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Abstract. In the paper there has been made an advantage of the non-classical operational calculus to determination of the response of the cert.
discrete time-systems. TiZetransform is often used to analysis of the stationary discrete time-systems. However, the ugetodtiséorm to
determination of the response especially of the non-stationary discrete time-systems is doubtful or may cause complications. This method lea
to differential equations of n-th order of variable coefficients, whose solutions are very difficult or impossible. The non-classical operational
calculus can be used to analysis both of the stationary and non-stationary discrete time-systems. The presented method with the use of t
Heaviside operator soon leads to the target without unnecessary differential equations.
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1. Introduction advantage of th&- transform properties of [1,2]. As point 2

Discrete time-systems, discrete dynamical systems are ndificates, as a consequence of ustrgansform in the control

of immense practical significance. Therefore the processes%fs'[em (2), in order to d(_atermln_e Its response it IS hecessary
their analysis and synthesis are indispensable. to solve a second order differential equation of variable coeffi-

The method ofZ-transform is often used for this purpose_cients, which as a rule causes numerous problems, or is simply

This transform proves in the case of stationary control syster{§P0SSIble to solve. It should be pointed out that in general this
described by applying a difference operation will lead to differential equations of n-th order of variable coef-

ficients. Even ifn = 3 the solution of the differential equation
n . is very difficult.
A" = -1) n n+k—i ( :172a37"' H Fer
{a} {;( ) (l ) Ttk } " If the control system (1) or (2) is governed by initial con-

o ditions different from
where{z,} € C (N) — space of real sequences. That is in the

case of control systems of the form i =20, 1=0,1,2,...,n—1, (3)

an A"z + an 1 A" oy + L+ a Az + aoxy = ug, (1 "
ns kT Al b 1Az + aozk = g, (1) e.g. conditions of the form

wherea; € Rfori = 0,1,...,n. (R is a set of real numbers.)
In Eq. (1)z is a discrete output signal, whilg, is a discrete T =Ti0, t=koko+1l,. ., ko+n—1 ko>0, (4
input signal in spac&(N). The basic characteristics of the
discrete systems are described in Tagansform language. ~ then the use of th&-transform becomes doubtful, or may
implifv the denotation in defini cause complications.
the E;Af;ié ltrr:eEgr .'E\izetsohs;c]ept;fgetn%meiti]gdé on ih detining Taking into consideration the above facts, in the paper an
ttempt has been made to apply such methods that will elimi-

Moreover, in the denotation of th nce for simplicity of S . .
oreover, in the denotation of the sequence for simplicity 0nate the difficulty. It turns out, as it was proved at point 6, that

the notation the braces will be omitted if no ambiguous situg; o : :
tion arises 9 6{he application of a non-classical operational calculus makes
) iE possible to easily determine the response of the control sys-

In the paper careful note will be taken of the problems th ms of type (2), as a special case of such contral systems as
are likely to arise, for example, while determining the responsg yp ' P y

;)ef rT:il)partlcular non-stationary control system (dynamical sys—amkakH A2+ ap(asDa + ar)Azy + apzr = ug, (5)

ag(k + 2)(k + 1)A21k + (al + a2)(k + 1)Alk + agxy = ug, hereag,a1,a2 € R anday #0 for k = 0,1,2,... without
(2)  using the differential equations.
whereag, a1, a2 € R. The non-classical operational calculus mentioned above
System (2) may be treated as non-stationary algorithm ehables us also to analyze the stability of such control systems.
time processing of discrete signal. In the analysis the discrettowever, in this respect thé-transform does not offer such
system is so assumed that it is immediately possible to tak@portunities.
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2. Determination of the response by using Another case shows that the problems to be solved by us-
the Z-transform ing the Z-transform can occur already at some earlier stages.
Let us take into consideration the non-stationary discrete timgpr this purpose let us consider the system
system — (2). Let us determine its response in the case if (k+2)(k + 1)A%z;, — 2(k + 1)Axy + 22, = up, (10)
as =2,a1 = 3,a0 = 1, {uy} = {1} with conditions (6). (Hereas = 1, a1 = -3, a9 = 2,
{ur} = {1}.) The application of the&Z-transform leads to

and the system is encumbered with conditions the differential equation

22(2—1)2X"(2) +22(2 — 1) (2 +2) X' (2) + 6X () = —

z—1’

xg =a,z1 =b. (6)

Taking advantage df-transform in system (2) we have ) _
which cannot be solved analytically.

z .
Moreover, let us note that if the system has the form

-1
3 2
Thus, we have obtained a differential equation in the form of @3(k +3)(k +2)(k + 1)A%), + az(k + 2)(k + 1) Az
1 +a1(k + 1)Axy + apxr = uk,

(z—1)2 (7) then the use of th&-transform will lead us to a differential
equation of third order of variable coefficients the solution of

2222 = 1)2X"(2) + 2(z — 1) (42 — 1)X'(2) = .

22(z = 1)X"(2) + (42 — 1)X'(2) =

for the transform of responsg, being looked for. The differ- hich. i Lisi bl
ential Eq. (7) should be provided with the conditions for thV/Nich, 1N general, 1S IMpossIvle.

transform corresponding to conditions (6). They have the fol- The applications of th@-trangform t(.) some selected dis-
lowing form crete systems, as has been outlined briefly before, show some

evident problems to cope with. They are in each case, trou-

lergo X(z) =209 =a, lengo(—zQX’(z)) =x1=>. (8) blesome and time-consuming calculations, and pose problems
) i i . connected with the determination of the inverse transform for

From the differential Eq. (7) with conditions (8) (afterlong y () "o create difficulties that start already at the outset of

and troublesome calculf_itions) we have obtained the tranSfOHEtermining theX (=) transform from the differential equation
of the sought response in the form which as a rule has variable coefficients.
X(2) = (2 z 1 b Taking into consideration the problems noted here it fol-
(2) = (2b-2) 21 + ~—1 +ta—2b+2 lows that one should try to look for methods that will avoid
them, will be less difficult in the calculations, and will rela-

then — 77 [X(2)] tively soon lead to the target of our pursuit. One of such meth-
= 2 ods has been presented at point 6 of the paper. Points 3, 4 and
therefore 5 are an introduction to the method.
_ z _ 1 . .
= (2b—-2)Z"" [ —|tZ L - J 3. Non-classical operational calculus

+(a—2b+2)Z7 ). The non-classical operational calculus owing to its generality
can be used to describe and analyze the dynamical systems. In

this paper advantage will be taken of the essential knowledge

a fork=0 9 relating to the theory of the operational calculus mentioned

(20 — 2)%,5,%_1) +1fork=1,2,3,...° ©) earlier, that is necessary to analyze the discrete time-varying

Let us now consider system (2) where = —1, a; = 3 system (5). As has_been mentlo_ned befor_e it will turn out thgt

’ " the use of this tool in the analysis of the discrete system (2) is

a0 =4, -{uk} = {1}, with condltlo_ns (©). . : ., more advantageous than the application ofAhgansform, as
Having Z-transform we obtain the following differential :
can be seen at point 2.

equations for the transforti (z) = Z [x]

From the transforms table we obtain

T =

1 DerINITION 1. [3-5]. Axioms of non-classical opera-
2(z = 1)X"(2)+2(z+2)X'(z) = BPEEITL tional calculus. Non-classical operational calculus is a set of
(-1 (L°, LY, S, Ty, s4,Q), whereL! < L° and L°, L' are linear
whose solution with conditions (8) is spaces. Linear operatigh: L' — L° S(L') = L°, is called
b 1 the generalized derivative. The s@tis a set of indiceg for
X(z) = o1 (b - 4> the linear operatioff, : L' — L' and for the linear operation

5 5 1 1 sq : L' — KerS such that
) 5
(e e ) STt =1

1,5 = — 542,

To wind x;, one should calculate& ~! [X(z)]. At this point
it is necessary to explain that this causes a problem. Beimgheref € L%,z € L', q € Q.

equipped with the properties of tie! transformation and the OperatioriT}, is called the generalized integral. Operatigns
transforms tables it is impossible to carry out the operation. called the limit condition.
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REMARK. One can also talk about families of operations COROLLARY 1. The setC(N) with simple operations:
{T4},eq and {sq},c, Which satisfy some specified condi- summation and multiplication is an algebra. From the last the-

tions. orem and from Example 1 it follows that the three operations
Elements of the kernel of operati¢h that is the set of Az ={ary A ), (14)
KerSi{c€L1:Sc:0} f
) = . k
T, S IR LA 15
are called constants. ko i} =Tl {ak } (15)

The elements of the set of constants constitution a linear sub- Sko {2} =5k {21} (16)
space of spacé’.

Thus. we have if {ap} € C(N),ar # 0fork =0,1,2, ... are also fulfilled

KerS c L' ¢ LV, by the axioms of the non-classical operational calculus.
_ _ - The operational calculus constructed in this manner, to-
REMARK. OperationT is an injection. gether with its properties is used in the paper at point 6 for

the analysis of the discrete system of the form (5), which after
the use of operatiol\ and properties of operatioA can be
written as follows

ExampLE 1. Let C(N) be a space of real or complex se-
quencest = {xi} = (xo,x1,x2,...). In paper [4,8] the gen-
eralized derivative (difference derivative)= A is defined by
the formula aaAN%x) + a1 Axy + agzr = ug (17)

A = — , € C(N). 11 . . .
{zr} ={zp+1 —an}, {zx} € C(N) (1) 4. Non-classical Heaviside operator
The derivativeA is adequate to the operatidn, and the and its properties

limit condition s,. These operations are described by the for- )
One of the methods to determine the response of the general-

mulas
. h ized dynamical systems is the application of the non-classical
Tio {fe}=1rr}, where Heaviside operator —[3,4,5]. To define non-classical Heaviside
0 for k=ko operator is necessary to accept the notions of the result and the
k=1 fko + fro+1 + o + fum1 fork > ko, {fi} € C(N), operator.
~fro-1 = fro2 = = frfOr B < ko (12) DEFINITION 3. [4,5]. By semi-group of commutative en-
N domorphisms of linear spacg over field K is meant a fixed
sko {2k} ={ko b, {2i} € C(N). (13) set]](X) of endomorphisms of spack, such that for any
Formulas (11), (12), (13) indicate that in this case arbitrarylU;, Us, Us € [[(X) the following conditions are ful-
L'=L°=C(N). filled
The derivativeS = A has numerous properties — [7,8]. (U1U2)Us = U1(Uz, Us)
Among them is the following U1U; = Uy
A{frgr} = (i} Adgr} + (A {f}) {on} (U =0) = (z=0) for = € X.
{fx} {9} € C(N). DEFINITION 4. [4,5]. Fractions given below will be re-
For more models look at [3,5,6]. ferred to as th; results

To be able to talk about the iteration of the derivatiydet ¢=<, where feX,Uc H(X),

us introduce the definition of spaéé”, m = 2,3, .... ) U_’ o - _
using the following definitions of equalities and operations
DEFINITION 2. Fog
LM {J?ELm_l ISl‘EL7n_1},m:2,3,4,.... E:V if and Only if Vf:Ug
On the assumption that spacks L' are commutative al- S + 9_.VIi+Uyg
gebras with unity it is possible to formulate the following the- v.ov uv
orem. Tiij
. o u v
THEOREM 1. [5]. If the operational calculus is given f Vf
VI= ==
(LO7L1aSaTqasan)7 (U> U
whereL°, L' are commutative algebras with unity, thereford®r f,9 € X andU,V € [[(X), 7€ K.
with the use of an invertible elemente L°, the operations REMARK. The elements of space X can be identified with
Sr=aSz. zc L such elements as ;
T,f=Ty(a™ f), felL® I
S from the results space, because the mapping
are also satisfied by axioms of the operational calculus. [ §
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is isomorphism, wheré = id € [[(X) is an identity opera- 5. Generalized exponential functions
tion. Therefore spac¥ can be regarded as a linear subspace 9f, orger to determine the generalized exponential functions

the results space and elements of space X can be treated asr'@@essary to analyze the systems use will be made of an in-
results. It should be pointed out, following the information Ofdispensable definition and an ausxiliary theorem.

[4,5] that the results space is richer in elements than the outlet "¢ endomorphismR is a logarithm (see [4,5]), then the so-

spaceX. _ ~lution of the abstract differential equation
Let W be endomorphism of spacé commutative with in- .
jectionsU € II(X). St =Rx,x €L (18)
with condition
DEFINITION 5. [4,5]. By operator = % of the results st—cceKerS (19)
q ]

space is meant an operation described by the formula
exists or it does not, but if it exists, then there is only one solu-

L <f> iwif tion (see [4,5]).
V) uv’ Let R be a logarithm and let a solution of Eq. (18) with
wheref € X andU, V e [[(X). condition (19) exist. The solution will be denoted by

Rt,,,

r=e
REMARK. From the definition of the operator it follows N L Rt
that the sum of the operators, the product of the operator byr&inctione™ = KerS — L° given by formulac — e™ac
number, and the composition of the operators is again an o|§_called generalized exponential function (see [4,5]). The gen-
erator. If the division is carried out by operat#s whose nu- €ralized exponential function can be presented in operational
meratorsU; re injections as multiplication by the inverse off0rm. This fact results from the theorem.
the operator, then we will also obtain an operator. THEOREM 3. [4,5]. The generalized exponential function
can be expressed in terms of opera;gi%—R = pq”_qR in the
) . catt
following way (provided that the resu}tﬂ is an element of
7 spaceL?)
Pg=7r c P,
T, efttae = = 1 _¢, c€ KerS.
e I-T,R p,— R’
Let us consider some examples of the generalized expo-
nential functions for selected models of operational calculus.

DEFINITION 6. [4,5]. The operatop, with the generalized
integralTy,

is known as the generalized Heaviside operator. From the def-
inition of the Heaviside operator it follows that

T,=—. ExaMPLE 2. The generalized exponential function for the
Pq model from Example 1 is defined by the formula

Operatorp, is defined correctly, due to the assumption made 0 {ap ¥ = {(1 i a)k—ko . }
at point 3, generalized integrdl, is an injection. The theo- o Fof-
rem given below expresses the relation between the generghdomorphism R is multiplication by a real or complex num-

ized derivativeS and the Heaviside operator. bera.
(For ky = 0 elementa is arbitrary, forky, > 1 element
THEOREM2. If z € L", then _
a#—1.)
S"x = ppa—pprog — Py @ig— - — Pan-1q> EXAMPLE 3. The generalized exponential function used in

i the model of the operational calculus with derivati¥efrom
wherez; q = s¢5",7 = 0,1,...,n — 1. The proof of the theo-  cqrgllary 1 described on the basis of formulas (18), (19) has

rem can be found in [4]. the form
COROLLARY 2. Forn = 1 we have . a —
eatq {.I’()} = {l‘o H (1 + Oé) ; H():la (20)
ST =pgr — pyTo,q, TE L. i=0 v i=0

where endomorphism is multiplication by a real or complex
numbera.

On the basis of Theorem 3 this function can be expressed
by the use of the Heaviside operatgrcorresponding to inte-

Forn = 2 we have

2 2 2 2
S°r = pyx — pyTo,q — PgT1,q, T E€ L7,

Forn = 3 we have gral Ty, , ko = 0, defined by Corollary 1 by formula (15). The
3 3 3 9 3 above denotation is as follows
S8y = Dy — Pyo,q — Dg®1,q — Pgl2,qs T € L°. ot Py o1
€ {Io}*pq_al{xo}- (21)

The relation given in Theorem 2, or its particular cases used
in Corollary 2 enable us at point 6 to determine the response ©he obtained relationships (20), (21) are significant on account
the discrete system in an operational form. of the analysis of the discrete system (17).
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6. Application of the generalized Heaviside After putting the last relations into formula (26) and some
operator to the solution of the problem transformations we obtain the formula for the response ex-

The determination of the response of the system (2) witﬁ: rerisci‘dthlg rt:;rr:)sﬂ;é igzr;efg:gxg exponential functions. The
as = 2,a1 = 3,a0 = 1, {u,} = {1} and conditions (6) wil P

be carried out by non-classical methods of the operational cal- _ _1

culus. The above system and its conditions must be written if ok} = (a=2b+ e {1}+(20=2)e 2" {1}+{1}. (27)
the language used for the operational calculus. For this PUccording to formula (20) we have

pose advantage will be taken of the operational calculus model

given by Corollary 1 with derivativel defined by formula k-1 1

(14), wherea, =k + 1. According to formula (17) it is pos- e~ {1} = {H (1 - z+1> } = {dx},

sible to present it in the form i

20%xy, + 3Axy + mp = up, {ur} = {1}. (22) 1 k-1 1
Conditions (6) are satisfied by the ones formulated by the use e 2 {1} = {H (1 20+ 1)) } ’
of the limit condition (16) fork, = 0. They are as follows =0

SkoTk =To =a (23) REMARK. Sequencddy} denotes a sequence of the form
§k05$k = Sko ((k + 1) AIk) = Sko(k + 1)5k0Al‘k (1’ 0,0, 0_’ ) .
(24) Inserting the last values to (27) and transforming them
=Sk (Thy1 —7) =21 — 70 = b —a. yields

REMARK. It is worth mentioning that the values obtained

from formulas (23) and (24) mean constant sequences. How it (a—2b+1)1+2(b—-1)1+1for k=0

: S o _ o1
was said before in point 1 instead of writing sequeficg} we T = 2b—1) ] (1 L ) clfork=1.2,.. "
will often write x. o 2(i+1)

Making use of the equalities of Corollary 2 system (22)

with conditions (23) and (24) can be recorded in the following naly
operational form a for k=0
2(p2es — pla—py(b—a)) + 3(pgwe — pya) + i = 1, (25) = {<b DG ok =12, %)

wherep, is the Heaviside operator corresponding to the inte- . . o
gral defined by formula (15) fof — ko — 0 anday, — & + 1. is the response of system (2) with conditions (6)4f = 2,

. . [ 3, apg = 1, {uk} = {1}
(Herexo 4y = a, z1,4 = b— a.) On the basis of equation (25) . . .
it follows that the response of our system can be expressedg The graph of the discrete signa} fora = 2,6 = —11s

operator form own in Fig. 1.
2p3a +2p,(b—a) + 3pga + 1
= 2p2 + 3p, + 1 ’ 0%
pq pq 24 Ay = 2
that is, after some transformation we have 15 a; =«
2 ' ag =1
_ Pq 2b+a Pq 1
T =a T 1+ 1
(Pg +1)(pg + 3) 2 (pg+D(pg +3) 0.5 c e e e e
1 I ) Y S . O
to——— L 1 2345678 9101112131415
2 (pg +1)(pg + 3) 0.5 .
(26) “1{ e .
REMARK. The expressiop, + d should be understood as 1.5
Pq +dl. Fig. 1. The diagram of the discrete signal(a = 2,b = —1)

Making use of the tables [5] the values appearing in for-
mula (26) can be written by means of some generalized expo-

nential functions. They will take the form Using the same procedure it is possible to determine the
) . L L, response of system (2) with conditions (6) whege= —1,
Pq _—ertge 27 ar = 3, ap = 4, {ur} = {1}. This system can be written in
(pg+1) (pg+3) -1+31 7 the form
P et _ 6_%tq 752Ik + 3A$k +4z, =1
(pg+1) (pg+3) —1+3 7 with conditions (23), (24). Taking advantage of the Heaviside
) 4
I B 7567% + o5t . ) operatorp, the relation can be expressed by
(e +1) (pg+3)  —1(=2)(-1+3%) (-1 (-%) —(plar — paa— pe(b — a)) + 3(pgwr — pga) + dap = 1,
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from which it follows that
—pga —pg(b—a)+3pa+1

o = T g

—a—pg —4g)—Pa

=t Dy —d) WOy
I

— {1}.
Bt D (g — 3
Furthermore from the tables we have

(o} == 1 - 10
de~ta 4 etta 1 1 1
- (S =g m) = (- - 5)

et {1} 4+ (éb - 210) Mo 1)+ 3 {1},

After making use of formula (20) the equality takes the form

k-1

1 1 1 1 4 1
=(a—zb-= b — 14— ) +-.
Tk (a 5b 5)dk+<5b 20>H(+i+1>+4

=0

The graph of the discrete signa} fora = 2,b = 1 is shown
in Fig. 2.

6007 .
500 ag=-1
a1 = o
400 ay =4
300 .
200 .
L]

100 .

1 CHPUPUPP SY S S —

01 2 3 4 5 6 7 8 9 1011 12 13 14 15

Fig. 2. The diagram of the discrete signal (a« = 2,0 = 1)

At this place it is worthwhile mentioning that in the cas

problem of determining the responsg, since it was impossi-
ble to define the inverse transform. Here the determination
the response turned out well.

Another system that caused problems was system (10) with
conditions (6). The application of the operational calculus to
this case also appeared very quickly to be useful to reach our

target because the system can be expressed by
AQ.’L‘k — 3A$k + 2z =1
with conditions (23), (24). Thus, we obtain

P

o = S
Pq
+(b— 4a)—(pq — 2) (pq — 1) {1}
+ ! .

(Pq -2) (pq —1)

454

€
of applying theZ-transform to the system, there occurred th®

that is

{or} = (b 20+ ;) 0 (1) +(3a—b-1)e" {1}+ {1}

k—1

+@Ba-b-1) ]

=0

and so
ey

I’“( >i1j[0i+1

The graph of the discrete signg} for a = 2,b = 1 is shown

1

2

1
b—2 —
a+2

142
t+1

in Fig. 3.
25 1 Xk k
-~y
25 1 2 3 2 & § 7 8 9 10 11 12 13 14 15
75 .
125 ay =1 .
175 a; =3 °
ao =2 °
~225 .
—275 °
-325

Fig. 3. The diagram of the discrete signal (a = 2,b

1)

As can be seen the presented method with the use of the
Heaviside operator is effective, and soon leads us to the tar-
get without unnecessary differential equations whose solution
might cause problems. This approach can perfectly be applied
to each case when dealing with system (5), with apy# 0
for k = 0,1,2,.... Our analysis includes systems in which
ay = k+1 for the purpose of comparing the proposed method
with the Z-transform procedure. Using an arbitrary the Z-
transform procedure will not work. Moreover, the given condi-
tions may be of the form

Tky = C, Tko+1 = d, ko 2 1.

It is worthy of mention that the application of the Heaviside
perator has also proved effective in the case of a control sys-
tem of third order in which the use of thg-transform leads
tha differential equation of third order of variable coefficients.
This can be observed in the system

(k+3)(k+2)(k+1)A%, +6(k+2)(k +1)
A%z —2(k 4+ 1)Axy, — 8z = 1 (29)
with conditions
ro=a, x1 =0, x3=c.
The use of the derivativA gives the following system
A3xy, + 3A%x), — 6Axy, — 8z, = 1

with conditions (23), (24) provided with the requirement
Ekoﬁzzk =a— 3b+ 2c.

Having made use of the Heaviside operator the response takes

Bull. Pol. Ac.: Tech. 54(4) 2006
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the form then the generalized exponential functions are bounded se-
_ qguences.
Z Ig: Z ; ? The free system corresponding to:
T = c fork =2 . — system (2) is asymptotically stable (whepn = 2, a; = 3,
Sb+c+ fork =3 ap = 1) due to the fact that = —1 ora = 3,
i (Lb+ Lot L) GHUBED) fork =4,5,6,... - system (2) is asymptotically unstable (whep = -1,
a1 = 3, a9 = 4) because, = —1 ora = 4,

7. Summary and conclusions — system (10) is asymptotically unstable for the reason that

a=10ra=2,
The use of the non-classical operational (calculus) methods system (29) is asymptotically unstable because —1 or
make it possible to determine the response of the discrete,, _ _ 4 ory = 2.

systems also in situations where the application of fhe
transform is limited or impossible. In all the above cases,. = k + 1. _ _ _

In other cases the use of the generalized Heaviside oper- It is obvious that stability can be determined without defin-
ator to find the response is compatible with respect tothe N the response of the system and, as it was possible to prove,
transform. An advantage of the Heaviside operator is the shéhe method of its analysis is quite simple and depends in this
time it takes and ease of calculations. Moreover, the meth&@Se only on the determination of valuesccurring in formula
can be employed when the conditions in the given values d@1) or (20). For instance, system
not necessarily rgfer to t.he initial terms of the sequence - see 4RFIAZg 4 (2-4F 43 28) Ary 4+ 2, = 0
formula (4). The input signafu,} = {1} used for the con- - )
siderations does not introduce any limitations due to the fal§ Stable, because it is equivalent to system (5)
that in the case of an arbitrary sign@l;} in a model with . 3 1
derivative A it is only necessary to make use of a convolu- ap =27, ap =1, a1 =5, ap =5

2 2
tion [4] or to apply it directly. For example the response of

system (10) with conditions (6), where discrete input signfrnd t_he generalized exponential _functions, as it follows from
{ug} = (0,0,1,1,1,...), has the following form condition (30), are bounded. In this case

1
k-1 . k-1 . a=—-1 or a=——.
1 t+3 1 1+ 2 2
=(b—2 — 3a—b— -
Tk ( ‘”12)}1}%1*(“ 3)g¢+1
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