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Abstract. Compared with the robots, humans can learn to perform various contact tasks in unstructured environments by modulating arm 
impedance characteristics. In this article, we consider endowing this compliant ability to the industrial robots to effectively learn to perform 
repetitive force-sensitive tasks. Current learning impedance control methods usually suffer from inefficiency. This paper establishes an efficient 
variable impedance control method. To improve the learning efficiency, we employ the probabilistic Gaussian process model as the transition 
dynamics of the system for internal simulation, permitting long-term inference and planning in a Bayesian manner. Then, the optimal impedance 
regulation strategy is searched using a model-based reinforcement learning algorithm. The effectiveness and efficiency of the proposed method 
are verified through force control tasks using a 6-DoFs Reinovo industrial manipulator.
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robot motions often requires a large amount of engineering 
knowledge about the robot and the task.

One promising way is to learn the control strategy auto-
matically using reinforcement learning (RL). One of the pri-
mary goals of RL is to produce fully autonomous agents that 
interact with environments to learn optimal behaviors without 
human’s participation [10, 11]. The RL problem is modeled 
as a finite horizon Markov Decision Process. The main idea 
of RL algorithm is that, given only a reward function, the 
learning algorithm finds suitable strategies that yield high 
reward through trial and error. The agent learns the desired 
task by gathering experience directly from its environment. 
The RL algorithms could be classified into two categories: 
model-free and model-based, and a review on RL for robotics 
is summarized in [12]. The model-free RL can be easier ex-
tended to high-dimensional spaces, and it is used more fre-
quently in practice. The model-based RL is more data-efficient 
than the model-free RL, but more computationally intensive. 
Nagabandi [13] proposed to train multi-layer neural network 
dynamics models for model-based RL achieving satisfactory 
learning efficiency, and it realized learning of high-dimen-
sional locomotion tasks. PILCO [14, 15] is a promising mod-
el-based RL algorithm for physical platforms given its natural 
handling of continuous states and controls. Its strategy output 
is directly used to control the plant and it achieves excellent 
sample efficiency relative to existing methods by learning 
probabilistic Gaussian process model. The first revolution in 
RL was the development of an algorithm that could learn to 
play a variety of Atari 2600 video games at a superhuman 
lever [16]. Especially, AlphaGo Zero [17] achieved super-
human performance in the game of Go based solely on RL, 
achieving the state-of-the-art performance. In real world, deep 
RL has been used for robots to learn to perform physics exper-
iments [18] and manipulation tasks [19]. Most applications of 
RL in robotics focus on trajectories learning, and few involve 
the learning of contact force control.

1.	 Introduction

In recent decades, industrial robots are increasingly expected to 
complete operational tasks that involve physical contacts, such 
as grinding, deburring, robot-assisted operation and automatic 
assembly of explosive components. These tasks are usually 
sensitive to the contact force, and may be executed repeatedly 
in different environments. However, too many physical interac-
tions with the environment are often infeasible and could lead to 
danger. It is a challenge for industrial robots to learn to perform 
tasks efficiently while accurately controlling the contact force 
in unstructured environments.

Impedance control [1] is a prominent interaction control 
approach. The core of the impedance control is to regulate 
dynamic response of the end-effector to contact force by estab-
lishing a suitable virtual mass-spring-damper system. In clas-
sical impedance control, the impedance parameters are fixed 
throughout the task. For increased flexibility, the impedance 
can be programmed to vary during the task [2‒4]. Recently, 
many researchers have explored the benefits of varying the 
impedance during the tasks [5, 6]. Lee [7] designed a vari-
able stiffness control scheme, and it achieves force tracking 
by adjusting the target stiffness without estimating the en-
vironment stiffness. The joint torque and the joint stiffness 
are independently and optimally modulated using the optimal 
variable stiffness control in [8]. Variable impedance control 
requires more complex task models than fixed impedance con-
trolled systems, as the impedance profile must be represented. 
Deriving an effective variable impedance strategy usually in-
volves advanced knowledge about designing and parameter-
izing such controllers [9]. Besides, manual programming of 
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Data-driven RL approach appears as a promising route to 
learn to regulate the impedance properties of the robot and to 
control the contact force automatically. Several frameworks 
have already emerged that are capable of learning compliant 
behavior in this fashion [20‒24] and have demonstrated the 
usefulness of learning variable impedance control. Kronander 
[22] and Li [25] addressed the problem of compliance adjusting 
in robot learning from demonstrations (RLfD), in which a robot 
could learn to adapt the stiffness based on human-robot inter-
action. Du [26] proposed a variable admittance control method 
based on fuzzy RL for physical human-robot interaction using 
a minimally invasive surgery manipulator. It improves the po-
sitioning accuracy and reduces the required energy by dynami-
cally regulating the virtual damping in the admittance controller. 
Buchli proposed a novel model-free RL algorithm, PI2 [27‒29], 
which realized variable impedance control by regulating the 
motion trajectory and impedance gains simultaneously using 
dynamic movement primitives. Considering the coupling be-
tween DoFs, Winter [30] developed a C-PI2 algorithm based 
on PI2, whose learning speed was much higher than that of 
previous algorithms. Only 120 rollouts are required to get the 
satisfactory strategy.

The existing learning variable impedance control methods 
are usually based on model-free RL algorithm, and hundreds 
or thousands of interactions are required to achieve good per-
formance. However, their high sample complexity has limited 
these methods to learn the force-sensitive tasks, because too 
many interactions maybe cause damage or danger. Improving 
the efficiency of learning variable impedance control is critical 
for industrial robots to learn to perform repetitive force-sensi-
tive tasks.

In this paper, we propose an efficient learning variable 
impedance control method to make the industrial robots ef-
fectively learn to control the contact force accurately in the 
unstructured environment. This method attempts to construct 
a nonparametric Gaussian process (GP) model as the transition 
dynamics of the robot-environment. The probabilistic model is 
then used to predict and pass the uncertainties of the states in 
a Bayesian manner. Here, the model-based RL algorithm is used 
to search the optimal control strategy, taking full advantage of 
its data-efficiency [12, 13]. This method regulates the target 
stiffness and damping directly, instead of the motion trajectory. 
The performance of the proposed method is verified through 
experiments on a 6-DoFs industrial manipulator. This method 
outperforms other learning variable impedance control methods 
by at least one order of magnitude in terms of learning speed.

2.	 Position-based variable impedance control 
for industrial robots

Impedance control [1] has been widely applied in robotic inter-
action tasks for its good adaptability and robustness. It provides 
a unified framework for both constrained and unconstrained 
motion. The contact force can be controlled indirectly by estab-
lishing a suitable virtual mass-spring-damper model. Generally, 
the impedance control methods can be classified as two types. 

In force-based impedance control, the joint torques, which are 
usually calculated using the inverse dynamics, are controlled 
according to the end-effector displacement. In position-based 
impedance control, the compliant positions of the robot, which 
are usually calculated using the kinematics, are controlled ac-
cording to the measured contact force. However, most com-
mercial industrial robots emphasize the accuracy of position 
trajectory following, and only provide a position control mode 
for users. It implies that the compliant motion control have to be 
realized using the robot kinematics and the joint position con-
troller of the robot. Therefore, force-based impedance control 
was impossible on these robots. Alternatively, position-based 
impedance control is recognized as a practical approach to 
achieve compliant interaction of position controlled robots.

The specification of impedance parameter is highly de-
pendent on tasks. It is easy to specify the appropriate fixed 
impedance parameters for tasks executed in a structured envi-
ronment with known characteristics, while it is extremely dif-
ficult to complete complex force control tasks because of the 
environmental conditions, including nonlinear and time-varying 
factors. If the impedance parameters could be regulated dynam-
ically according to the task and the environment, the control 
performance will be significantly improved.

In the following, we consider the general industrial robotic 
manipulators that only provide a position control mode for 
users. The force can be controlled indirectly using the posi-
tion-based impedance control scheme. This control structure in-
cludes an inner position control loop and an outer indirect force 
control loop. In order to achieve the desired dynamic properties 
of the end-effector, a second-order impedance model is used:

	Md(X ̈  ¡ X ̈ d) + Bd(X ̇  ¡ X ̇ d) + Kd(X ¡ Xd) = F ¡ Fd ,� (1)

where Md, Bd, and Kd are the positive definite matrices of the 
desired inertia, damping and stiffness of the impedance model, 
respectively. X ̈ , X ̇ , and X denote the actual acceleration, ve-
locity, and position of the end-effector in Cartesian space, re-
spectively, while X ̈ d, X ̇ d, and Xd are the desired acceleration, 
velocity, and position; Fd is the desired contact force, and F is 
the actual contact force.

The transfer-function of the impedance model is:

	 H(s) = 
δX(s)

E(s)
  = 

1

Md s2 + Bd s + Kd
,� (2)

where E(s) is the error of the contact force. To compute the 
desired position increment, discretize (2) using bilinear trans-
formation:

	 H(z) = H(s) s =  2
T

z ¡ 1
z + 1

 = 
T 2(z + 1)2

ω1z
2 + ω2z + ω3

,� (3)

ω1 = 4Md + 2BdT + KdT 2,� (4)

ω 2 = – 8Md + 2KdT 2,� (5)

ω 3 = 4Md ¡ 2BdT + KdT 2.� (6)
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Here, T is the control cycle. The desired position increment 
of the end-effector is derived as follows:

	
δX(n) = ω1

–1{T 2[E(n) + 2E(n ¡ 1) + E(n ¡ 2)] ¡

δX(n) ¡ ω 2δX(n ¡ 1) ¡ ω 3δX(n ¡ 2)}.
� (7)

To simplify the calculation, the target inertial matrix is 
chosen as Md = I. Consequently, the target stiffness Kd and 
the damping Bd are the only parameters that should be tuned in 
variable impedance control.

3.	 Scheme of the efficient learning variable 
impedance control

Learning variable impedance control is an ideal compliant con-
trol method, which can automatically get the optimal task-spe-
cific control strategy through trial-and-error. According to the 
learned strategy, the variable impedance controller automati-
cally regulates the impedance parameters to track the desired 
contact force.

The scheme of the proposed efficient learning variable im-
pedance control is illustrated in Fig. 1. According to the sampled 
data, a probabilistic GP model is approximated to simulate the 
dynamics of the system. Then the model-based reinforcement 
learning algorithm is used to search the optimal impedance con-
trol strategy π  while predicting the system evolution using the 
GP model. The impedance control parameters u = [Kd Bd ] are 
calculated using the learned strategy, which are then transferred 
to the variable impedance controller to control the force.

The desired position increments of the end-effector δX are 
calculated according to the force error Fe. Xd is the desired 
reference trajectory. The desired joints positions qd are calcu-
lated using inverse kinematics. The actual Cartesian position 
of the end-effector X could be achieved using the measured 
joints positions q by means of forward kinematics. KE and BE 
are the unknown stiffness and damping of the environment, 
respectively.

The variable impedance control strategy is defined as 
π  : x ↦ u = π (x, θ), where the inputs of the control strategy 
x = [X F ] 2 RD are the observed states, the outputs of the con-
trol strategy are target stiffness Kd and damping Bd which can 
be written as matrix u = [Kd Bd] 2 RF, and θ are the control 
strategy parameters that to be learned. Here, the GP controller 
is chosen as the control strategy π:

	 π t = π(xt, θ) = 
i =1

n

∑βπ, i k(xπ , xt) = βπT K(xπ , xt),� (8)

	 βπ = (Kπ (Xπ , Xπ) + σ 2
ε, π I)–1yπ ,� (9)

	k(xπ , xt) = σ 2
f, π exp

³
– 1
2
(xπ, i ¡ xt)

TΛ–1(xπ, i ¡ xt)
´

,�(10)

where Xπ = [xπ, 1, …, xπ, n] are the training inputs, and they are 
the centers of the Gaussian basis functions. n is the number 
of the basis functions. yπ is the training targets, which are 
initialized to values close to zero. Λ = diag(l2

1, …, l 2
D) is the 

length scales, σ 2
f, π is the signal variance, which is fixed to one 

here, σ 2
ε, π is the measurement noise variance. θ = [Xπ , yπ, l1, 

…, lD, σ 2
f, π , σ 2

ε, π ] is the hyper-parameters of the controller. 
Using the GP controller, more advanced nonlinear tasks could 
be performed thanks for its flexibility and smoothing effect. 
Obviously, the GP controller is functionally equivalent to a reg-
ularized RBF network if σ 2

f, π = 1 and σ 2
ε, π  6= 0. The impedance 

parameters are calculated in real-time according to the variable 
impedance control strategy π  and the states xt. The relationship 
between the impedance parameters and the control strategy can 
be written as follows:

	 [Kd Bd ] = u = π(xt, θ) = βπT K(xπ , xt).� (11)

For a Gaussian distributed state xt » N (µ t, Σt), the mean 
of u, which is transferred to the variable impedance controller, 
can be calculated as:

Fig. 1. Scheme of the efficient learning variable impedance control
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E[u] = E[π(xt, θ)] = βπT E[K(Xπ , xt)] =

E[u] = βπT ∫K(Xπ , xt)p(xt)dxt = βπT qa ,
� (12)

	 qai
 = 

exp – 1
2
(µ t ¡ xi)

T
(Σt + Λ)

–1
(µ t ¡ xi)

ΣtΛ–1 + I
,� (13)

where i = 1,…, N and a = 1,…, F.
In practical systems, the physical limits of the control signal 

u should be considered. To account for the control limits co-
herently, the preliminary strategy π is squashed through 
a bounded and differentiable squashing function that limits 
the amplitude of the final strategy. Specifically, consider the 
third-order Fourier series expansion of a trapezoidal wave 
κ(x) = [9sin(x) + sin(3x)]/8, which is normalized to the in-
terval [–1, 1]. Given the boundary conditions, the saturation 
function is defined as:

	 S(π t) = umin + umax + umax
9sinπ t + sin(3π t)

8
.� (14)

If the function is considered on the domain [3π/2, 2π ], the 
function is monotonically increasing, and the control signal u 
is squashed to the interval [umin umin + umax] with umin > 0, 
umax > 0.

4.	 Learning process of the variable impedance 
control strategy

The learning process of the variable impedance control strategy 
consists of five main steps:
1)	 Learning the GP model that represents the system transition 

dynamics using the actual sampled data.
2)	 Inferring and predicting the long-term evolution of the states 

p(x1jπ), …, p(xT jπ) using the GP model, and evaluating the 
total expected cost J π(θ ) in T steps.

3)	 Calculating the gradients of the cost dJ π(θ )/dθ with re-
spect to the strategy parameters and searching the optimal 
policy π⁎ ← π(θ ) using the gradient-based policy search 
algorithm.

4)	 Calculating the variable impedance parameters and then 
applying the controller to execute force tracking task and 
saving the sampled data simultaneously.

5)	 Repeating steps 1–4 until the force tracking performance 
is satisfactory.

4.1. Probabilistic Gaussian process model. The unknown 
function that describes the system dynamics can be written as:

	 xt =  f (xt ¡ 1, ut ¡ 1),� (15)

	 yt = xt + ε t ,� (16)

with continuous state inputs x 2 RD, control inputs u 2 RF, 
training targets y 2 RE, unknown transition dynamics f, and 

i.i.d. system noise ε » N(0, σ 2
ε). In order to take the model 

uncertainties into account during prediction and planning, the 
algorithm does not make a certainty equivalence assumption on 
the learned model. Instead, it learns a probabilistic dynamics 
model and infers the posterior distribution over plausible func-
tion f from the noisy observations using GP.

A GP model [31] is a nonparametric probability model 
and can be described by a mean function m(¢) and a positive 
semi-definite covariance function k(¢,¢), which is also called a 
kernel. In this paper, for computation convenience, we consider 
a prior mean m ´ 0 and the squared exponential kernel:

	 f (x) » GP(m(x), k(x, x’)) ,� (17)

k(x, x’) = α 2exp
³

– 1
2
(x ¡ x’)TΛ–1(x ¡ x’)

´
 + σ 2

ε I ,� (18)

where α 2 is the variance of the latent function f , Λ = diag([l2
1, 

…, l 2
D]) depends on the characteristic length-scale li of each 

input dimension. Given N training inputs X = [x1, …, xn] and 
corresponding training targets y = [ y1, …, yn]

T, the GP hy-
per-parameters Λ α 2 σ 2

ε  could be learned using evidence 
maximization algorithm.

Given a deterministic test input x⁎, the posterior prediction 
p( f⁎jx⁎) of the function value f⁎ = f (x⁎) is Gaussian distributed:

	 p( f⁎jx⁎) » N (µ⁎, Σ⁎),� (19)

	
µ⁎ = m(x⁎) + k(x⁎, X)(K + σ 2

ε I )–1(y ¡ m(X)) =
µ⁎ = m(x⁎) + k(x⁎, X)β ,

� (20)

	 Σ⁎ = k(x⁎, x⁎) ¡ k(x⁎, X)(K + σ 2
ε I )–1k(X, x⁎) ,� (21)

where β = (K + σ 2
ε I )–1(y ¡ m(X)), and K = k(X, X) is the 

kernel matrix.
Here, the function of the GP model we used is f : RD + F → RE, 

(xt ¡ 1, ut ¡ 1) ↦ ∆t = xt ¡ xt ¡ 1 + δ t, and x ̂ t ¡ 1 = (xt ¡ 1, ut ¡ 1) is 
the training input tuples. Take the state increments as training 
targets ∆t = xt ¡ xt ¡ 1 + δ t, where δ t » N (0, Σε) is the i.i.d. 
measurement noise. Since the state differences vary less than 
the absolute values, the underlying function that describes these 
differences varies less. Therefore, this implies that the learning 
process is easier and that less data are needed to find an accurate 
model. Moreover, when the predictions leave the training set, 
the prediction will remain constant.

4.2. Long-term planning through approximate inference.  To 
derive the optimal control strategy π  : x ↦ u = π(x, θ ), the con-
troller parameters θ⁎ that minimize the total cost J π(θ ) need to 
be found according to the long-term predictions of states evolu-
tion. The states distributions p(x1), …, p(xT) could be obtained 
by cascading one-step predictions. The GP model can be used 
as a faithful transition dynamics of the real system, and it can 
map the Gaussian-distributed states space to targets space. The 
uncertainties of the inputs can pass through the model. Conse-
quently, the uncertainties of the model are taken into account 
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in the long-term planning. In summary, the one-step prediction 
of the states can be described as follows:

	p(xt ¡ 1) → p(ut ¡ 1) → p(xt ¡ 1, ut ¡ 1) → p(∆t) → p(xt).�(22)

If p(x1) is known, for predicting p(xt), we require a joint 
distribution p(xt ¡ 1, ut ¡ 1) = p(x ̂ t ¡ 1) based on the control 
signal ut ¡ 1 = π(xt ¡ 1). We calculate the predictive control 
signal p(ut ¡ 1) firstly and subsequently the cross-covari-
ance cov[xt ¡ 1, ut ¡ 1]. Then, p(xt ¡ 1, ut ¡ 1) is approximated by 
a Gaussian distribution:

	

p(x ̂ t ¡ 1) = p(xt ¡ 1, ut ¡ 1) = N (µ ̂ t ¡ 1, Σ ̂ t ¡ 1) =

p(x ̂ t ¡ 1) = N
µxt ¡ 1

µut ¡ 1

, 
	 Σxt ¡ 1

	 Σxt ¡ 1, ut ¡ 1

	ΣT
xt ¡ 1, ut ¡ 1

	 Σut ¡ 1

.
� (23)

The distribution of the training targets ∆t are predicted as 
follows:

	 p(∆t) = ∫ p( f (x ̂ t ¡ 1)j x ̂ t ¡ 1)p(x ̂ t ¡ 1)dx ̂ t ¡ 1,� (24)

where the posterior predictive distribution of the transition dy-
namics p( f (x ̂ t ¡ 1)jx ̂ t ¡ 1) could be calculated using the formulas 
(19‒21). Using moment matching [14], p(∆t) could be approx-
imated as a Gaussian distribution N (µ∆, Σ∆). Then a Gaussian 
approximation to the desired state distribution p(xt) is given 
as follows:

p(xt jµ ̂ t ¡ 1, Σ ̂ t ¡ 1) » N (µ t, Σt),� (25)

µ t = µ t ¡ 1 + µ∆ ,� (26)

Σt = Σt ¡ 1 + Σ∆ + cov[xt ¡ 1, ∆t] + cov[∆t, xt ¡ 1] ,� (27)

cov[xt ¡ 1, ∆t ] = cov[xt ¡ 1, ut ¡ 1]Σu
–1cov[ut ¡ 1, ∆t] .� (28)

Because ut ¡ 1 = π(xt ¡ 1) is a function of state xt ¡ 1 and 
p(xt ¡ 1) is known, the calculation of p(xt) depends on the pa-
rameters θ of policy π .

4.3. Cost function. Task-specific regulation of impedance al-
lows humans to learn a specific control strategy, combining the 
advantages of high stiffness and compliance: increase arm stiff-
ness through muscle contraction to ensure accurate tracking or 
to suppress unknown perturbations; increase arm compliance 
through muscle relaxation to guarantee the security.

The cost function in RL usually penalizes the distance from 
the current state to the target state, without considering other 
prior knowledge. In order to make robots have the ability of 
compliance, the control gains should not be high. There are 
several desirable properties if the control gains are low, such as 
robustness and less wear and tear. Generally, high gains lead to 
high energy consumption. This is similar to the impedance regu-
lation rules of humans which are compliant as much as possible 
and stiffen up only when the task requires it. In other words, 
increasing the impedance ensures tracking accuracy while de-

creasing impedance ensures safety; energy consumption should 
be reduced as much as possible. In this way, a tradeoff between 
the minimization of error and energy could be realized. To make 
the robots with these impedance characteristics and an enhanced 
ability of compliance, we add an item of energy consumption in 
the cost function. The suitable impedance gains are reduced by 
punishing the control actions. The instantaneous cost function 
is defined as follows:

	 ct = cb(xt) + ce(ut),� (29)

	 cb(xt) = 1 ¡ exp
³

– 1
2σ 2

c
d(xt, xt arg et)

2
´

 2 [0, 1] ,� (30)

	 ce(ut) = ce(π(xt)) = ζ  ¢ (ut/umax)
2,� (31)

Here, cb(xt) is the cost caused by the state error, denoted by 
a quadratic binary saturating function, which saturates at unity 
for large deviations to the desired target state. d(¢) is the Eu-
clidean distance and σc is the width of the cost function. ce(ut) 
is the cost caused by the energy consumption (i.e. the mean 
squared energy penalty of impedance gains). ζ  is the energy 
penalty coefficient. ut is the current control signal, and umax is 
the maximum control signal amplitude.

To evaluate the performance of the strategy π , we take the 
total expected cost Jπ(θ ) in T steps as the evaluation criteria:

	 Jπ(θ ) = ∑T
t = 0 Ext

[c(xt)], x0 » N (µ0, Σ0),� (32)

	 Ext
[ct] = ∫ct N (xt jµ t, Σt)dxt ,� (33)

where c(xt) is the instantaneous cost at time t, and Ext
[c(xt)] is 

the expected values of the instantaneous cost with respect to 
the predictive state distributions.

4.4. Calculation of the cost gradients. The gradients of the 
expected cost Jπ(θ ) with respect to the control strategy param-
eters θ are given by:

	
dJ π(θ )

dθ
 = 

d∑T
t = 0 Ext

[c(xt)]

dθ
 = ∑T

t = 0

dExt
[c(xt)]

dθ
,� (34)

The expected immediate cost Ext
[c(xt)] requires averaging 

with respect to the state distribution p(xt) » N (µ t, Σt), where 
µ t and Σt are the mean and the covariance of p(xt), respectively. 
The derivative in (34) can be written as:

	

dExt
[c(xt)]

dθ
 = 

dExt
[c(xt)]

dp(xt)

dp(xt)

dθ
 =

 = 
∂Ext

[c(xt)]

∂µ t

dµt

dθ
 + 

∂Ext
[c(xt)]

∂Σt

dΣt

dθ
.

� (35)
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Given c(xt), the item ∂Ext
[c(xt)]/∂µ t and ∂Ext

[c(xt)]/∂Σt 
could be calculated analytically. Then we will focus on the 
calculation of dµ t/dθ and dΣt/dθ . According to the com-
putation sequence of the (22), we know that the predicted 
mean µ t and the covariance Σt are functionally dependent on 
p(xt ¡ 1) » N (µ t ¡ 1, Σt ¡ 1) and the strategy parameters θ through 
ut ¡ 1. We thus obtain:

dµt

dθ
 = 

∂µt

∂µt ¡ 1

dµt ¡ 1

dθ
 + 

∂µt

∂Σt ¡ 1

dΣt ¡ 1

dθ
 + 

∂µt

∂θ
,� (36)

dΣt

dθ
 = 

∂Σt

∂µt ¡ 1

dµt ¡ 1

dθ
 + 

∂Σt

∂Σt ¡ 1

dΣt ¡ 1

dθ
 + 

∂Σt

∂θ
,� (37)

∂µt

∂θ
 = 

∂µ∆

∂p(ut ¡ 1)

∂p(ut ¡ 1)

∂θ
 = 

∂µ∆

∂µu

∂µu

∂θ
 + 

∂µ∆

∂Σu

∂Σu

∂θ
,� (38)

∂Σt

∂θ
 = 

∂Σ∆
∂p(ut ¡ 1)

∂p(ut ¡ 1)

∂θ
 = 

∂Σ∆
∂µu

∂µu

∂θ
 + 

∂Σ∆
∂Σu

∂Σu

∂θ
.� (39)

By repeated application of the chain-rule, equations (35‒39) 
can be computed analytically. We omit further lengthy details 
here and refer to [32] for more information. Analytic deriva-
tives allow for standard gradient-based non-convex optimiza-
tion methods, and fast convergence could be guaranteed. Here, 
the Conjugate Gradient (CG) method is employed to search 
the (sub)optimal controller parameters θ⁎ that minimize Jπ(θ ). 
Note that the learned suboptimal controller maybe not the op-
timal strategy, but it is a feasible strategy that could guarantee 
the satisfactory control performance.

5.	 Experiments and results

5.1. Experiment design. In the following, experiments on 
the Reinovo REBo-V-6R-650 industrial manipulator are im-
plemented to verify the proposed learning variable impedance 
control method. Reinovo REBo-V-6R-650 is a 6-DoFs indus-
trial manipulator with a six-axis Bioforcen force/torque (F/T) 
sensor mounted at the wrist. Due to the fact that the Reinovo 
industrial robot only provides a position control mode for users, 
the joint torques cannot be controlled and sampled directly. 
The Reinovo industrial robot is controlled by PC using TCP/ IP 
protocol running at 100 Hz. The motion control of the robot is 
executed using Visual Studio. The learning algorithm is im-
plemented by MATLAB. MATLAB communicates with Visual 
Studio using UDP protocol.

The six-axis F/T sensor is used to percept the contact force 
of the end-effector. The sensing range of the F/T sensor is 
±625 N Fx, Fy, ±1250 N Fz, ±25 Nm Tx, Ty, ±12.5 Nm Tz. The 
total accuracy of the F/T sensor is less than 1% F.S. The sensor 
communicates with PC via Ethernet interface using TCP/IP pro-
tocol and samples the data at 5 kHz.

To simulate the nonlinear variation characteristics of the 
circumstance during the force tracking task, the combination of 
spring and rope is taken as the unstructured variable stiffness 
contact environment. The experimental setup mainly consists 
of a spring dynamometer attached to the tool at the end-effector 
and a rope of unknown length tied to the spring with the other 
end fixed on the table (see Fig. 2). Here, the rope is in a natural 
state of relaxation. The contact force is controlled by stretching 
the rope and the spring.

Fig. 2. Experimental setup using the Reinovo industrial robot

In the experiments, the episode length (i.e. the prediction 
horizon) is T = 3 s. The control period of the impedance con-
troller is 0.01 s and the calculation period of the learning al-
gorithm is 0.01 s. The number of total learning iterations, ex-
cluding the random initialization, is N = 20. The position and 
contact force of the end-effector x = [X, Y, Z, Fx, Fy, Fz] 2 R6 
are selected as the observed states. u = [Kdx, Kdy, Kdz, Bdx, Bdy, 
Bdz] 2 R6 are the policy outputs (i.e. the control actions). The 
training target y = [Xd, Yd, Zd, Fdx, Fdy, Fdz] = [0.41, 0, 0.2265, 
0, 0, 15] 2 R6 is the desired position and the desired contact 
force of the end-effector, and [0.41, 0, 0.2265] is the initial 
position of the end-effector in Cartesian space. The desired 
contact force in Z-axis is 15 N. If the steady state error of 
contact force jFz ¡ Fzd j ∙ 1 N and the overshoot is less than 
3 N, the task is successful; otherwise, it is failed. The number 
of the GP controller is n = 10. The ranges of the impedance 
parameters are set as Kdx, y, z 2 [0.1 25] and Bdx, y, z 2 [50 1000]. 



207

Efficient learning variable impedance control for industrial robots

Bull.  Pol.  Ac.:  Tech.  67(2)  2019

The energy penalty coefficient of the cost function is ζ  = 0.03. 
In the initial trial, the impedance parameters are initialized to 
stochastic variables which are subject to Gaussian-distribution 
N(u0 j0.7umax, umax). Then a test is performed to acquire the 
initial states that are required for learning the GP model. The 
whole learning process is implemented automatically.

To verify that the proposed efficient learning variable im-
pedance control method can be applied in different environ-
ments, two different spring dynamometers are used in the ex-
periments. The exact values of the stiffness and damping of 
the springs are unknown to the system. The specifications of 
the two spring dynamometers used here are shown in Table 1.

Table 1 
Specifications of the spring dynamometers

Spring Range  
(kg)

Length  
(m)

Diameter  
(mm)

1 30 0.185 29

2 15 0.155 20

5.2. Experimental results. The experimental results of learning 
variable impedance control on the first spring are shown in 
Fig. 3. Figure 3a illustrates the overview of the learned cost 
curve. The abscissa is the learning iteration while the ordinate 
is the cumulative cost. The light blue dash-dotted line represents 
the cumulative cost during the policy search process. The red 
dotted line is the predicted cost mean according the control 
strategy. The red shade is the 95% confidence interval of the 
predicted cost. The block marks are the actual cumulative costs, 
which indicate whether the task is successful or not. The blue 
solid line is the actual cost curve. Figure 3b shows the learning 

process of variable impedance force control, where N = 0 is the 
result of the initial trial.

From the experimental results of the first spring, we can 
see that in the stochastic initialization trial (Fig. 3b N = 0), the 
manipulator moves slowly and the rope begins to be stretched 
to increase the contact force at T = 2.5 s while the contact force 
reaches 10.5 N at the end of the test, which implies that the task 
failed. After one learning

iteration, the updated GP controller adjusts the impedance 
control parameters depending on the current states. In the 
second trial (Fig. 3b N = 1), the rope and the spring can be 
stretched at T = 1.5 s, which is faster than that of the first trial, 
and the contact force reaches the desired values rapidly. The 
task failed because the overshoot is greater than 3 N. Using 
the historical saved data, the learning algorithm is further op-
timized. By adjusting the impedance control parameters dy-
namically, the rope is tightened quickly, while the overshoot is 
suppressed effectively. Only two learning iterations are needed 
to complete the task successfully. In order to reduce the total 
cumulative cost continuously, the explorations are carried out 
continuously to get a better control strategy. After 17 itera-
tions (Fig. 3b N = 17), the cumulative cost is the smallest and 
the force control performance is also the best. The rope can 
be stretched at T = 1 s, and stable control of contact force is 
achieved by suppressing the overshoot.

Figure 4 shows the experimental results using the second 
spring. It can be seen that the results of the second spring are 
similar to that of the first scenario. Only six learning iterations 
are needed to learn the stable strategy to complete the task 
successfully. After eight learning iterations (Fig. 4b N = 8), 
the best strategy is learned. Using this strategy, the rope can 
be stretched at T = 0.7 s and the force is stabilized without 
overshoot.

Fig. 3. Learning variable impedance control results of spring 1. a) Overview of the learned cost curve. b) Learning process of variable impedance 
force control
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5.3. Results analysis of the learning process. Figure 5 shows 
the states evolution and force control process using the first 
dynamometer. The blue solid line is the actual state trajectory. 
The red dotted line and the red shade are the mean and the 95% 
confidence interval, respectively. The columns (a-d) in Fig. 5 
are the states trajectories of the 1st, 6th, 12th, and 20th learning 
iteration, respectively. The top row is the change of contact 
force Fz, the second row is the profile of the target stiffness 
Kdz, and the third row is the profile of the target damping Bdz. 
Figure 6 shows the stretching process of the combination of the 
rope and the spring.

It can be seen from the results that in the early stage of 
learning, the uncertainties of the GP model are large due to the 

lack of collected data. With the increase of interaction time, 
the historical sampled data are constantly enriched, and the 
learned GP model, which can predict the states more and more 

Fig. 4. Learning variable impedance control results of spring 2. a) Overview of the learned cost curve. b) Learning process of variable impedance 
force control

C
os

t

Iteration T (s)
Fz

 (N
)

(a) (b)

Fig. 5. States evolution and force control process using the first dynamometer

Fig. 6. Stretching process of the combination of the rope and the spring



209

Efficient learning variable impedance control for industrial robots

Bull.  Pol.  Ac.:  Tech.  67(2)  2019

accurately, is optimized and stabilized gradually. The control 
strategy is continually improved and regulates the profile of 
impedance control parameters to achieve better results.

Figure 7 shows the joint trajectories and Cartesian trajec-
tories during the 20th experiment iteration. The trajectories of 
other iterations are similar to those of the 20th iteration. The joint 
positions and velocities are directly measured. The Cartesian 

positions and velocities of the end-effector are calculated using 
the inverse kinematics and Jacobian matrix, respectively. The 
shaded areas divide the process into four phases corresponding 
to Fig. 5d. Table 2 summarizes the key states of the four phases 
during the 20th iteration. The corresponded subscripts of Fz, Kdz 
and Bdz are shown in Fig. 5d while the subscripts of position 
(P) and velocity (V) are shown in Fig. 7c and d, respectively.

Table 2 
Key states of the 4 phases during the 20th iteration

N T 
(s)

P 
(m)

V 
(ms–1)

Fz 

(N)
Kdz 

(Nm–1)
Bdz 

(Nsm–1)

0 0.00 0.2265 0.000 0.39 6.24 588.9

1 1.28 0.2642 0.032 0.32 8.46 653.9

2 1.48 0.2701 0.029 6.09 5.88 673.8

3 2.00 0.2744 0.001 14.62 2.46 601.9

4 3.00 0.2745 0.000 14.87 2.37 598.5

Figure 7 shows the joint trajectories and Cartesian trajec-
tories during the 20th experiment iteration. The trajectories of 
other iterations are similar to those of the 20th iteration. The joint 
positions and velocities are directly measured. The Cartesian 
positions and velocities of the end-effector are calculated using 
the inverse kinematics and Jacobian matrix, respectively. The 
shaded areas divide the process into four phases corresponding 
to Fig. 5d. Table 2 summarizes the key states of the four phases 
during the 20th iteration. The corresponded subscripts of Fz, Kdz 
and Bdz are shown in Fig. 5d while the subscripts of position 
(P) and velocity (V) are shown in Fig. 7c and d, respectively.

According to the definition of the cost function (29‒31), 
we learn that small damping parameters will not only make 
the robot move quickly to contact with the environment to re-
duce the distance between xt and xtarget, but also reduce the 
cost caused by the energy consumption. Unfortunately, small 
damping parameters could reduce the positioning accuracy of 
the robot and thus make the system with poor ability to sup-
press disturbances. On the contrary, large damping parameters 
could improve the system’s ability of suppressing disturbances 
and reduce the speed of motion. Hence, the learning algorithm 
must make a tradeoff between rapidity and stability to achieve 
the proper control strategy. Through continuous training and 
learning, the end-effector can contact with the environment 
more and more quickly, and the overshoot of the contact force 
is effectively suppressed.

As shown in Fig. 5‒7 and Table 2, the process of regulating 
impedance parameters can be divided into four phases, which 
corresponds to the process of force control mentioned above:
1)	 T0 ¡ T1: Phase before stretching the rope. The manipulator 

moves freely in the free space (Fig. 6.1). To tighten the rope 
quickly, the movement of the end-effector increases as the 
impedance parameters increase. The contact force is zero 
in this phase.

2)	 T1 ¡ T2: Phase of stretching the rope. When the rope is 
stretched, the manipulator is suddenly converted from free 

Fig. 7. Joint trajectories and Cartesian trajectories during the 20th 

experiment iteration
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space motion to constrained space motion (Fig. 6.2). The 
stiffness of the contact environment increases suddenly, and 
this can be seen as a disturbance of environment. Conse-
quently, the stiffness of the controller declines rapidly to 
make the system “soft” to ensure safety. Meanwhile, the 
damping continues to increase to make the system “stiff” 
to suppress the impact of environmental disturbance and 
avoid oscillation. On the whole, the system achieves an ap-
propriate strategy by weighting “soft” and “stiff.” In this 
phase, the contact force increases rapidly until the rope is 
tightened.

3)	 T2 ¡ T3: Phase of stretching the spring. The spring begins to 
be stretched after the rope is tightened (Fig. 6.3). Although 
the environment changes suddenly, the controller dose not 
select the strategy as phase (2); it makes the system “soft” 
by gradually reducing the stiffness and damping to suppress 
the disturbances. In this way, the contact force increases 
slowly to avoid overshoot when approaching the desired 
value.

4)	 T3 ¡ T4: Stable phase of stretching the spring. The manip-
ulator contacts with the environment continuously and the 
contact force is stabilized to the desired value (Fig. 6.4). In 
this phase, the stiffness and damping of the controller are 
kept at minimum so that the system maintains the ability of 
compliance and the energy consumption could be reduced.
The impedance characteristics described above are similar 

to the strategy employed by humans for force tracking [33‒35]. 
Reduce the impedance by muscle relaxation to make the 
system soft when it needs to guarantee safety, while increase 
the impedance by muscle contraction to makes the system 
stiff when it needs to guarantee fast-tracking or to suppress 
disturbances. When the contact environment is stable, the arm 
is kept in a compliant state by relaxation to achieve stable 
control.

There are total 20 learning iterations throughout the exper-
iment. After six learning iterations, which means that only 18 
seconds of interaction time is required, a sufficient dynamic 
model and controller can be learned to successfully complete 
the force tracking task. The experimental results above verify 
that the proposed bionic and efficient learning variable im-
pedance control method is data-efficient, mainly because this 
method explicitly establishes the transition dynamics that are 
used for internal simulations and predictions of the system. In 
this way, more efficient information could be extracted from 
the sampled data.

5.4. Comparison with fixed impedance control. Variable 
impedance control can regulate the task-specific impedance 
parameters at different phases to complete the task more effec-
tively. In this way, it can achieve a tradeoff between rapidity and 
stability, which is the characteristic that the impedance control 
with fixed parameters does not have. Using the first spring, 
a performance comparison between the proposed learning vari-
able impedance control and the fixed parameter impedance con-
trol was conducted.

The comparison of force control performance is illustrated 
in Fig. 8. The magenta dashed line is the result of the fixed con-

trol parameter Kd = 10, Bd = 450, while the green point-solid 
line is the result of Kd = 10, Bd = 400. The red dotted line is 
the result of stochastic initialization, and the black dotted line 
is the result of the 20th learning iteration. The blue solid line 
is the result of the 17th learning iteration, which is the optimal 
strategy.

We can see from the results that when the fixed impedance 
parameters are Kd = 10, Bd = 450, the contact force began to 
increase at T = 1.7 s by stretching the rope without overshoot. 
Decreasing the target damping parameters could improve the 
response level of the manipulator to the contact force. When 
the damping is adjusted to Bd = 400, the rope is stretched at 
T = 1.5 s, but the large overshoot leads the task to failure. Using 
the strategy learned after 17 iterations, which is the optimal 
strategy, the rope is stretched at T = 1 s, and the contact force 
is controlled to reach the desired value without overshoot. It 
is impossible for impedance control with fixed parameters to 
achieve such performance.

In order to quantitatively compare the performances of 
learning variable impedance control and fixed impedance con-
trol, we use two indicators to quantify the performances. The 
first indicator is the accumulated cost Jπ(θ ) defined in (32). 
The second one is the root-mean-square error (RMSE) of the 
contact force:

	 RMSE = 
∑H

t = 1(Fz(t) ¡ Fzd)
2

H
,� (40)

where Fz(t) is the actual contact force in Z-axis, and Fzd is the 
desired contact force in Z-axis. H is the total number of the 
samples during the episode.

Table 3 reveals the performance comparison indicators. 
Here, T(s) is the time that the contact force began to increase. 
For learning variable impedance control, the end-effector could 
contact with the environment quickly without force overshoot. 
The cost and the RMSE is smaller than those of fixed im-
pedance control, which indicates that the proposed method is 
effective.

Fig. 8. Comparison between the learning variable impedance control 
and the fixed parameters impedance control
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Table 3 
Performance comparison between learning variable impedance 

control and fixed impedance control

Mode Name T (s) Cost RMSE Overshoot

Fixed Bd = 450 1.70 43.29 11.29 No

Bd = 400 1.50 41.09 10.83 Yes

Variable N = 20 1.25 39.71 10.19 No

N = 17 1.00 33.64 9.23 No

6.	 Discussion

Learning variable impedance control methods can learn a satis-
factory strategy through trial and error to complete force con-
trol task. Current learning variable impedance control methods 
usually require hundreds of rollouts to get a stable strategy. For 
tasks that are sensitive to the contact force, such as automatic 
assembly of explosive components, too many physical interac-
tions with the environment during the learning process are often 
infeasible. Improving the learning method efficiency is critical. 
The required rollouts to get a satisfactory strategy could be used 
as an indicator of the learning speed.

Figure 9 shows the comparison of learning speed with other 
learning variable impedance control methods. From the results 
of [3, 28, 30, 36], we can see that, to get a stable strategy, PI2 
needs more than 1000 rollouts, whereas PSO requires 360 
rollouts. The efficiency of PoWER is almost the same as that 
of C-PI2, which requires 200 and 120 rollouts, respectively. 
The proposed method in this paper only requires fewer than 
10 rollouts to obtain a satisfactory strategy that realizes fast 
control of contact force without overshoot. It outperforms other 
learning variable impedance control methods by at least one 
order of magnitude. The required interaction time is signifi-
cantly reduced, which implies that the proposed method is more 
data-efficient.

7.	 Conclusion

In this paper, we propose an efficient learning variable imped-
ance control method for the industrial robots to perform repeti-
tive force-sensitive tasks. We have provided the key techniques 
to efficiently learn the impedance control strategy with minimal 
interaction time. This method was characterized by data-effi-
ciency and no need for prior knowledge of the environment. 
To get the similar compliant ability of humans, we added an 
energy consumption item to the cost function to punish the ac-
tions. Furthermore, the probabilistic GP model was employed 
to pass the states uncertainties to permit long-term inference 
in a Bayesian manner, reducing the required interaction time 
and allowing for efficient policy updates. The model-based RL 
algorithm was used to search the optimal impedance regula-
tion strategy, which simultaneously provides the continuous 
target stiffness and damping to the variable impedance control 

scheme. The experimental results on the Reinovo 6-DoFs in-
dustrial manipulator verify that the optimal impedance control 
strategy could be learned in only a few trials, and it outperforms 
other methods by at least one order of magnitude. In conclusion, 
our method could be applied to automatically learn to control 
the contact force efficiently.
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