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Abstract: The aim of the study was to find an effective method of ripple torque compensation
for a direct drive with a permanent magnet synchronous motor (PMSM) without time-
consuming drive identification. The main objective of the research on the development of a
methodology for the proper teaching a neural network was achieved by the use of iterative
learning control (ILC), correct estimation of torque and spline interpolation. The paper
presents the structure of the drive system and the method of its tuning in order to reduce
the torque ripple, which has a significant effect on the uneven speed of the servo drive. The
proposed structure of the PMSM in the dq axis is equipped with a neural compensator. The
introduced iterative learning control was based on the estimation of the ripple torque and
spline interpolation. The structure was analyzed and verified by simulation and experimental
tests. The elaborated structure of the drive system and method of its tuning can be easily used
by applying a microprocessor system available now on the market. The proposed control
solution can be made without time-consuming drive identification, which can have a great
practical advantage. The article presents a new approach to proper neural network training
in cooperation with iterative learning for repetitive motion systems without time-consuming
identification of the motor.
Key words: ripple torque, iterative learning control, artificial neural network, permanent
magnet synchronous motor

1. Introduction

Requirements for positioning quality, dynamics and repeatability of motion trajectories in
servo drives have contributed to the development of so-called torque motors. Direct drive – it
is a drive in which the working machine is directly connected to a motor without a mechanical
transmission. The motor has a special construction that allows the drive system to operate at low
angular speeds. The lack of mechanical transmission introduces many benefits, such as: elimina-
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tion of backlash introduced by the transmission, which improves static accuracy of operation and
dynamic properties of the drive, increases efficiency of the drive system (no mechanical losses in
the transmission) and reliability (fewer mechanical elements). In addition, in the case of a direct
drive with the PMSM, additional advantages are: no energy loss in the rotor, high overload torque,
and therefore they are popular in machine tool technology and robot drives [1, 14].

However, direct drive testing with the PMSM has highlighted some of their specific features,
which make them difficult to control precisely. No gearbox means that certain changes of the
moment of inertia have a direct impact on the operation of the drive motor. Also, the change of
the load torque, friction, directly affects the electric motor. In addition, torque ripple is also a
disadvantage. This affects the speed ripple, which ultimately decreases the quality of the electric
drive control. The main reasons of harmonic torque are: the lack of sinusoidal flux density
distribution around the air gap (electromagnetic torque ripples), cogging torque and current
measurement errors [2, 3, 15]. Despite the low amplitude of velocity ripples, these negative
phenomena significantly reduce the precision of speed and position control. Therefore, one of the
aims of drive systems is to achieve a smooth electromagnetic torque [4, 5].

The achievement of the smooth electromagnetic torque in the PMSM, especially in direct
drives, is the subject of research in many scientific centers around the world [3–7]. A review of
the literature leads to the conclusion that there are appropriate magnet designs in the rotor, or
the special shape of the stator slots [5, 15]. This approach reduces the average torque and, due to
special requirements, increases the cost of production. An alternative solution is to compensate
for this parasitic phenomenon by means of control algorithms. Today’s use of complex algorithms
in microprocessor systems can significantly reduce torque ripple.

In many scientific studies, it is important to identify factors of the ripple torque. In many works,
a key problem is the correct identification of these parameters. Different methods are used, e.g.
the calculation of the Fourier coefficients [8], in [2] a torque estimator is used, which utilizes the
measurement of the electromotive force at low speeds. In that paper [8], a torque controller with
an additional torque compensation signal is applied. In many other works, methods of estimating
torque and flux are used, which significantly complicates implementation. The paper [2] shows
that the use of a very fast current controller, operating according to a dead-beat forecasting
algorithm, significantly improves the quality of compensation. In the article [2], the values of the
current compensating for electromagnetic and ripple torque are placed in the tables as a function
of the rotor position. The paper [3] shows that power supply errors of electronic circuits and
current path scaling are the reasons of additional torque fluctuation. The studies [9–11] showed
that iterative learning control (ILC) and repetitive control (RC) methods can also be used to
the minimization of torque ripples. In this work, the structure of PMSM control in dq axes was
proposed, which was equipped with a neural compensator of the ripple torque. An overarching
system of iterative learning has been introduced. The iterative learning is carried out on the basis
of iterative torque estimation, performed on the basis of interpolation with spline functions, so
that we can quickly estimate it.

2. Structure of the control system

Fig. 1 shows the structure of the control system that has been used in the work. The drive
is a cascade speed control system for a permanent magnet synchronous motor and consists of:
a three-phase inverter with space vector pulse width modulation (SVPWM); a current loop in
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the dq axis with current transformer blocks and an optimized 2DFC current [1]; a digital speed
measurement and a controller [12].

Fig. 1. Block diagram of control system

(a) Mechanical part of the drive system
The mechanical part of the drive is described as transfer function (1) [17]:

Gmech(s) =
Ω(s)
TΣ (s)

=
1
Js
, (1)

where: Gmech(s) is the mechanical part continuous transfer function, Ω(s) is the angular velocity
transformation, TΣ (s) = TE (s) + TR (s) + TL (s) is the total torque transformation (TE ) is the
electromagnetic motor torque, TR is the ripple motor torque, TL is the load torque), J is the motor
momentum of inertia.

(b) Current control loop
The current control loop consists of a 2DOFC current controllers in the dq axes. The electro-

magnetic part of the drive is described as a transfer function:

Gi (s) =
Iq (s)

Iref
q (s)

=
1

sτT + 1
e−sτ

delay
T , (2)

where: Gi (s) is the current control loop continuous transfer function, Iq (s) is the active current
component transformation, Iref

q (s) is the active current component reference value transformation,
τT is the current control loop time constant, τdelay

T is the current control loop delay.
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(c) Speed controller and measurement
The outer angular velocity control loop is based on a parallel PI digital controller with the use

of a trapezoidal integration method (3):

Rω (s) =
Iref
q (s)

Eω (s)
=Kω

p +Kω
I

τs
2

z+1
z−1

, (3)

where: Rω (z) is the speed controller discrete transfer function, Eω (z) is the speed error trans-
formation, Kω

P is the controller proportional gain, Kω
I is the controller integration gain, τs is the

sample time.
Speed measurement is based on a high-resolution incremental encoder. The measurement is

modelled as the procedure of quantization and discrete differentiation of angular position and
additional digital filtration with a second order low pass filter [1].

(d) Torque ripple
Two main sources of torque ripple are considered in this model [3, 13]:
– Cogging torque – the pulsating torque generated by the interaction of the rotor magnetic

flux and the change in the angular position in the stator magnetic reluctance. Cogging torque
occurs even when the system is disconnected from the power source [3, 13]. For a clearer
interpretation this disturbance can be separated and examined with regard to the cause of
existence as: native components (NC) – consequence of motor design parameters that exists
always, even in ideally manufactured motors; additional components (AC) – appear only
in permanent magnet motors with irregularities, e.g. stator teeth misplacements (ACT) or
width and thickness variations and/or misplacements of rotor’s permanent magnets (ACR)
[18]. In general, cogging torque components can be expressed as (4), (5) [3, 13].

Tcogg = Tcogg
NC + Tcogg

ACT + Tcogg
ACR , (4)

Tcogg
X =

∑
i=

Ai
X sin

(
niX · θ + ϕiX

)
, (5)

where: Tcogg
X is the harmonic component of cogging torque, X is the component index: NC, ACR

or ACT, Ai
X is the harmonic component amplitude, ϕiX is the harmonic component phase, niX is

the harmonic component order: ni
NC

is equal to i times least common multiple of q and p, ni
ACR

is equal to i times q, and niACT is equal to i times p (p is the rotor poles number and q is the stator
slots number),

– Flux harmonics – the demagnetization phenomenon of permanent magnets due to tem-
perature rise has a significant impact on the maximum torque capability and the efficiency
of permanent magnet motors [3, 6]. Electromagnetic torque resulting from this effect can
be expressed as (6) [3, 13].

Tflux = Keiq
∑
i=1

ψi sin
(
6i · θ + ϕi

)
, (6)

where: Tflux is the motor torque effected by flux harmonic, ψi is the amplitude of flux harmonic
component, ϕi is the phase of flux harmonic component.
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In both cases, relation between harmonic disturbance order, angular velocity and harmonic
frequency can be described as (7). This means that the frequency of the torque ripples will change
depending on the operating point.

fR =
n · ω
2π

, (7)

where: fR is the torque ripple frequency, n is the torque ripple order in angular position domain,
ω is motor angular velocity.

3. Concept of compensation system

The presented compensation concept utilizes the assumption (8), which means that the task
of a compensator is to recreate the value of the cogging torque. This assumption is the basis
for the initial selection of network weights and the application of the iterative learning method.
A conceptual diagram of the compensation system is presented on Fig. 2.

icomp
q =

T̂ripple

Ke
, (8)

where: icomp
q is the compensation current, Ke is the constant torque of the motor, T̂ripple is the

estimator of the ripple torque.

Fig. 2. Diagram of the compensation system (Rω is the PI speed controller, Gi is
the transfer function of a current control loop)

The compensation system contains three basic elements: an artificial neural network, a torque
estimator and an iterative network training procedure. The ripple torque compensation procedure
takes place in the domain of angular position of the motor shaft, so depending on the rotational
speed, the compensation uses a different number of measurement samples for the estimation
task. The algorithm was designed for slow revolutions, which translates into a larger number
of measuring points. Starting from the initial position, the compensator performs acquisition
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of active current and rotational speed samples. After turning some selected angle θiteration, the
collected data is used in the estimation procedure of local torque disturbances (i.e. from θiteration

– wide section) using spline interpolation and a simple dynamic model of the mechanical part
of the motor. Next, the neuron compensator undergoes supervised training, based on the ob-
tained estimation. This procedure is repeated each time the multiplicity of the θiteration angle is
exceeded.

The iterative re-training of the neural network, using the generalizing properties of neural
networks, allows one to obtain a neural model of torque disturbances, adequate for the entire
range of angular positions of the motor shaft, i.e. a global model of disturbances.

A diagram of the neural ripple torque compensator is shown in Fig. 3. The compensator is
a one-way, sigmoid, three-layer neural network. Compensation is based on the current angular
position sample of the motor shaft. The initial processing of network input data consists in
creating a vector composed of the remainder of dividing the current angular position by successive
multiples of the full revolution related to the native harmonic components of the ripple torque.
The initial learning of the network has been done as follows:

– For each of the native harmonic components a two-layer sigmoid network with four neurons
were trained in the hidden layer and one in the output layer. 100 samples of the corresponding
harmonic signal were used as teaching data,

– The obtained nets were connected in parallel into one neural structure. A third layer was
added, the output of which is a simple sum of the outputs of the second hidden layer.

Fig. 3. Initial neural compensator structure

The neural network thus obtained has two main advantages: it provides a simple and effective
way of obtaining initial weights that provide good compensation for the native components, and
it contains a large number of unused (zero) weights, the modification of which during iterative
learning should improve the quality of the final compensation. The proposed iterative learning
is done on the basis of the collected measurement data after the motor shaft has made a certain
angle θiteration. The algorithm used to teach neural networks is the Levenberg-Marquardt one.
This method is one of the groups of supervised learning methods [16], therefore it requires the
knowledge of the selected network output. For this purpose, the course of the ripple moment
within each iteration is estimated. Fig. 4 shows a diagram of the estimation procedure.
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Fig. 4. Diagram of ripple torque estimation procedure (ω, ω are the angular velocities: measured value and
vector of samples from previous iteration, iref

q , iref
q , lref

q are the active currents: measured, vector of samples

and vector of harmonic components from previous iteration, T̂ Σ , T̃ref
e , T̂ ripple are vectors of estimation of

total torque, vector of estimation of harmonic components of motor electromagnetic torque and vector of
estimation of torque ripples)

The compensation system consists of a one-way, sigmoidal neural network, which as an input
argument takes the current angular position of the motor shaft. The iteration learning system
performs the compensator training on the basis of vectors: angular position speed, reference
electromagnetic torque. The network training procedure is carried out each time after the shaft
rotates by a certain angle. Cogging torque can be divided into two basic groups of harmonic
components (4): NHC – Native Harmonic Components, related to the construction of the motor
and additional – AHC – Additional Harmonic Copponent related to asymmetry resulting from
production errors [4]. The estimation is made on the basis of Eq. (9). The procedure requires
the speed vector to be differentiated. For this purpose, it is interpolated with spline functions
and then symbolically differentiated. One of the basic advantages of using interpolation by spline
functions is the stability of calculations even for a large number of points. Symbolic differentiation
guarantees better noise immunity than finite difference methods. After obtaining the coupling
torque vector for a given iteration, the network weights for each of the teaching signal samples
are updated.

T̂ripple = J
d
dt
ω − Keiref

q . (9)

The main advantage of using artificial neural networks as an intermediary component in
the compensation of torque ripples is their generalizing properties. Disturbance estimation takes
place locally (for subsequent θiteration segments) and iterative neural network re-learning allows
obtaining a compensating signal, ensuring a high level of speed unevenness reduction for the
whole range of angular position of the motor shaft. The spline estimation process returns local
analytical models, the neural network generalizes these results to the global neural model.

4. Simulation results

The illustrations (line diagrams and photographs) should be suitable for direct reproduction.
The simulation was conducted to verify the proposed compensation algorithm for motor torque
ripple compensation. The simulation model used is based on the assumed mathematical models of
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drive system components (1)–(3), connected according to the diagram shown in Fig. 2. Adopted
parameters of the simulation model are as following:

– moment of inertia: J = 0.753 kg m2,
– torque constant: Ke = 17.5 Nm/A,
– rated load torque: TN = 50 Nm,
– sample time: τs = 100 µs,
– maximum reference current: imax

q = 6 A,

– current control loop delay: τdelay
T = 200 µs,

– speed controller proportional gain: Kω
P = 0.5,

– speed controller integral gain: Kω
I = 0.04,

– number of motor poles: 24,
– number of motor slots: 216 (9 per pole),
– iteration angle: θiteration = 1.047 rad (60 deg).
Disturbance in a form of torque ripples was modeled based on (4), (5) and (6), therefore

fundamental orders of, respectively, the cogging torque and torque generated by flux harmonics
are 216 and 6 in angular position domain. This corresponds to an angular period of 1 2

3 and 60
degrees. The iteration angle θiteration was selected as the least common multiple of these values.

Fig. 5 shows an example of a rotational speed error as time series, which visualizes operations
of the compensation algorithm. The first iteration (from system start to turning by angle θiteration)
is to collect training data for a neural compensator: angular velocity, angular position and an active
current component (e.g. current of q axis in PMSM drive). From the second iteration, iterative
network training takes place, each time based on data from the previous iteration. The estimation
of the torque ripples is used as the training target (Fig. 3). During the third iteration, the active

Fig. 5. Rotational speed error – example simulation results for iterative neural compensator
of torque ripples (nref = 1 rpm)
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neural compensation of the torque ripples takes place in every step of a rotational speed control
loop. In addition, the compensator can be pre-learned to recreate selected harmonic components
and reduce rotational speed unevenness at start-up.

Fig. 6 shows a rotational speed error as time series and the single-sided amplitude spectrum
for various values of reference speed. In the range shown, with the decrease of reference speed

(a)

Frequency [Hz]

(b)

Fig. 6. Rotational speed error: time series (a) and amplitude spectrum (b) for various reference speed
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value, the amplitude of the rotational speed error increases. This trend is consistent with the
frequency response of the assumed model. However, compensation quality, expressed as (10), is
approximately constant for various reference speed and takes value of 90% to 95%. Fig. 7 shows
motor torque as time series and a single-sided amplitude spectrum for various values of reference
speed, in a steady-state without load – the amplitude of the torque ripples does not change, only

Reference rotational speed [rpm]

(a)

(b)

Fig. 7. Motor torque: time series (a) and amplitude spectrum (b) for various reference speed
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its frequency component.

Qω =
*.,1 −

RMSE
(
ecomp
ω

)
RMSE (eω)

+/- × 100%, (10)

where RMSE is the root of the mean square error.
Fig. 8 shows the characteristic of iterative neural compensation quality from the value of

the moment of inertia assumed in an interpolation procedure (in respect to real value of the
moment of inertia). Fig. 9 shows analogous characteristics for quality and motor torque gain. In

Fig. 8. Compensation quality in function of moment of inertia estimation accuracy

Fig. 9. Compensation quality in function of motor torque gain estimation accuracy
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both cases, a wide range of parameter values is available, for which the performance algorithm
fulfills its task, with maximum compensation quality for perfectly identified parameters. In the
case of delay in a current control loop – increasing the delay value monotonically worsens
the quality of compensation (Fig. 10). The simulation research was originally conducted in the
MATLAB/Simulink environment, allowing one to evaluate the accuracy of the interpolation and
training procedures. In addition, the unity tests were repeated in the VisualDSP++ environment,
using the previously obtained data, in order to verify the correctness of method implementation.

Fig. 10. Compensation quality in function of current control loop delay

5. Experimental results

The laboratory set-up, presented in Fig. 11, consists of a three-phase PMSM supplied from
a PWM inverter. The control system is based on 32-bit floating-point processors ADSP-21061,
the performing task of the current controller and rotational speed controller with iterative neural
compensation of torque ripples. The speed and position measurement are carried out by an
incremental encoder. The mechanical part of the drive is directly connected to the motor shaft
and consists of the set of wheels with a well-calibrated moment of inertia.

The drive system was tested in a steady-state in various operating points. Fig. 12 shows the
time series and single-sided amplitude spectrums of a rotational speed error in various reference
speed. Naturally, in the real drive system harmonic composition of speed unevenness is wider and
results from remaining unmolded disturbances (e.g. frictions) and measurement noises. Quality
of the torque ripple compensation was on the level of 75%.

When comparing the rotational speed error time series with and without compensation, it
can be noted that the speed unevenness increases with the decreasing value of the reference
speed. In the case of nref = 0.5 rpm, the peak-to-peak amplitude of the speed error without
compensation ∆eω = 1 rpm = 2nref , which means that the drive operates in cycles of braking
and stating up, not in even rotation. The iterative training of a neural compensator, based on the
process of torque ripples estimation using data acquisition and interpolation to analytical form,
provides an effective way of identification of fundamental harmonic components of disturbance.
The frequency spectrum of the rotational speed error shows considerable reduction of amplitude
of those fundamental harmonics. With the main source of speed unevenness being cogging torque
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Fig. 11. Laboratory set-up schematic diagram

with an angular order of 216, it corresponds to a frequency of 2, 4 and 11 Hz for the reference
speed of a respective value of 0.5, 1 and 3 rpm. As shown, after applying the compensation
method, these components have been almost completely removed from the speed error spectrum.

The experimental research confirms the practical applicability of the proposed method. The
main advantage of using the proposed method is the built-in disturbance identification process.
However, current implementation assumes a constant value of active load torque. For low ro-
tational speed, algorithm’s operation is stable and gives reproducible results. Faster rotation of
the drive shortens the time of a single iteration and decreases the number of samples, which
in turn deteriorates identification of ripples and compensator training. For higher speeds, how-
ever, compensation is not critical. Algorithm computation time and memory consumption require
use of high-performance hardware platforms, such as digital signal processors with hardware
floating-point matrix operation support.
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(a)

(b)

Fig. 12. Rotational speed error: time series (a) and amplitude spectrum (b) for various
reference speed of real drive system
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6. Conclusion

The paper presents the structure of PMSM control of repetitive motion in dq axes which
was equipped with the compensation system that contains three basic elements: an artificial
neural network, a torque estimator and an iterative network training procedure. The aim of
the study was to reduce ripple torque, which has a significant impact on speed and position
fluctuations. The obtained simulation results allow one to state that the proposed method of
compensating the cogging torque enables a significant (up to 95%) reduction of the unevenness of
the angular velocity of the PMSM. The presented structure of estimation and the learning iterative
compensator ensures fast convergence. The use of an iterative, supervised (by the estimator
of torque ripples) re-training neural network, implemented in the angular position domain, is
the original technique of "intelligent averaging" of local disturbance estimation. The proposed
compensation method was verified experimentally, confirming the practical application of the
algorithm. The quality of compensation is noticeably lower than in the simulation results (up to
75%), but it is still an effective solution, especially in the low speed range. Further research should
include the impact of disruption identification methods, training methods and the structure of the
neural network on the quality of compensation.
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