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Non-classical operational calculus applied to certain linear discrete
time-system

E. MIELOSZYK∗, A. MILEWSKA, and M. MAGULSKA

Faculty of Applied Physics and Applied Mathematics, Gdańsk University of Technology, 11/12 Narutowicza St., 80-952 Gdańsk, Poland

Abstract. In the paper there has been made an advantage of the non-classical operational calculus to determination of the response of the certain
discrete time-systems. TheZ-transform is often used to analysis of the stationary discrete time-systems. However, the use of theZ-transform to
determination of the response especially of the non-stationary discrete time-systems is doubtful or may cause complications. This method leads
to differential equations of n-th order of variable coefficients, whose solutions are very difficult or impossible. The non-classical operational
calculus can be used to analysis both of the stationary and non-stationary discrete time-systems. The presented method with the use of the
Heaviside operator soon leads to the target without unnecessary differential equations.
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1. Introduction
Discrete time-systems, discrete dynamical systems are now
of immense practical significance. Therefore the processes of
their analysis and synthesis are indispensable.

The method ofZ-transform is often used for this purpose.
This transform proves in the case of stationary control systems
described by applying a difference operation

∆n {xk} =

{
n∑

i=0

(−1)i

(
n
i

)
xn+k−i

}
, n = 1, 2, 3, ...

where{xk} ∈ C (N) – space of real sequences. That is in the
case of control systems of the form

an∆nxk + an−1∆n−1xk + ... + a1∆xk + a0xk = uk, (1)

whereai ∈ R for i = 0, 1, ..., n. (R is a set of real numbers.)
In Eq. (1)xk is a discrete output signal, whileuk is a discrete
input signal in spaceC(N). The basic characteristics of the
discrete systems are described in theZ-transform language.

REMARK . In Eq. (1) to simplify the denotation in defining
the sequence the braces have been omitted.
Moreover, in the denotation of the sequence for simplicity of
the notation the braces will be omitted if no ambiguous situa-
tion arises.

In the paper careful note will be taken of the problems that
are likely to arise, for example, while determining the response
of a particular non-stationary control system (dynamical sys-
tem)

a2(k + 2)(k + 1)∆2xk + (a1 + a2)(k + 1)∆xk + a0xk = uk,
(2)

wherea0, a1, a2 ∈ R.
System (2) may be treated as non-stationary algorithm of

time processing of discrete signal. In the analysis the discrete
system is so assumed that it is immediately possible to take

advantage of theZ- transform properties of [1,2]. As point 2
indicates, as a consequence of usingZ-transform in the control
system (2), in order to determine its response it is necessary
to solve a second order differential equation of variable coeffi-
cients, which as a rule causes numerous problems, or is simply
impossible to solve. It should be pointed out that in general this
will lead to differential equations of n-th order of variable coef-
ficients. Even ifn = 3 the solution of the differential equation
is very difficult.

If the control system (1) or (2) is governed by initial con-
ditions different from

xi = xi,0, i = 0, 1, 2, ..., n− 1, (3)

e.g. conditions of the form

xi = xi,0, i = k0, k0 + 1, ..., k0 + n− 1, k0 > 0, (4)

then the use of theZ-transform becomes doubtful, or may
cause complications.

Taking into consideration the above facts, in the paper an
attempt has been made to apply such methods that will elimi-
nate the difficulty. It turns out, as it was proved at point 6, that
the application of a non-classical operational calculus makes
it possible to easily determine the response of the control sys-
tems of type (2), as a special case of such control systems as

a2αkαk+1∆2xk + αk(a2∆αk + a1)∆xk + a0xk = uk, (5)

herea0, a1, a2 ∈ R andαk 6= 0 for k = 0, 1, 2, ... without
using the differential equations.

The non-classical operational calculus mentioned above
enables us also to analyze the stability of such control systems.
However, in this respect theZ-transform does not offer such
opportunities.
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2. Determination of the response by using
the Z-transform

Let us take into consideration the non-stationary discrete time-
system – (2). Let us determine its response in the case if

a2 = 2, a1 = 3, a0 = 1, {uk} = {1}
and the system is encumbered with conditions

x0 = a, x1 = b. (6)

Taking advantage ofZ-transform in system (2) we have

2z2(z − 1)2X ′′(z) + z(z − 1)(4z − 1)X ′(z) =
z

z − 1
.

Thus, we have obtained a differential equation in the form of

2z(z − 1)X ′′(z) + (4z − 1)X ′(z) =
1

(z − 1)2
(7)

for the transform of responsexk being looked for. The differ-
ential Eq. (7) should be provided with the conditions for the
transform corresponding to conditions (6). They have the fol-
lowing form

lim
z→∞

X(z) = x0 = a, lim
z→∞

(−z2X ′(z)) = x1 = b. (8)

From the differential Eq. (7) with conditions (8) (after long
and troublesome calculations) we have obtained the transform
of the sought response in the form

X(z) = (2b− 2)
√

z

z − 1
+

1
z − 1

+ a− 2b + 2,

then
xk = Z−1 [X(z)] ,

therefore

xk = (2b− 2)Z−1

[√
z

z − 1

]
+ Z−1

[
1

z − 1

]

+ (a− 2b + 2)Z−1[1].

From the transforms table we obtain

xk =
{

a for k = 0
(2b− 2) 1·3·5·...·(2k−1)

2kk!
+ 1 for k = 1, 2, 3, ...

. (9)

Let us now consider system (2) wherea2 = −1, a1 = 3,
a0 = 4, {uk} = {1}, with conditions (6).

Having Z-transform we obtain the following differential
equations for the transformX(z) = Z [xk]

z(z − 1)X ′′(z) + 2(z + 2)X ′(z) = − 1
(z − 1)2

,

whose solution with conditions (8) is

X(z) =
b

z − 1
+

(
b− 1

4

)

·
(

2
(z − 1)2

+
2

(z − 1)3
+

1
(z − 1)4

+
1
5

(z − 1)5

)
+ a.

To wind xk one should calculateZ−1 [X(z)]. At this point
it is necessary to explain that this causes a problem. Being
equipped with the properties of theZ−1 transformation and the
transforms tables it is impossible to carry out the operation.

Another case shows that the problems to be solved by us-
ing theZ-transform can occur already at some earlier stages.
For this purpose let us consider the system

(k + 2)(k + 1)∆2xk − 2(k + 1)∆xk + 2xk = uk (10)

with conditions (6). (Herea2 = 1, a1 = −3, a0 = 2,
{uk} = {1}.) The application of theZ-transform leads to
the differential equation

z2(z−1)2X ′′(z)+2z(z−1)(z +2)X ′(z)+6X(z) =
z

z − 1
,

which cannot be solved analytically.
Moreover, let us note that if the system has the form

a3(k + 3)(k + 2)(k + 1)∆3xk + a2(k + 2)(k + 1)∆2xk

+a1(k + 1)∆xk + a0xk = uk,

then the use of theZ-transform will lead us to a differential
equation of third order of variable coefficients the solution of
which, in general, is impossible.

The applications of theZ-transform to some selected dis-
crete systems, as has been outlined briefly before, show some
evident problems to cope with. They are in each case, trou-
blesome and time-consuming calculations, and pose problems
connected with the determination of the inverse transform for
X(z), or create difficulties that start already at the outset of
determining theX(z) transform from the differential equation
which as a rule has variable coefficients.

Taking into consideration the problems noted here it fol-
lows that one should try to look for methods that will avoid
them, will be less difficult in the calculations, and will rela-
tively soon lead to the target of our pursuit. One of such meth-
ods has been presented at point 6 of the paper. Points 3, 4 and
5 are an introduction to the method.

3. Non-classical operational calculus
The non-classical operational calculus owing to its generality
can be used to describe and analyze the dynamical systems. In
this paper advantage will be taken of the essential knowledge
relating to the theory of the operational calculus mentioned
earlier, that is necessary to analyze the discrete time-varying
system (5). As has been mentioned before it will turn out that
the use of this tool in the analysis of the discrete system (2) is
more advantageous than the application of theZ-transform, as
can be seen at point 2.

DEFINITION 1. [3–5]. Axioms of non-classical opera-
tional calculus. Non-classical operational calculus is a set of
(L0, L1, S, Tq, sq, Q), whereL1 ⊂ L0 andL0, L1 are linear
spaces. Linear operationS : L1 → L0, S(L1) = L0, is called
the generalized derivative. The setQ is a set of indicesq for
the linear operationTq : L0 → L1 and for the linear operation
sq : L1 → KerS such that

STqf = f

TqSx = x− sqx,

wheref ∈ L0, x ∈ L1, q ∈ Q.
OperationTq is called the generalized integral. Operationsq is
called the limit condition.
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REMARK . One can also talk about families of operations
{Tq}q∈Q and {sq}q∈Q which satisfy some specified condi-
tions.

Elements of the kernel of operationS, that is the set of

KerS=̇
{
c ∈ L1 : Sc = 0

}
,

are called constants.
The elements of the set of constants constitution a linear sub-
space of spaceL1.
Thus, we have

KerS ⊂ L1 ⊂ L0.

REMARK . OperationTq is an injection.

EXAMPLE 1. Let C(N) be a space of real or complex se-
quencesx = {xk} = (x0, x1, x2, ...). In paper [4,8] the gen-
eralized derivative (difference derivative)S = ∆ is defined by
the formula

∆ {xk} =̇ {xk+1 − xk} , {xk} ∈ C(N). (11)

The derivative∆ is adequate to the operationTk0 and the
limit condition sk0 . These operations are described by the for-
mulas

Tk0 {fk} =̇ {rk} , where

rk=̇





0 for k = k0

fk0 + fk0+1 + ... + fk−1 for k > k0, {fk} ∈ C(N),
−fk0−1 − fk0−2 − ...− fk for k < k0

(12)
sk0 {xk} =̇ {xk0} , {xk} ∈ C(N). (13)

Formulas (11), (12), (13) indicate that in this case
L1 = L0 = C(N).

The derivativeS = ∆ has numerous properties – [7,8].
Among them is the following

∆ {fkgk} = {fk+1}∆ {gk}+ (∆ {fk}) {gk} ,

{fk} , {gk} ∈ C(N).

For more models look at [3,5,6].
To be able to talk about the iteration of the derivativeS, let

us introduce the definition of spaceLm,m = 2, 3, ....

DEFINITION 2.

Lm=̇
{
x ∈ Lm−1 : Sx ∈ Lm−1

}
, m = 2, 3, 4, ....

On the assumption that spacesL0, L1 are commutative al-
gebras with unity it is possible to formulate the following the-
orem.

THEOREM 1. [5]. If the operational calculus is given

(L0, L1, S, Tq, sq, Q),

whereL0, L1 are commutative algebras with unity, therefore
with the use of an invertible elementα ∈ L0, the operations

S̄x=̇αSx, x ∈ L1

T̄qf=̇Tq(α−1f), f ∈ L0

s̄qx=̇sqx, x ∈ L1

are also satisfied by axioms of the operational calculus.

COROLLARY 1. The setC(N) with simple operations:
summation and multiplication is an algebra. From the last the-
orem and from Example 1 it follows that the three operations

∆̄ {xk} =̇ {αk}∆ {xk} , (14)

T̄k0 {fk} =̇Tk0

{
fk

αk

}
, (15)

s̄k0 {xk} =̇sk0 {xk} , (16)

if {αk} ∈ C(N), αk 6= 0 for k = 0, 1, 2, ... are also fulfilled
by the axioms of the non-classical operational calculus.

The operational calculus constructed in this manner, to-
gether with its properties is used in the paper at point 6 for
the analysis of the discrete system of the form (5), which after
the use of operation̄∆ and properties of operation∆ can be
written as follows

a2∆̄2xk + a1∆̄xk + a0xk = uk (17)

4. Non-classical Heaviside operator
and its properties

One of the methods to determine the response of the general-
ized dynamical systems is the application of the non-classical
Heaviside operator – [3,4,5]. To define non-classical Heaviside
operator is necessary to accept the notions of the result and the
operator.

DEFINITION 3. [4,5]. By semi-group of commutative en-
domorphisms of linear spaceX over fieldK is meant a fixed
set

∏
(X) of endomorphisms of spaceX, such that for any

arbitraryU1, U2, U3 ∈
∏

(X) the following conditions are ful-
filled

(U1U2)U3 = U1(U2, U3)
U1U2 = U2U1

(U1x = 0) ⇒ (x = 0) for x ∈ X.

DEFINITION 4. [4,5]. Fractions given below will be re-
ferred to as the results

ς=̇
f

U
, where f ∈ X,U ∈

∏
(X),

using the following definitions of equalities and operations

f

U
=̇

g

V
if and only if V f = Ug

f

U
+

g

V
=̇

V f + Ug

UV

τ
f

U
=̇

τf

U

V

(
f

U

)
=̇

V f

U

for f, g ∈ X andU, V ∈ ∏
(X), τ ∈ K.

REMARK . The elements of space X can be identified with
such elements as

f

I

from the results space, because the mapping

f 7→ f

I
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is isomorphism, whereI = id ∈ ∏
(X) is an identity opera-

tion. Therefore spaceX can be regarded as a linear subspace of
the results space and elements of space X can be treated as the
results. It should be pointed out, following the information of
[4,5] that the results space is richer in elements than the outlet
spaceX.

Let W be endomorphism of spaceX commutative with in-
jectionsU ∈ Π(X).

DEFINITION 5. [4,5]. By operatorµ = W
U of the results

space is meant an operation described by the formula

µ

(
f

V

)
=̇

Wf

UV
,

wheref ∈ X andU, V ∈ ∏
(X).

REMARK . From the definition of the operator it follows
that the sum of the operators, the product of the operator by a
number, and the composition of the operators is again an op-
erator. If the division is carried out by operatorsU1

U2
whose nu-

meratorsU1 re injections as multiplication by the inverse of
the operator, then we will also obtain an operator.

DEFINITION 6. [4,5]. The operatorpq with the generalized
integralTq

pq=̇
I

Tq

is known as the generalized Heaviside operator. From the def-
inition of the Heaviside operator it follows that

Tq =
I

pq
.

Operatorpq is defined correctly, due to the assumption made
at point 3, generalized integralTq is an injection. The theo-
rem given below expresses the relation between the general-
ized derivativeS and the Heaviside operator.

THEOREM 2. If x ∈ Ln, then

Snx = pn
q x− pn

q x0,q − pn−1
q x1,q − ...− pqxn−1,q,

wherexi,q = sqS
ix, i = 0, 1, ..., n− 1. The proof of the theo-

rem can be found in [4].

COROLLARY 2. Forn = 1 we have

Sx = pqx− pqx0,q, x ∈ L1.

Forn = 2 we have

S2x = p2
qx− p2

qx0,q − pqx1,q, x ∈ L2.

Forn = 3 we have

S3x = p3
qx− p3

qx0,q − p2
qx1,q − pqx2,q, x ∈ L3.

The relation given in Theorem 2, or its particular cases used
in Corollary 2 enable us at point 6 to determine the response of
the discrete system in an operational form.

5. Generalized exponential functions
In order to determine the generalized exponential functions
necessary to analyze the systems use will be made of an in-
dispensable definition and an auxiliary theorem.

If endomorphismR is a logarithm (see [4,5]), then the so-
lution of the abstract differential equation

Sx = Rx, x ∈ L1 (18)

with condition
sqx = c, c ∈ KerS (19)

exists or it does not, but if it exists, then there is only one solu-
tion (see [4,5]).

Let R be a logarithm and let a solution of Eq. (18) with
condition (19) exist. The solution will be denoted by

x=̇eRtqc.

FunctioneRtq : KerS → L1 given by formulac 7→ eRtqc
is called generalized exponential function (see [4,5]). The gen-
eralized exponential function can be presented in operational
form. This fact results from the theorem.

THEOREM 3. [4,5]. The generalized exponential function
can be expressed in terms of operatorII−TqR = pq

pq−R in the
following way (provided that the result c

I−TqR is an element of

spaceL0)

eRtqc =
c

I − TqR
=

pq

pq −R
c, c ∈ KerS.

Let us consider some examples of the generalized expo-
nential functions for selected models of operational calculus.

EXAMPLE 2. The generalized exponential function for the
model from Example 1 is defined by the formula

eatq {xk0} =
{

(1 + a)k−k0 xk0

}
.

Endomorphism R is multiplication by a real or complex num-
bera.
(For k0 = 0 elementa is arbitrary, for k0 > 1 element
a 6= −1.)

EXAMPLE 3. The generalized exponential function used in
the model of the operational calculus with derivative∆̄ from
Corollary 1 described on the basis of formulas (18), (19) has
the form

eatq {x0} =

{
x0

k−1∏

i=0

(
1 +

a

αi

)}
,

−1∏

i=0

(·)=̇1, (20)

where endomorphismR is multiplication by a real or complex
numbera.

On the basis of Theorem 3 this function can be expressed
by the use of the Heaviside operatorpq corresponding to inte-
gral T̄k0 , k0 = 0, defined by Corollary 1 by formula (15). The
above denotation is as follows

eatq {x0} =
pq

pq − aI
{x0} . (21)

The obtained relationships (20), (21) are significant on account
of the analysis of the discrete system (17).
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6. Application of the generalized Heaviside
operator to the solution of the problem

The determination of the response of the system (2) with
a2 = 2, a1 = 3, a0 = 1, {uk} = {1} and conditions (6) will
be carried out by non-classical methods of the operational cal-
culus. The above system and its conditions must be written in
the language used for the operational calculus. For this pur-
pose advantage will be taken of the operational calculus model
given by Corollary 1 with derivativē∆ defined by formula
(14), whereαk=̇k + 1. According to formula (17) it is pos-
sible to present it in the form

2∆̄2xk + 3∆̄xk + xk = uk, {uk} = {1} . (22)

Conditions (6) are satisfied by the ones formulated by the use
of the limit condition (16) fork0 = 0. They are as follows

s̄k0xk = x0 = a (23)

s̄k0∆̄xk = sk0 ((k + 1)∆xk) = sk0(k + 1)sk0∆xk

= sk0 (xk+1 − xk) = x1 − x0 = b− a.
(24)

REMARK . It is worth mentioning that the values obtained
from formulas (23) and (24) mean constant sequences. How it
was said before in point 1 instead of writing sequence{xk} we
will often write xk.

Making use of the equalities of Corollary 2 system (22)
with conditions (23) and (24) can be recorded in the following
operational form

2(p2
qxk − p2

qa− pq(b− a)) + 3(pqxk − pqa) + xk = 1, (25)

wherepq is the Heaviside operator corresponding to the inte-
gral defined by formula (15) forq = k0 = 0 andαk = k + 1.
(Herex0,q = a, x1,q = b − a.) On the basis of equation (25)
it follows that the response of our system can be expressed by
operator form

xk =
2p2

qa + 2pq(b− a) + 3pqa + 1
2p2

q + 3pq + I
,

that is, after some transformation we have

xk = a
p2

q

(pq + 1)(pq + 1
2 )

1 +
2b + a

2
pq

(pq + 1)(pq + 1
2 )

1

+
1
2

I

(pq + 1)(pq + 1
2 )

1.

(26)

REMARK . The expressionpq + d should be understood as
pq + dI.

Making use of the tables [5] the values appearing in for-
mula (26) can be written by means of some generalized expo-
nential functions. They will take the form

p2
q

(pq + 1)
(
pq + 1

2

) =
−etq + 1

2e−
1
2 tq

−1 + 1
2

,

pq

(pq + 1)
(
pq + 1

2

) =
e−tq − e−

1
2 tq

−1 + 1
2

,

I

(pq + 1)
(
pq + 1

2

) =
− 1

2e−tq + e−
1
2 tq

−1
(− 1

2

) (−1 + 1
2

) +
1

(−1)
(− 1

2

) .

After putting the last relations into formula (26) and some
transformations we obtain the formula for the response ex-
pressed in terms of generalized exponential functions. The
form of the response is as follows

{xk} = (a−2b+1)e−tq {1}+(2b−2)e−
1
2 tq {1}+{1} . (27)

According to formula (20) we have

e−tq {1} =

{
k−1∏

i=0

(
1− 1

i + 1

)}
= {dk} ,

e−
1
2 tq {1} =

{
k−1∏

i=0

(
1− 1

2 (i + 1)

)}
.

REMARK . Sequence{dk} denotes a sequence of the form
(1, 0, 0, 0, ...).

Inserting the last values to (27) and transforming them
yields

xk =





(a− 2b + 1) 1 + 2(b− 1)1 + 1 for k = 0

2(b− 1)
k−1∏
i=0

(
1− 1

2(i+1)

)
+ 1 for k = 1, 2, ...

.

Finally

xk =
{

a for k = 0
(b− 1) 3·5·...·(2k−1)

2k−1k!+1
for k = 1, 2, ...

(28)

is the response of system (2) with conditions (6), ifa2 = 2,
a1 = 3, a0 = 1, {uk} = {1}.

The graph of the discrete signalxk for a = 2, b = −1 is
shown in Fig. 1.

Fig. 1. The diagram of the discrete signalxk(a = 2, b = −1)

Using the same procedure it is possible to determine the
response of system (2) with conditions (6) wherea2 = −1,
a1 = 3, a0 = 4, {uk} = {1}. This system can be written in
the form

−∆̄2xk + 3∆̄xk + 4xk = 1

with conditions (23), (24). Taking advantage of the Heaviside
operatorpq the relation can be expressed by

−(p2
qxk − p2

qa− pq(b− a)) + 3(pqxk − pqa) + 4xk = 1,
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from which it follows that

{xk} =
−p2

qa− pq(b− a) + 3pqa + 1
−(pq + 1)(pq − 4)

{1}

= a
p2

q

(pq + 1)(pq − 4)
{1}+ (b− 4a)

pq

(pq + 1) (pq − 4)
{1}

− I

(pq + 1) (pq − 4)
{1} .

Furthermore from the tables we have

{xk} = a
−e−tq − 4e4tq

−1− 4
{1}+ (b− 4a)

e−tq − e4tq

−1− 4
{1}

−
(

4e−tq + e4tq

−1 · 4(−1− 4)
{1} − 1

4
{1}

)
=

(
a− 1

5
b− 1

5

)

· e−tq {1}+
(

1
5
b− 1

20

)
e4tq {1}+

1
4
{1} .

After making use of formula (20) the equality takes the form

xk =
(

a− 1
5
b− 1

5

)
dk+

(
1
5
b− 1

20

) k−1∏

i=0

(
1 +

4
i + 1

)
+

1
4
.

The graph of the discrete signalxk for a = 2, b = 1 is shown
in Fig. 2.

Fig. 2. The diagram of the discrete signalxk (a = 2, b = 1)

At this place it is worthwhile mentioning that in the case
of applying theZ-transform to the system, there occurred the
problem of determining the responsexk, since it was impossi-
ble to define the inverse transform. Here the determination of
the response turned out well.

Another system that caused problems was system (10) with
conditions (6). The application of the operational calculus to
this case also appeared very quickly to be useful to reach our
target because the system can be expressed by

∆̄2xk − 3∆̄xk + 2xk = 1

with conditions (23), (24). Thus, we obtain

{xk} = a
p2

q

(pq − 2)(pq − 1)
{1}

+ (b− 4a)
pq

(pq − 2) (pq − 1)
{1}

+
I

(pq − 2) (pq − 1)
{1} ,

that is

{xk} =
(

b− 2a +
1
2

)
e2tq {1}+(3a−b−1)etq {1}+1

2
{1} ,

and so

xk =
(

b− 2a +
1
2

) k−1∏

i=0

i + 3
i + 1

+ (3a− b− 1)
k−1∏

i=0

i + 2
i + 1

+
1
2
.

The graph of the discrete signalxk for a = 2, b = 1 is shown
in Fig. 3.

Fig. 3. The diagram of the discrete signalxk (a = 2, b = 1)

As can be seen the presented method with the use of the
Heaviside operator is effective, and soon leads us to the tar-
get without unnecessary differential equations whose solution
might cause problems. This approach can perfectly be applied
to each case when dealing with system (5), with anyαk 6= 0
for k = 0, 1, 2, .... Our analysis includes systems in which
αk = k+1 for the purpose of comparing the proposed method
with theZ-transform procedure. Using an arbitraryαk theZ-
transform procedure will not work. Moreover, the given condi-
tions may be of the form

xk0 = c, xk0+1 = d, k0 > 1.

It is worthy of mention that the application of the Heaviside
operator has also proved effective in the case of a control sys-
tem of third order in which the use of theZ-transform leads
to a differential equation of third order of variable coefficients.
This can be observed in the system

(k + 3)(k + 2)(k + 1)∆3xk + 6(k + 2)(k + 1)

·∆2xk − 2(k + 1)∆xk − 8xk = 1
(29)

with conditions

x0 = a, x1 = b, x2 = c.

The use of the derivativē∆ gives the following system

∆̄3xk + 3∆̄2xk − 6∆̄xk − 8xk = 1

with conditions (23), (24) provided with the requirement

s̄k0∆̄
2xk = a− 3b + 2c.

Having made use of the Heaviside operator the response takes
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the form

xk =





a
b
c

8
9b + c + 1

6

- 1
8 +

(
1
9b + 1

9c + 1
36

) (k+1)(k+2)
2

for k = 0
for k = 1
for k = 2
for k = 3
for k = 4, 5, 6, ...

.

7. Summary and conclusions

The use of the non-classical operational (calculus) methods
make it possible to determine the response of the discrete
systems also in situations where the application of theZ-
transform is limited or impossible.

In other cases the use of the generalized Heaviside oper-
ator to find the response is compatible with respect to theZ-
transform. An advantage of the Heaviside operator is the short
time it takes and ease of calculations. Moreover, the method
can be employed when the conditions in the given values do
not necessarily refer to the initial terms of the sequence - see
formula (4). The input signal{uk} = {1} used for the con-
siderations does not introduce any limitations due to the fact
that in the case of an arbitrary signal{uk} in a model with
derivative∆ it is only necessary to make use of a convolu-
tion [4] or to apply it directly. For example the response of
system (10) with conditions (6), where discrete input signal
{uk} = (0, 0, 1, 1, 1, ...), has the following form

xk =
(

b− 2a +
1
12

) k−1∏

i=0

i + 3
i + 1

+ (3a− b− 1
3
)

k−1∏

i=0

i + 2
i + 1

+
1
12

k−1∏

i=0

i− 1
i + 1

− 1
3

k−1∏

i=0

i

i + 1
+

1
2
.

By the application of the methods presented in the paper
it is possible to determine, in compliance with the principle
adopted in [5], the generalized transmittance of the system.

The research apparatus described in the paper can be uti-
lized in the stability study of systems concerned using for this
purpose the results give in [5]. As it follows from the results,
the asymptotical stability of the system is determined in this
case by generalized exponential functions associated with the
system. This indicates that if the generalized exponential func-
tions related to the system are asymptotically stable, then the
system is also asymptotically stable. Thus, the asymptotical
stability of our systems depends on the exponential functions
that have form (20). On the basis of this formula it is possible
to assert that: if ∣∣∣∣1 +

a

αi

∣∣∣∣ < 1 for i > i0, (30)

then the generalized exponential functions are bounded se-
quences.

The free system corresponding to:

– system (2) is asymptotically stable (whena2 = 2, a1 = 3,
a0 = 1) due to the fact thata = −1 or a = 1

2 ,
– system (2) is asymptotically unstable (whena2 = −1,

a1 = 3, a0 = 4) becausea = −1 or a = 4,
– system (10) is asymptotically unstable for the reason that

a = 1 or a = 2,
– system (29) is asymptotically unstable becausea = −1 or

a = −4 or a = 2.

In all the above casesαk = k + 1.
It is obvious that stability can be determined without defin-

ing the response of the system and, as it was possible to prove,
the method of its analysis is quite simple and depends in this
case only on the determination of valuesa occurring in formula
(21) or (20). For instance, system

4k+1∆2xk + (2 · 4k + 3 · 2k)∆xk + xk = 0

is stable, because it is equivalent to system (5)
(

αk = 2k, a2 = 1, a1 =
3
2
, a0 =

1
2

)

and the generalized exponential functions, as it follows from
condition (30), are bounded. In this case

a = −1 or a = −1
2
.
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