Vi=-U, (59) W) =Ry ©D
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where it is assumed that the friction coefficieghtlepends only stating that there is no net flux of mass into the sheet. In other
on the positionR, that is, does not depend on stress and tenwords, the global mass of ice remains constant, which is con-
perature. The kinematic condition at the bed, (60), expresssistent with the steady flow assumption.
then the basal vertical velocity, by Equation (73) is second-order for the functifii{ R), since
_ B A(R) = H(R)—F(R) andI'(R) = H'(R). We solve (73) by
Wo(R) = B(R)U(R) — B(R), (68) transforming it into an equivalent set of two first-order equa-

where the basal melt rate is assumed to depend only.die  tions. To this aim, denote the expression in curly braces in (73)
basal velocity components (67) and (68) are used as boundagy

conditions in integration of the flow equations over the depth B 1
Z in order to determine the velocity field inside the ice sheet. K(R) = —RI'(R) {A (R) A(R) + I(R)} ’ (76)
Accordingly, we eliminateX’,., from (65), by using the last where we have substituted (67) fo§. Then, (73) becomes a
of the constitutive relations (62), and then, by integrating thirst-order equation

resulting equation fot/, we obtain dK .
— = RQ"[R, H(R)]. (77)

This equation is solved ovét ranging from zero to the margin
atR);.SinceatR = Ry; A =0, hencel(R) = 0andK =0,
H(R) - 7' the boundary conditions for (77) are expressed by

R Z)Com 7y 7 0 K(0)=0, K(Ru)=0. (78)

I fK, (7 = H’
The prime denotes a running integration variable. With the hor[‘ terms of K., (76) expresses (1?) () as

where the functiori7, is defined by

Z
Gr(R, Z) = —T'(R) /

F

izontal velocity componerit’ given by (69), the vertical com- a7 K(R) (79)
ponentW is calculated from the incompressibility equation dR R{A-Y(R)A(R)+ I(R)}’
(33). Thus, which is the other first-order equation, to be solved along with
W(R, Z) = (77). The boundary conditions for (79) are defined by
1 H(0) = Hp, H(Ra) = F(Ru), 80
WilR) — 5 U2 - () — S22~ p(r) O =, ) = F(lt), (0
R dR whereHp is the free surface elevation at the ice sheet centre
~Lumz)- 292 (R 2, (71) (which is called the ice divide), antt, is the place where
R OR H = F, thatis,A = 0; both Hp andR,; are unknown quan-
where tities that need to be calculated as part of the solution.

We note in passing that the mechanism of the anisotropic
_ dz'. (72) fabric evolution is represented in our leading-order solutions
fo(R, Z2")C.(R, Z") by the two functions”,, andC,.. which enter the denomina-

i . tors of the integrands in (70), (72) and (74),{ is involved
Thg above Ieadlng_-order relations express the stres; and ¥Rplicitly through the invariant/, see (47) and (64)).
locity components in terms of the free surface elevation func-

tion H(R), which is yet unknown, and the given bed elevatiors  Numerical calculations and illustrations
function F(R). In order to findH(R), we make use of the _°

kinematic conditions (57) and (60), prescribed at the surfadghe two first-order differential equations (77) and (79) for the
and the bed, respectively. Hence, we first difference both equee surface profiléd (i) form, in view of the conditions (78)
tions, and then substitute the expressionsifoand W, (69) and (80), a two-point boundary-value problem. The fact that
and (71), into the resulting relation. This yields the differentiafn® position of one of the endpoints, the mardin;, is un-

Z
G, 2) = —r() [ 22

F

equation known adds substantially to the numerical complexity of the
q problem. A shooting method has been applied to solve the
— {RU(R) A(R) — RI'(R)I(R)} = RQ"[R, H(R)], equations. First, for given distributions of the fabric functions
dr (73) C,, and C,.,., trial values of Hp and R, are assumed, and
whereQ* = Q — B, andI(R) is defined by then, starting from the endpoinf$ = 0 and R = R); and
moving inwards, numerical integration is carried out by us-
) (H — 7')? ing a Runge-Kutta-Fehlberg scheme with an adaptive step size.
I(R) = / (1% 2) Cra (R, Z) dz’. (74) The routine is repeated until the elevatifihand the value of
F(R) Holst, T the functionK are matched at a chosen interior fitting point.

The validity and accuracy of the solution obtained is verified
by employing the integral property (75). Having fouRd the
flow field variables (the velocities and their gradients) are eval-
Ry uated and the distributions of the functiofis, and C,., are
RQ*|R,H(R)]dR = 0, (75) updated, before starting calculations to find the next approxi-
mation for H. Such iterations between the fabric and the flow

Integration of (73) from the divideR = 0 to the margin
R = Ry, duetol(Ry) = 0, gives the relation

0
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fields are repeated until a convergent solution is obtained; tipeocesses that enhance the ice deformation are active. The re-
first iteration is started from the isotropic fabric, for whichsults presented indicate that the influence of the ice anisotropy
C,., = 1 andC,, = 0. Simultaneously, in each iteration, ais more pronounced on the ice sheet exfept, than on the ice

set of five hyperbolic partial differential equations defined byhicknessH p, at the divideR = 0. For the most anisotropic ice
(27) is solved to follow the evolution of the fabric along iceillustrated in the figure (dashed line), the sheet span increases
particle paths (streamlines). The paths start at the free surfameabout19% compared to the isotropic ice (solid line), while

in the accumulation zon&€)X > 0), whereF' = I, pass through the divide thickness decreases by al&fst In physical units,

the interior of the ice sheet, and end either at the free surfattgs is equivalent to the span increasel®f km, and the di-

in the ablation zone(y < 0), or at the bed if basal melting vide thickness decrease by m.
occurs B > 0). In calculations500 basic integration points

along R were used to solve (77) and (79) fai{ R) andH (R), 1.0 T T
100 points along the vertical were applied to perform all depth isotropic
integrations, and up to abob®00 basic intervals were needed 08 - |
to calculate deformation gradients along the longest character-
istics (streamlines). . Ea=2Es=

The results presented below have been obtained for the & o6} -
flat, horizontal bedf" = 0. The adopted characteristic mag- 5 Ea=2Es=5
nitudes areh* = 2000 m andv* = 1 myr—!, implying ‘§
e = 0.00167 ~ 1/600, so that the length unit in the ra- 2 0.4 - N
dial direction is1200 km, and the horizontal velocity unit is
600 myr—'. The basal friction coefficient id = 10. The ice Ea=3,Es=8
accumulation distribution functio has been adopted in the 021 ‘ |
form proposed by Morland [14] _ /()'

* )i /1
@ = Qo = (Qoo = Qo) exp(=H/H), (81) 000t 006 008 010 012 014

where@ ., andQ, define the accumulation rates dt — oo Horizontal velocity
andH = 0 respectively, andi* is a decay height. In the sim- (a)
ulations the value® ., = 0.5, Qo = —1, andH* = 0.25 have 1.0

been used. No basal melt has been assumed so 0 and
Q* = Q. The adopted temperature distribution function, also
from [14], is expressed by 0.8 |-

T=-tH+iH-2){1-1A[A-L(H-2)]}. (82)

L
N 0.6
H S
0.6 §
D04l 02 0.4
0.5 L
0.4
0.2
0.3
0.2 0.0 '
0.00 0.05 0.10 0.15 0.20 0.25
0.1 isotropic O\ Horizontal velocity
00 1 1 1 1 1 ‘\I \ \ 1 R (b)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 3. Horizontal velocity depth profiles: (a) & = R /2 for
Fig. 2. Free surface profilel (R) for isotropic and anisotropic ice isotropic and anisotropic ice with different combinations of enhance-

with different combinations of enhancement factétsand s ment factors; (b) at different locatiord®/ R, for anisotropic ice de-

fined by the factordr, = 3 andE, =8
As first, in Fig. 2 we illustrate the effect of the ice

anisotropy on the free surface proffi R). Shown are the re- In Fig. 3 we show depth profiles of the scaled horizon-
sults obtained for different combinations of enhancement fatal velocity U, plotted against the normalized elevatigpnH .
tors, E, and E, defining the limit strength of anisotropy in In Fig. 3a the velocity profiles ak = Rj,/2, for the same
compression and shear (for isotropic ice béthand E; are ice sheet geometry and the types of ice as those illustrated in
unity). The combination off, = 3 andE;, = 8 has been Fig. 2, are compared. We observe that the anisotropy of ice
measured in laboratory and describes the viscous propertiessagfnificantly affects the velocity field across the glacier. An in-
so-called warm ice [18,2], that is the ice at near melting temnteresting feature is the decrease of the basal horizontal velocity
peratures and high strain-rates, at which some recrystallizatiéf with increasingF;, that is, with increasing ease of shear, so
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that the fastest flowing ice near the bed is the isotropic (i.e., thlee isotropic ice viscosityiy, as can be seen in the relevant
‘stiffest’) ice. On the other hand, the fastest flowing ice at theelations derived in Section 5. Hence, the magnitud€’of

free surface is, as could be expected, the most anisotropic oimalicates how the ice shear viscosity changes compargg to
Figure 3b displays the distributions of the velodityat differ-  as the anisotropic fabric evolves in the material. We see in the
ent locations?/ R, in the flow of ice defined by the enhance-plots (a) that the viscosity decreases in a monotonic manner
ment factorsE,, = 3 andE; = 8. We note that the velocities as the ice, undergoing uni-axial compression, descends down
vary considerably down the ice sheet, growing steadily with inthe divide. Reaching the bed, the ice deforms mainly by shear-
creasing distance from the divide. The latter is a consequenicg, with its rate increasing with the distance from the divide
of the increasing area of the accumulation zone between tiie= 0. The growing shear deformation leads to the reduction
divide and a given locatiot®, requiring increasing horizon- of the shear resistance of the medium, reflected by the progres-
tal velocities to transport the ice from the central region of theive decrease in the shear viscosity, until a limit value has been

glacier towards its margin. attained. This mechanism is demonstrated well by the plots (b),
showing that the ice at the most part of the glacier base has a
Crz nearly constant viscosity, equal to the limit shear viscosity (for
1.0 —~. which the viscosity factor is given bg,.., = 1/E, equal to
~ . 0.125 for the most anisotropic ice, illustrated by the dashed
\\\ line).
0.8 ’ N
N\ NS
N O\
0.6 Nl 07
. \ - - 0.6
04l ~ 05
. 0.4
0.3
0.2
0.2
H-Z
0.0 . ' ' N R
0 0.2 0.4 0.6 00 :
(a) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
C Fig. 5. Free surface profile§ (R) for flows with different basal melt
rz rates B and temperature distributior, for anisotropic ice defined
1.0 - —  __ E.=3E.=8 by the enhancement factofs, = 3 and £, = 8. Corresponding
a = &s isotropic ice profiles are plotted in thin lines
—_ — .. Ea =2,E5=
0.8 : I
— - — - — E;=2,E;=3 Finally, in Fig. 5 we show the effects of basal melt rate and
L~ the temperature distribution on the ice sheet geometry. Pre-
0.6 " sented are the free surface profiles for the flows of the most
) \} anisotropic ice f, = 3 and E, = 8) for three different melt
/\ "~ rates,B = 0 (no basal melt)B = 0.05 and B = 0.10, all
0.4 - N> — for the temperature distributidfi given by (82). Additionally,
T - we also show the surface profilé(R) for no basal melting,
0.2 AN e e— .. —_ but with a different temperature distribution, denotedy
~—_— . The latter is the distribution in which the ice is assumed to
R have, at a giverR, a constant temperature that is an average
0.0 ' ' ' of the corresponding surface and base temperatures prescribed
0 0.2 04 0.6 by (82). Hence I, defines the surface temperature which is
(b) higher, and the base temperature which is lower, than the re-

Fig. 4. Distributions of the viscosity factar,. : (a) along the sym- spective temperatures given by. In the figure, the profiles

metry axisZ and (b) along the bed = 0, for anisotropic ice with for the anisotropic ice (plotted in heavy lines) are compared
different enhancement factofs, and E; with the corresponding results for the isotropic ice (thin lines

in matching styles). We note that the presence of basal melt-
Figure 4 illustrates the variation of the functiéh, down ing significantly increases the volume of ice in steady flow,
the ice divide (the symmetry axi8) and along the ice base increasing both the lateral spdty; and the divide thickness
F = 0, for the same anisotropic ice parameters as those uség, by approximately the same rates when compared to the no
in the previous plots (for the isotropic ice this function is idenbasal melt flow. The comparison of the free surface profiles for
tically unity). The functionC,., serves as a factor multiplying the anisotropic and isotropic ice indicates that the anisotropy
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effects, reflected by flattening of the sheet, are similar in th&cknowledgements. Significant part of the theoretical results
three cases oB investigated. Therefore, it appears that theresented in this paper was obtained during a prdjgotving
basal melting does not modify considerably the overall beAnisotropy in Ice Sheet Flowsupported by EPSRC (United
haviour of the anisotropic ice sheet. The plots #r= 0 and Kingdom).
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