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Abstract. A suitable use of software packages for optimization problems can give the possibility to formulate design problems
of robotic mechanical systems by taking into account the several aspects and behaviours for optimum solutions both in design
and operation. However, an important issue that can be even critical to obtain practical solutions can be recognized in a proper
identification and formulation of criteria for optimability purposes and numerical convergence feasibility.

In this paper, we have reported experiences that have been developed at LARM in Cassino by referring to the above-
mentioned issues of determining a design procedure for manipulators both of serial and parallel architectures. The optimality
criteria are focused on the well-recognized main aspects of workspace, singularity, and stiffness. Computational aspects are
discussed to ensure numerical convergence to solutions that can be also of practical applications. In particular, optimality
criteria and computational aspects have been elaborated by taking into account the peculiarity and constraint of each other.
The general concepts and formulations are illustrated by referring to specific numerical examples with satisfactory results.
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1. Introduction

Robotized manipulation is more and more used in indus-
trial applications and even in non-industrial environments
manipulators are needed more and more to help human
beings and/or execute manipulative tasks. The duality
between serial and parallel manipulators is not anymore
understood as a competition between the two kinematic
architectures. The intrinsic characteristics of each archi-
tecture make each architecture as directed to some ma-
nipulative tasks more than an alternative to the other.
The complementarities of operation performance of serial
and parallel manipulators make them as a complete so-
lution for manipulative operations. The differences but
complementarities in their performance have given the
possibility in the past to treat them separately, mainly
for design purposes. Several analysis results and design
procedures have been proposed in a very rich literature
in the last two decades. Significant works on the top-
ics can be considered the pioneer papers [1–8] and more
recently the papers [9–11], just to cite few references in
a very rich literature. Only recently, it has been possi-
ble to consider simultaneously several design aspects in
design procedures for manipulators. Modern design pro-
cedures make use more and more of the formulation of
optimization problems that can be solved by using well-
established mathematical techniques in commercial soft-
ware packages.

At LARM in Cassino, since the beginning of 90’s a
research line has been dedicated to the development of
analysis formulation of manipulator performances, [12–
17], that could be used in proper optimization problems

by taking advantage of the peculiarity of the solving tech-
niques in commercial softwares, [18–23]. Recent results
are reported in [24] as regarding serial manipulators, and
in [25] referring to parallel manipulators, just to cite il-
lustrative experiences. However, since the manipulative
characteristics are fundamental for the operation and de-
sign of both manipulator architectures, the authors have
attempted analysis procedures that could be used with
few adjustments and no great computational efforts in
the performance analysis of both serial and parallel ar-
chitectures. The several experiences have been summa-
rized in the recent textbook [26] in which the analysis
of workspace, singularity, and stiffness has been attached
in a unified approach. Following this idea, in this paper
we have attempted to treat the design problem of serial
and parallel manipulators in a unified formulation, since
the optimality design criteria can be differentiated only
in characterization of the results and not so much in the
numerical algorithms. Therefore, in this paper basic char-
acteristics for manipulation purposes, such as workspace,
singularity, and stiffness, are overviewed with numerical
evaluation procedures that are useful in a design optimiza-
tion problem for both serial and parallel manipulators.
The feasibility of the approach and proposed formulation
has been tested and illustrative examples are reported,
also with the aim to clarify the computational efforts.

1.1. The problem and its formulation. Manipula-
tors are said useful to substitute/help human beings in
manipulative operations and therefore their basic charac-
teristics are usually referred to human manipulation per-
formance aspects.
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A well-trained person is usually characterized for ma-
nipulation purpose mainly in terms of positioning skill,
arm mobility, arm power, movement velocity, and fa-
tigue limits. Similarly, robotic manipulators are designed
and selected for manipulative tasks by looking mainly
to workspace volume, payload capacity, velocity perfor-
mances, and stiffness. Therefore, it is quite reasonable
to consider those aspects as fundamental criteria for ma-
nipulator design. But generally since they can give con-
tradictory results in design algorithms, a formulation as
multi-objective optimization problem can be convenient
in order to consider them simultaneously. Thus, the op-
timum design of manipulators can be formulated as

minF(X) = min [f1(X), f2(X), . . . fN (X)]T (1)

subjected to

G(X) < 0; (2)
H(X) = 0, (3)

where T is the transpose operator; X is the vector of de-
sign variables; F(X) is the vector of objective functions
that express the optimality criteria, G(X) is the vector
of constraint functions that describes limiting conditions,
and H(X) is the vector of constraint functions that de-
scribes the design prescriptions. In particular, optimality
criteria for manipulator design can be identified in perfor-
mance evaluations regarding with positioning and orien-
tating capability, velocity response, and static behaviour.
Positioning and orientation capability can be evaluated
by computing position and orientation workspaces that
give the reachable regions by the manipulator extrem-
ity as function of the mobility range of the manipulator
joints. Position workspace refers to reachable points by
a reference point on manipulator extremity, and orienta-
tion workspace describes the angles that can be swept by
reference axes on manipulator extremity.

Thus, an objective function f1 can be formulated as
regarding with a numerical evaluation fPW of the position
workspace as

f1 = fPW . (4)

Similarly, a numerical evaluation fOW of the orientation
workspace can be used as objective function as

f2 = fPW . (5)

Velocity response can be evaluated by looking at the ve-
locity mapping that can be described by the Jacobian of
the manipulator. The Jacobian is also useful to identify
singular configurations (singularities) of a manipulator at
which degrees of freedom are lost or gained producing un-
desirable motion uncertainties or self-motions that should
be avoided in a controlled movement. Thus, Jacobian
evaluation fJ can be used as objective function as

f3 = fJ . (6)

Static behaviour can be evaluated by computing the stiff-
ness characteristics that are responsible also for the accu-
racy of the manipulative operation. Therefore, compliant

response can be conveniently used as optimality design
criterion, when similarly to the workspace capability the
compliance of a manipulator is evaluated through the po-
sition and orientation counterparts. Thus, an evaluation
fST of linear compliant displacements can be used as ob-
jective function as

f4 = fST , (7)

as well as an evaluation fSO of the angular compliant dis-
placements as

f5 = fSO. (8)

Thus, the multi-objective function F is formulated with
computer-oriented algorithms when its components fi

(i = 1, . . . , 5) are computed numerically through suit-
able analysis procedures. It is worth to note that the
above-mentioned split into translational and orientational
aspects can be adopted also for Jacobian analysis and
however it has been thought mainly for simplifying the
computational efforts and for interpretation aims, with-
out neglecting the coupling effects due to spatial design
and operation of manipulators.

Similarly, the constraint functions G and H can be
formulated by using suitable evaluation of design and op-
eration constraints as well as those additional constraints
that are needed for computational issues. Thus, the
problem of achieving optimal results from the formulated
multi-objective optimization problem consists mainly in
two aspects, namely to choose a proper numerical solv-
ing technique and to formulate the optimality criteria
with computational efficiency. Indeed, the solving tech-
nique can be selected among the many available, even in
commercial software packages, by looking at a proper fit
and/or possible adjustments to the formulated problem
in terms of number of unknowns, non-linearity type, and
involved computations for the optimality criteria and con-
straints. On the other hand, the formulation and compu-
tations for the optimality criteria and design constraints
can be conceived and performed by looking also at the
peculiarity of the numerical solving technique.

Those two aspects can be very helpful in achieving an
optimal design procedure that can give solutions with no
great computational efforts and with possibility of engi-
neering interpretation and guide. Since the formulated
design problem is intrinsically high no-linear with objec-
tive functions that can be competitive the solution will be
obtained when the numerical evaluation of the tentative
solutions due to the iterative process converges to a solu-
tion that can be considered optimal within the explored
range Thus, one cannot ensure the character of global
optimum of the solution that has been obtained with a
numerical search. A solution can be always considered
as a local optimum, and by performing several optimiza-
tion calculations as function of initial guesses it is only
possible to characterize this local optimum within the in-
spected range of the design parameters. This last remark
makes clear once more the influence of suitable formula-
tion with computational efficiency for the involved criteria
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and constraints in order to have a design procedure, which
is significant from engineering viewpoint and numerically
efficient.

2. Performance evaluation for optimality
criteria

Once the numerical technique is chosen or is advised for
solving the proposed multi-objective optimization prob-
lem, the main efforts can be addressed to the formula-
tion of common algorithms for numerical evaluation of
optimality criteria and design procedure constraints. In
the following, main aspects are overviewed by emphasiz-
ing the common numerical evaluations both for serial and
parallel manipulators in terms of workspace, singularity,
and stiffness.

2.1. Workspace evaluation. The workspace is one of
the most important Kinematic properties of manipula-
tors, even by practical viewpoint because of its impact on
manipulator design and location in a workcell. A general
numerical evaluation of the workspace can be deduced by
formulating a suitable binary representation of a cross-
section. A cross-section can be obtained with a suitable
scan of the computed reachable positions and orienta-
tions, once the direct kinematic problem has been solved
to give the positions and orientations as functions of the
kinematic input joint variables. A binary matrix Pij can
be defined in the cross-section plane for a cross-section of
the workspace as follows: if the (i, j) grid pixel includes
a reachable point, then Pij = 1; otherwise Pij = 0, as
shown in Fig. 1.

For example, one can consider a cross-section at a
given value of Z-Coordinate, then a point in the grid is
indicated as Pij , with i along X-axis and j along the Y -

axis, namely,

i =
[
x + ∆x

x

]
, j =

[
y + ∆y

y

]
(9)

where i and j are computed as integer numbers. There-
fore,the binary mapping for a workspace cross-section can
be given as

Pij =
{

0 if Pij /∈ W (H)
1 if Pij ∈ W (H) (10)

where W (H) indicates workspace region; ∈ stands for ‘be-
longing to’ and /∈ is for ‘not belonging to’. In addition,
the proposed binary representation is useful for a numer-
ical evaluation of the position workspace by computing
the cross-sections areas Az as

Az =
imax∑

i=1

jmax∑

j=1

(Pij ∆x ∆y) (11)

and finally, the workspace volume V can be computed
with respect to the number of slices nz along Z-axis,
Fig. 1, as

V =
∑
nz

Az ∆z (12)

Similarly, a numerical evaluation of orientation workspace
can be carried out by using the formulation of Eqs (9)
to (12) in order to compute the corresponding orienta-
tion performance measures cross-sections areas Aϕ, and
orientation workspace volume Vϕ, when a 3D represen-
tation of the orientation capability is obtained by using
three angular coordinates as Cartesian coordinates. One
can use Eqs (9) to (12) in order to eval uate any cross-
section by properly adapting the formulation to the scan-
ning cross-section plane and intervals. Therefore, the op-
timum design problem with objective functions f1(X) and
f2(X) can be formulated as finding the optimal design
parameters values to obtain the position and orientation

Fig. 1. A general scheme for binary representation and evaluation of manipulator workspace
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workspace volumes that are as close as possible to pre-
scribed ones. This can be formulated in suitable form
as

f1(X) =
∣∣∣∣1−

Vpos

V ′
pos

∣∣∣∣ (13)

f2(X) =
∣∣∣∣1−

Vor

V ′
or

∣∣∣∣ (14)

where | . | is the absolute value. The workspace optimiza-
tion problem can be also subject to design constraints
such as

|xmax − xmax| ≤ 0; |ymax − ymax| ≤ 0; |zmax − zmax| ≤ 0,

(15)
|ϕmax − ϕmax| ≤ 0; |Ψmax −Ψmax| ≤ 0; |θmax − θmax| ≤ 0,

(16)

where the left-hand values correspond to the computed
volume V and prime values describe the prescribed par-
allelepiped volume V ′ by using the extreme reaches.

3. Singularity analysis
Design requirements and operation feasibility can also be
focused conveniently on a free singularity condition. In
fact, it is desirable to ensure a given workspace volume
within which the manipulator extremity can be movable,
controllable, and far enough from singularities.

The instantaneous relationship between the velocity
in the Cartesian Space and active joint velocity can be
expressed as

Aθ = Bt (17)

where A and B are two Jacobian matrices of a manipula-
tor; θ̇ is the vector of joint rates, and t is the twist array
containing the linear velocity vector ν and the angular
velocity vector ω).

Usually condition of singular configurations can be
represented by surfaces in the Configuration Space and
they can be obtained by vanishing the determinant of the
two Jacobian matrices A and B. In particular, matrix A
gives the inverse kinematics singularities; and B gives the
direct kinematics singularities. Direct kinematics singu-
larities are inside the workspace and in such configurations
a manipulator loses its rigidity, becoming locally movable,
even if the actuated joints are locked.

The concept of singularity has been extensively stud-
ied and several classification methods have been defined.
Manipulator singularities can be classified into three main
groups. The first type of singularity occurs when a ma-
nipulator reaches internal or external boundaries of its
workspace and the output link loses one or more d.o.f.s.
The second type of singularity is related to those con-
figurations in which the output link is locally movable
even if all the actuated joints are locked. This is called
‘self-motion’. The third type is related to linkage param-
eters and occurs when both the first and second types
of singularities are involved. Singularities can also be

differentiated as configuration singularities, architecture
singularities, and formulation singularities. The first type
of singularity is related to particular configurations of the
manipulator. Architecture singularities are caused by cer-
tain architectures; they do not depend on the specific con-
figuration of the manipulator, and they are inherent to
the kinematic design of a manipulator. Formulation sin-
gularities are due to the adopted model and formulation
for numerical analysis and they can be avoided simply by
changing formulation method.

In summary, manipulator singularities arise whenever
A, B, or both, become singular. Thus, a distinction can
be made among three types of singularities, by consider-
ing Eq. (17), namely:
– the first type of singularity occurs when A becomes sin-
gular but B is invertible, being

detA = 0 and detB = 0 (18)

– the second type of singularity occurs only in closed kine-
matic chains and arises when B becomes singular but A
is invertible, i.e.

detA 6= 0 and det B 6= 0 (19)

– the third type of singularity occurs when A and B are
simultaneously singular, while none of the rows of B van-
ish. Under a singularity of this type, configurations arise
for which the movable plate can undergo finite motions
even if the actuators are locked or, equivalently, it cannot
resist forces or moments into one or more directions over
a finite portion of the workspace, even if all actuators are
locked. A finite motion can be very small but even very
large to be considered sometimes as an extra d.o.f. for
specific manipulator configurations.

In general, in parallel manipulators each leg is con-
nected to the moving platform through articulation points
Bi by means of spherical joints. The determinants of A
and B are a function of the shape and size of the moving
platform, magnitude, and direction of the vectors di of
each leg, and unit vectors ei of vectors bi from the cen-
ter point of the moving platform to the connecting joints.
This can be formulated as

B =




d1 (Rb1)× d1

· · · · · ·
d6 (Rb6)× d6


 (20)

A =




d1 × Rrpe1 0
· · · · · ·
0 d6 × Rrpe6


 (21)

in which R is the rotation matrix of the moving platform
with respect to the base frame. The above-mentioned
expressions can be representative also of the Jacobian of
serial manipulators when the vector di is considered to
be the i-th link vector and the vector Rrpei = Rbi is the
(1 + 1)-th link vector.

Because of the above-mentioned expressions the Jaco-
bian matrix is pose dependent and non-isotropic. Con-
sequently, performances such as rigidity, velocities, and
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forces, which can be expressed as functions of the Jaco-
bian are pose-dependent and therefore it is important to
consider the Jacobian in a rational design procedure, also
because of those influences. Indeed, one can propose an
objective function f3 that can be deduced by analyzing
the analytical expression of the determinants of matrices
A and B in the form

f3(X) = −min(det A)min(det B)
|detA0| |detB0| (22)

that will take into account all the situations in a singu-
larity analysis, when the initial guess values A0 and B0

are considered. It is worth noting that the determinants
of A0 and B0 must be chosen not equal to zero.

3.1. Stiffness evaluation. Stiffness and accuracy of a
robotic architecture are strongly related to each other
since positioning and orientating errors are due to com-
pliant displacements and construction and assembling er-
rors. The last errors can be evaluated by a kinematic
analysis (calibration) by considering uncertainties in the
kinematic parameters due to tolerances of construction
and assembling of the robotic manipulator chain.

The stiffness properties of a manipulator can be de-
fined through a 6 × 6 matrix that is called 4 ‘Cartesian
stiffness matrix K’. This matrix gives the relation be-
tween the vector of the compliant displacements ∆S =
(Sx, Sy, Sz, Sϕ,Sψ, Sθ) occurring at the movable plate
when a static wrench W = (Fx,Fy, Fz, Tx, Ty, Tz) acts
upon it, and W itself in the form

W = K ∆S (23)

The stiffness matrix can be numerically computed by
defining a suitable model of the manipulator, which takes
into account the lumped stiffness parameters of links and
motors. Each spring coefficient ki refers to the sum of the
lumped stiffness parameters of the motor and leg struc-
ture along the axial direction of the i -leg link. The coeffi-
cient KTi is the torsion stiffness parameter of the joint for
each link taking into account of the angular compliance
of joints and actuators. It is well known that the stiffness
matrix is configuration dependent. Therefore, it must be
computed as a function of input parameters, which are the
strokes of linear actuators or angles of revolute actuators.

A 6× 6 stiffness matrix K can be derived through the
composition of suitable matrices. The first matrix CF

gives all the wrenches WL, acting on manipulator links
when a wrench W acts on the manipulator extremity ac-
cording to the expression

W = CF WL (24)

with the matrix CF representing the force transmission
capability of the manipulator mechanism.
The second matrix Kp gives the possibility to compute
the vector ∆v of all the deformations of the links when
each wrench WLi on a i -th link given by W, acts on the
legs according to

WL = Kp ∆v (25)

with the matrix Kp grouping the spring coefficients of the
deformable components of a manipulator structure.
The third matrix CK gives the vector ∆S of compliant
displacements of the manipulator extremity due to the
displacements of the manipulator links, as expressed in
the form

∆v = CK ∆S (26)

Therefore, the stiffness matrix K can be computed as

K = CFKpCK (27)

The stiffness matrix K can also be used to compute ac-
curacy performances. In fact, the vector of compliance
displacements ∆S can be computed by using Eq. (23)
once the matrix K is determined when a static wrench
acting on the movable plate is given.
From the above-mentioned considerations two objective
functions that take into account stiffness performances
can be defined as

f4(X) =
∣∣∣∣1−

∆Sd

∆Sg

∣∣∣∣ (28)

f5(X) =
∣∣∣∣1−

∆Sd

∆Sd

∣∣∣∣ (29)

where ∆Sd and ∆Sg are compliant displacements along
X, Y, and Z -axes, ∆Rd and ∆Rg are compliant rota-
tions about ϕ, θ and ψ, d and g stand for design and
given values, respectively. Criterion f4 and f5 of Eqs.
(28) and (29) can be considered separately or in a single
objective function component, according to the specific
requirements. But this formulation needs

det K 6= 0 (30)

that can be used as additional constraint.

4. Numerical examples
The practical feasibility of the proposed optimum design
procedure has been experienced at LARM with several
design tests that refer also to prototypes of manipulator
architectures for robotic systems [27]. In the following,
two specific examples are discussed by illustrating nu-
merical results that clarify the practical feasibility of the
design procedure as applied to the cases of a 6R PUMA-
like robot and a CaPaMan (Cassino Parallel Manipulator)
Kinematic design, when numerical analyses are differen-
tiated but the numerical evaluations are computed with
same formulations.

There is a number of alternative methods to solve nu-
merically a multi-objective optimization problem as re-
ported in [28]. In particular, in the following examples
the proposed multi-objective optimization design problem
has been solved by considering the min-max technique of
the Matlab Optimization Toolbox [29] that makes use of
a scalar function of the vector function F(X) to minimize
the worst case values among the objective function com-
ponents. Using Sequential Quadratic Programming that
is successfully used for solving optimization problems with
non-linear objective functions and constraints and several
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variables can search the minimum value. This numeri-
cal procedure works in such a way that at each step k
a solution is found along a search direction δ with vari-
able update ϕ. The iteration continues until the vector
of variables converges. The numerical procedure has been
developed so that the formulation for the manipulator de-
sign has been easily included within the solving procedure
for the optimization problem by using the facilities of the
Optimization Toolbox of Matlab [29], which permits an
easy arrangement for an optimum design with analytical
expressions. The herein used numerical procedure for the
solution of a multi-objective optimization design problem
is outlined in the flowchart of Fig. 2.

Fig. 2. A flowchart for optimum design procedure both for
serial and parallel manipulators

4.1. A 6R serial manipulator A 6 dofs PUMA-like
manipulator has been considered to test the engineer-
ing feasibility of the above-mentioned formulation for
optimum design of manipulators as specifically applied
to serial architectures. Simplified stiffness models for a
PUMA-like manipulator are shown in Fig. 3. In the model
of Fig. 3a, the stiffness properties of links and motors have
been considered as lumped parameters and modeled as
linear springs and torsion springs respectively. A further
simplification can be obtained by considering the links as
rigid. In this case, the stiffness model consists of the six
lumped stiffness parameters of the motors K T1 to K T6

as shown in Fig. 3b. Moreover, if the only contributions
to the overall compliance are given by the motor compli-
ances, the Cartesian stiffness matrix K can be computed

through Eq. (23) with

CF = J−t; CK = J−l (31)

where J is the Jacobian matrix of the PUMA-like robot;
the matrix KP in Eq. (23) can be computed as a diagonal
matrix of the lumped stiffness parameters of the motors
of PUMA-like robot. The stiffness matrix of the PUMA-
like robot that can be computed through Eqs. (27) and
(31) as function of the input angles αi (with i = 1, . . . , 6).
The expressions of the input angles αi can be computed as
function the position and orientation of the end-effector
(x, y, z, φ, ψ, θ) from the well-known inverse Kinematics
of PUMA-like robot.

Fig. 3. Stiffness models for the PUMA-like robots: a) a model
with linear and torsion springs; b) a model with only torsion

springs

A singularity condition can be stated as in Eq. (22)
where A and B can be obtained from the Jacobian matrix
J. Position and orientation workspace volumes can be con-
veniently evaluated by using the well-known closed-form
Kinematics of the Puma manipulator.

Results of the proposed design procedure as applied to
the PUMA-like architecture are reported in Figs. 4–6 and
Tables 1 and 2. In particular, Fig. 4 shows the evolution of
the objective functions versus number of iterations. The
sum F of all the objective functions converges to a value
that is about 10% of the initial value after 100 iterations
approximately. Figure 5 shows the evolution of the de-
sign parameters versus the number of iterations. Figure
6 shows the evolution of the design constraint versus the
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Table 1
Design parameters of the optimum designed PUMA-like manipulator

a2

(mm)
a3

(mm)
d3

(mm)
d4

(mm)
∆a1

(deg)
∆a2

(deg)
∆a3

(deg)
∆a4

(deg)
∆a5

(deg)
∆a6

(deg)

Initial guess 431.8 20.3 125.4 431.8 180 180 180 90 90 90
Optimal value 1000.0 100.0 269.6 1000.0 180 180 180 90 90 90

Table 2
Design characteristics of optimum solution for PUMA-like manipulator of Table 1

∆x
(mm)

∆y

(mm)
∆z

(mm)
∆φ

(mm)
∆ψ

(mm)
∆θ

(mm)
Sx

(mm)
Sy

(mm)
Sz

(mm)
Sφ

(mm)
Sψ

(mm)
Sθ

(mm)

Initial guess 529.2 472.4 625.0 180 180 180 1.70 1.30 1.40 0.01 0.08 0.01
Optimal value 1305 1200 1485 180 180 180 1.50 1.90 1.60 0.01 0.11 0.01

Fig. 4. Evolution of the function F and its components ver-
sus number of iterations for the example of PUMA-like robot
optimal design: position workspace volume as f1; orientation
workspace volume as f2; singularity condition as f3; compliant

displacements and rotations as f4 and f5

Fig. 5. Evolution of design constraints versus number of iter-
ations for the example of PUMA-like robot optimal design

number of iterations. Table 1 shows the initial guess and
the optimal values of design parameters for the PUMA-
like manipulator. Table 2 shows the main characteristics
of the PUMA-like manipulator for the initial guess and
the optimal values of design parameters that are reported

Fig. 6. Evolution of design parameters versus number of iter-
ations for the example of PUMA-like robot optimal design

in Table 1. In Table 1 the initial guess values have been
chosen equal to a real robot PUMA 562. The optimal val-
ues for the link lengths a2, a3, d3, d4 are considerably dif-
ferent from the initial guess. In particular, they are bigger
since their bigger sizes increase the workspace. The ranges
of the input angles ∆α1 to ∆α6 have remained unchanged
because their initial values are close to the optimal ones.
Comparing the initial and optimal values in Table 2 one
can note that the position workspace is at least doubled
while the orientation workspace has remained unchanged.
The stiffness performance is still within the desired value
even if the link lengths are more than two times bigger.

4.2. A 3 d.o.f. parallel manipulator. The CaPaMan
manipulator has been considered to test the engineering
feasibility of the above-mentioned formulation for opti-
mum design of manipulators as specifically applied to par-
allel architectures. CaPaMan architecture has been con-
ceived at LARM in Cassino, where a prototype has been
built for experimental activity. Indeed, by using the exis-
tent prototype, simulations have been carried out also to
validate the proposed optimum design by considering sev-
eral guess solutions and imposing workspace and stiffness
characteristics of the built prototype.
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Fig. 7. CaPaMan (Cassino Parallel Manipulator) design: a) Kinematic diagram; b) a built prototype at LARM

A schematic representation of the CaPaMan manipu-
lator is shown in Fig. 7a), and the prototype is shown in
Fig. 7b).

Position and orientation workspace volumes can be
conveniently evaluated by using the closed-form Kinemat-
ics of the CaPaMan manipulator.Singularity analysis for
CaPaMan manipulator has been reported in [30] and ma-
trices A and B have been formulated in a form that is
useful also for the proposed optimality criterion.

Stiffness analysis of CaPaMan has been reported in
[31]. By modeling each leg of CaPaMan as in Fig. 8, the
stiffness matrix of CaPaMan can be derived as

KCaPaMan = MFN KP C−1
P A−1

d (32)

where MFN is a 6 × 6 transmission matrix for the static
wrench applied on H to points H1H2 and H3 of each
leg; Kp is a 6 × 6 matrix with the lumped stiffness pa-
rameters of the 3 legs; Ad is a 6 × 6 matrix obtained

by using the Direct Kinematics of the CaPaMan; Cp

is a 6 × 6 matrix giving the displacements of the links
of each leg as a function of the displacements of points
H1, H2 and H3. The lumped stiffness parameters has
been assumed as kbk = kdk = 2.625 × 106 N/m and
kTk = 58.4× 103 Nm/rad, [31].

In the numerical example, for evaluation and design
purposes we have assumed rp = rf , ak = ck, bk = dk. Re-
sults of the proposed design procedure as applied to the
CAPAMAN architecture are reported in Figs. 9–11 and
Table 3 and 4. In Table 3 the optimal values are different
from the initial ones except than sk and ck, which have
remained unchanged since their initial values are close to
the optimal ones. Comparing the initial and optimal val-
ues in Table 4 one can note that the position and orienta-
tion workspaces increased and are close to the prescribed
ones. The stiffness performance is still within the desired
value.

Table 3
Design parameters for optimal CaPaMan design of Figs. 7 to 11

ak

(mm)
bk

(mm)
hk

(mm)
rp

(mm)
αk

(deg)
Sk

(mm)

Initial guess 200.0 140.0 130 109.5 60;130 50.0
Optimal value 200.0 161.0 109.3 98.6 35;145 50.0

Table 4
Design characteristics of optimum solution for optimal CaPaMan design of Figs. 7 to 11 and Table 3

VPW

(mm3)
VOW

(deg3)
Sx

(mm)
Sy

(mm)
Sz

(mm)
Sφ

(deg)
Sψ
(deg)

Sθ
(deg)

Initial guess 3.8× 106 7.2× 106 0.0044 0.37 0.0030 0.2× 10−3 0.2× 10−3 0.0039
Optimal value 3.9× 106 7.9× 106 0.0075 0.37 0.0033 0.3× 10−3 0.3× 10−3 0.0098
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Fig. 8. A scheme for stiffness evaluation of a CaPaMan leg

Fig. 9. Evolution of the function F and its components ver-
sus number of iterations for the example of CaPaMan optimal

design

Fig. 10. Evolution of design constraints versus number of it-
erations for the example of CaPaMan optimal design

Fig. 11. Evolution of design parameters versus number of it-
erations for the example of CaPaMan optimal design

5. Conclusion

In this paper a multi-objective optimum design procedure
for manipulators is outlined by using optimality criteria
and numerical aspects. A multi-objective optimization
problem is formulated by referring to basic performance of
both parallel and serial manipulators. Additional objec-
tive functions can be used to extend the proposed design
procedure to more general but specific design problems.
The feasibility of such a complex design formulation for
robotic manipulators has been illustrated by referring to
experiences developed at LARM in Cassino, when opti-
mality criteria and numerical aspects are formulated by
taking into account the peculiarity and constraints of both
serial and parallel manipulator architectures.
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