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Abstract

The paper provides statistical analysis of the photographs of four various granular materials (peas, pellets,
triticale, wood chips). For analysis, the (parametric) ANOVA and the (nonparametric) Kruskal-Wallis tests
were applied. Additionally, the (parametric) two-sample t-test and (non-parametric) Wilcoxon Rank-Sum
Test for pairwise comparisons were performed. In each case, the Bonferroni correction was used. The
analysis shows a statistical evidence of the presence of differences between the respective average discrete
pixel intensity distributions (PID), induced by the histograms in each group of photos, which cannot be
explained only by the existing differences among single granules of different materials. The proposed
approach may contribute to the development of a fast inspection method for comparison and discrimination
of granular materials differing from the reference material, in the production process.

Keywords: granular material, digital image analysis, pixel intensity distribution, discrimination process
control.
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1. Introduction

Right after water, granular materials are the most commonly used materials in industry. They
are processed in virtually every area of economy, i.e., agriculture (seeds, mineral fertilizers,
grains, animal feed), food (flour, comminuted fruit and vegetables, cereal), pharmaceutics and
cosmetics (reinforcing materials, powders), construction (aggregates, cement, sand), energy (slag,
coal, comminuted biomass).

One can easily imagine that inter-granular organization depends on morphology of granular
materials influencing the mobility and therefore their associations and arrangements.

In the fields of agriculture, geology and biology, morphology can be understood as the study
of the shapes and distribution of particles (grains). A two-dimensional digital image is a specific
way of illustrating this morphology.
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Consequently, the measurements of granular descriptors, such as nature, size, morphology
etc., are fundamental problems in grain mass production and/or transformation, transportation
and packaging.

The basic problem in metrology is the determination of precision, measurement accuracy and
the associated true value. According to [1], accuracy of measurement is “closeness of the agree-
ment between the result of a measurement and a true value”, which is related to the occurrence
of random and systematic errors [2, 3]. It should be noted that in many aspects of measurement
of granular materials, we do not know the true value which we can refer measurement results to.
Therefore, we cannot talk about the accuracy of measurement. That is why measurements of this
type of materials rise many metrological and mathematical problems.

There is a great number of technological situations where robustness (i.e., correctness) of
methodology is the most important aspect of measurements. That is the main motivation of the
research described below. Therefore, this paper describes the process of verifying the robustness
of “test cases” in a test process looking for compromise between economically tolerant and
metrologically simple and acceptable methodology.

Traditional metrology of granular assemblies (Fig. 1) is too time-consuming and too expensive.
Therefore, a new, simple, fast and cheap methodology has been offered and validated in the present

paper.
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Fig. 1. Complex sequences a) of data treatments necessary to identify the differences in particle morphology thanks to

a 3D optical scanner. (The sequence of fringe images are projected onto the material by an LCD projector and then

the distances of every point are calculated to obtain the surface geometry). Using white LED light technology, selected
pictures of maize b) and of pea c) clearly show the differences in morphologies.

Data acquisition

Computer image analysis and vision systems, an integral part of which is Digital Image
Analysis (DIA), are used in many areas, such as medicine, security, material quality control, etc.
The usual procedure of DIA can be divided into the following steps: image acquisition, image
processing, image analysis, recognition and interpretation (Fig. 2).

The understanding of the behaviour and physical properties of granular material is of fun-
damental importance to the optimization of such processes as transport and storage, dispensing,
grinding, mixing, agglomeration. This knowledge provides also a sound basis for the design
or improvement of machinery and equipment used in these processes. Regardless of the type
of granular materials, they exhibit common physical properties such as porosity, bulk density,
particle-size distribution, shape (geometric dimensions), static and kinetic friction, and the angle
of repose [4-9].

The analysis of issues concerning DIA in a context of the physical characteristics of granular
materials focuses on three main areas: the analysis of single grains (e.g., the size of particles)
[10-14], the analysis of the bulk as a whole (e.g., bulk density, porosity) [15—17], and the analysis
of processes, e.g., in a context of their monitoring and control [18-22].
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Fig. 2. A flowchart (traditional steps) of Digital Image Analysis
applied to plant granular materials.

Classical methods for the measurement of physical properties of granular materials are usually
time-consuming, which often turns against them in dynamic production processes with a high
degree of automation, and when it is necessary to process large amounts of information in real
time. Therefore, DIA, which has become a pretty viable and efficient method for evaluation of a
variety of features and properties exhibited by the tested objects, is increasingly in use.

In this publication, the authors have proposed a slightly extended approach to the image
analysis, in which a photograph is treated as a carrier of certain statistical information.

Let us assume that we take a photograph of granular material, in which the grains are not
identical (e.g., cereal grains), then mix the grains and take another photo. As a consequence, we
obtain two different pictures (different number of seeds, different orientation, efc.) showing the
same granular material. How can we confirm that both photos represent the same material? It
turns out that the approach presented in Fig. 2, where we are looking for some specific feature,
e.g., grain size or shape, may be inappropriate.

The analysis becomes more complicated if we want to indicate differences between the same
material if one of them has, for example, a different moisture or packing degree. It is important
because grainy materials are processed in automated continuous processes. Therefore, it seems
to be crucial to develop and refine the initial and rapid quality control processes of this material.

The pictures of granular material containing a lot of objects of a similar nature, structure,
seem to be a perfect subject of such an analysis. In particular, our aim is to explore some subtle
information that is “hidden” in photographs “taken from above”, i.e. showing only surface layers
of prescribed portions of few granular materials, which can be interpreted as confirmation of the
existence of some “global” (whole picture) differences related to their (possibly spatial) structure
that cannot be explained by the existing “local” (single grain) differences, e.g., in pixel intensity,
among single granules of materials under consideration.

2. Selected materials

In our study, we use four granular materials that are typical in agriculture, i.e. peas, pellets,
triticale and wood chips (Fig. 3). The two of them (peas and triticale) represent grains used in
food processing, the other two (pellets and wood chips) — biomass used for energy purposes.
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Fig. 3. Photos of examined organic materials: a) peas; b) pellets; c) triticale; d) wood chips.

3. Measuring procedure and robustness validation

The images of granular materials were acquired in a specially prepared station consisting of
a tripod, a Nikon D800 digital camera, a shadow-less tent, lighting. The images of the tested
materials were captured in the same acquisition conditions. Subsequently, they were analysed
with the use of software Aphelion Dev, which is part of Aphelion Imaging Software Suite [29].

3.1. Opening data processing

The same conditions were retained when preparing the material for image acquisition. The
tested material was poured freely from the same height into a flat container. Excess material was
scraped. A sample so prepared was placed in the shadow-less tent. For each material, 10 images
were collected. Then, each image was properly trimmed so that it contained the same amount of
pixels which is the smallest controllable element of an image presented in the picture.

Then, for the images, histograms were generated. The histogram generation from part of a
greyscale image composed of 25 pixels is shown in Fig. 4. The four pixel intensities (Fig. 4a)
(including black and white) of this image are represented by the four vertical lines of the associated
histogram (Fig. 4b). Here, values on the horizontal axis are in a range from 0 to 255, which is
consistent with a standard numeric representation of the greyscale. The value “0” corresponds to
the black colour, while the value “255” corresponds to the white colour.
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Fig. 4. The principle of pixel histogram generation versus pixel intensity (greyscale):
a) a histogram; b) a decomposed image in 25 pixels.

The same principle applies to a colour image, in this case, however, we deal with three
histograms corresponding respectively to the intensity of components of three primary colours,
i.e., red (R), green (G), blue (B). In our case, we analysed images that were converted from a
colour image into a greyscale image according to (1). Then, histograms were created for the so
prepared images.

Intensity(R) + Intensity(G) + Intensity(B)

3 ey

Pixel intensity =
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In general, one can indicate here that the differences between pictures might be caused by
different colour intensity of the materials under consideration. Taking into account that all the
photographs were taken in the same conditions, we claim that further processing of our data, such
as some kind of intensity standardization that is used in analysis of MRI images [23, 24], seems
to be unnecessary.

As it was previously indicated, in the paper we investigate the problem of exploration of some
information that is “hidden” in photographs showing only surface layers of prescribed portions
of given granular materials. This can be used to obtain a statistical confirmation of the existence
of some differences related to their (possibly spatial) structure.

Speaking formally, assume that we have m groups of photos, each of them representing some
established tested material. By n; we denote the cardinality of the j-th group, i.e., the number of
photos of the j-th material, where j € {1,...,m}. For k € {1,...,n;}, we consider the histogram
(in some monochromatic scale) 4; i of the k-th photo in the j-th group, i.e., the numbers (denoted

19),'NG! 2 B! 2972308,
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by ¥ x.i) of pixels with color intensity i fori € {0,...,255}. Let S; x = 2125(5) ¥j, ki be the sum of
pixels in the k-th photo of the j-th tested material and let define p; ;. ; = y J; i/S; k. Let us notice
that then dj x = (pj 0, - - -»Pjk255) can be considered as a discrete distribution of pixel intensity
(PID) of the k-th photo in the j-th group (Fig. 5).
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------------------------------- . j € {1... 4} number of material
: k € {1...10} number of photo
i € {1...255} pixel intensity
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Fig. 5. An illustration of a smoothed PID.

The aim of this section is, roughly speaking, to propose a method, basing on some advanced
techniques of inferential statistics, which enables to verify the differences between the groups of

distributions G; = {d j,k}nj

fol forje{l,...,m}.

3.2. Methodology

Referring to the above introduced notation and assumptions, in this subsection we present the
method that enables to test a hypothesis that the average distributions, which can be calculated
in a usual way (see below) for each group Gj, where j € {1, ..., m}, are not statistically different.
To do this, we propose some methods that are based on known hypothesis testing techniques
involving both parametric and nonparametric approaches, combined with suitable adjustments
usually required for multiple testing problems, i.e. Bonferroni correction. In particular, this method
controls the total probability of type I error, to avoid the effect of too frequent rejection in the
case of many hypotheses tested together.

In particular, let us notice at first that it is possible to look separately for every i-th “coordinate”
of our data set, where i € {0, ...,255}, to yield in each case (new) groups of “one-dimensional”
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data that look as follows:

Gll = {pl,l,i, M) pl,n],i}»
GlZ = {pz,l,is M) p2,n2,i}»

2)
G;n = {pm,l,i, ce pm,nm,i} .

Hence, for each i we can test the null hypothesis H!, which says that probability of finding a
pixel of intensity i in a given photo is (on average) the same for each tested materials. Let pva;
and pvk; denote p-values associated with the hypothesis H!, using the (parametric) ANOVA [25]
and (nonparametric) Kruskal-Wallis [26, 27] tests, respectively. Then, to conclude our procedure,
it is enough to test a “complete” null hypothesis Hy that is the conjunction of all null hypotheses
Hé fori € {0,...,255}, which can be interpreted as a statistical confirmation of the equality of all
average distributions (this procedure is also known as the multiple comparisons or the multiple
testing problem). To achieve this, we can apply a so called Bonferroni correction [28] in order to
calculate respective p-values related to both above mentioned approaches, which are:

pva = min {256 - pvay, ..., 256 - pva,ss, 1}, 3)
in the case of the ANOVA test, and
pvk = min {256 - pvkg, ..., 256 - pvk,ss, 1}, )

in the case of the Kruskal-Wallis test, respectively. Finally, it should be emphasized here that the
smaller values of pva and pvk (with the usual threshold at 0.01, 0.05 or 0.1), the greater statistical
confidence that differences between (the average distributions in) the groups G; for j € {1,...,m}
really exist.

In the further analysis (pairwise comparisons), the situation is similar. For a given pair
of materials, let pv; and pvw; denote p-values associated with the hypotheses H!, using the
(parametric) t-test [25] and (nonparametric) Wilcoxon [26, 27] test, respectively. Similarly, we
consider the null hypothesis Hy that consists of all null hypotheses Hé fori € {0,...,255} and
we use the Bonferroni correction. Finally, we obtain:

pvt =min {256 - 6 - pvty, ..., 256 - 6 - pviyss, 1}, 5)
in the case of the t-test, and
pyvw = min {256 - 6 - pywy, ..., 256 - 6 - pvw,ss, 1}, (6)

in the case of the Wilcoxon test, respectively.

3.3. Principal results

It should be reminded that in the process of data treatment for each of 4 different granular
materials: peas, triticale, wood chips and pellets, we had 10 photographs of their various prescribed
portions. The analysis was carried out for three image sizes (1233 x 1200, 733 x 700, 233 x 200
pixels) and for photographs containing a single grain. The authors suspect that the proposed
method of discrimination, by means of a statistical analysis, will be effective when there is a
sufficiently large number of grains and crevices, further called pores, in the picture. That was

302



W1 'é&‘s*f"ﬁsﬁkif}v@9),‘m&~"2,“p‘j§}‘~”zk)‘7'—~'3b8.
_J

b)

1233x1200 pixels 0,035

0,035

0,025

Propability

0,015

0,005

40 80 120 160 200 240
Pixel intensity

—Singlegrain —image 233x200 pixels —image 733x700pixels ==image 1233x1200 pixels

Single grain —— @@

Fig. 6. a) The procedure of “cutting out” a “central” part; b) an example of a change in the form of distribution for
a particular “photo size”, with respect to triticale.

experimentally confirmed. The idea of “cutting out” subsequent sizes of a photo is shown in
Fig. 6a, whereas Fig. 6b shows a change in distribution of pixel intensity for each image size, on
an example of triticale.

A PID was assigned to each of 10 photographs of each material at different “cutting out” size
shown in Figures 7 to 10. From the initial interpretation of distributions obtained in that way, it
can be noticed that with the reduction of the analysis area in individual photos, the variability of
distributions increases. Therefore, the authors conclude that the size of a photo (the amount of
grains in a picture) can have a significant impact on the reliability of the obtained results.
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Fig. 7. PID graphs for peas for particular photo sizes: a) 1233 x 1200 pixels; b) 733 x 700 pixels; c) 233 x 200 pixels;
d) a single grain.
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Fig. 8. PID graphs for pellets for particular photo sizes: a) 1233 x 1200 pixels; b) 733 x 700 pixels; ¢) 233 x 200 pixels;
d) a single grain.

According to the procedure described in Subsection 3.2 and the procedure of “cutting out”
(Fig. 5), p-values were determined. However, the analysis was carried out in two stages. In the
first stage, for each image size, four materials were examined together with the view of checking
whether there were statistical differences between these materials. The results are presented in
Fig. 11.
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Fig. 9. PID graphs for triticale for particular photo sizes: a) 1233 x 1200 pixels; b) 733 x 700 pixels; c) 233 x 200 pixels;
d) a single grain.
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Fig. 10. PID graphs for woodchips for particular photo sizes: a) 1233 x 1200 pixels; b) 733 x700 pixels; ¢) 233 x200 pixels;
d) a single grain.
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Fig. 11. Graphs of pva and pvk for a group of four materials versus image size.

The second stage of the analysis consisted in comparing the materials in pairs. Six combina-
tions were obtained for each image size. The results are presented in Figs. 12 and 13.
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Fig. 12. The values of pvt for comparison of each pair of materials, depending on the image size.
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Fig. 13. The values of pvw for comparison of each pair of materials, depending on the image size.

4. Preliminary conclusions

In the global analysis of robustness, i.e. testing all materials at once (Fig. 11), significant
differences between the analysed materials (pva, pvk less than 0.05 for image sizes 1233 x 1200,
733 x 700 and 233 x 200 pixels) were observed. It has to be noticed that pva and pvk grow as
the analysis area decreases. In the case of the “single grain” analysis, using the Kruskal-Wallis
test, the lack of significant differences in the PID between photographs of individual materials
(grains) can be stated. In summary, it can be therefore concluded that along with the reduction of
the analysis area, the statistical differences between photos decrease.

When compared in pairs (Figs. 12 and 13), a similar and more pronounced result was obtained.
For each of the two established materials, the photos differed statistically for the large analysis
area, whereas they were not statistically different for the smaller area of analysis. Accordingly,
evolutions of the pvw and pvt parameters are commonly monotonic. The observed exceptions
may result from the statistical nature of analyses, for example, the potentially unfulfilled (difficult
to verify) assumptions (see more details below) or a low test power resulting from a relatively
reduced quantity of samples.

Let us recall that all applied methods of our analysis, i.e. the (parametric) ANOVA and the
t-test as well as the (non-parametric) Kruskal-Wallis test and the Wilcoxon rank-sum test, led
to similar conclusions. It has to be emphasized that the assumptions underlying the parametric
methods, i.e. normally distributed samples (normality) and equal variances (homoscedasticity)
for each of the groups (in the case of ANOVA), which are not required by the Kruskal-Wallis or
Wilcoxon procedure, have not been verified since our dataset was not sufficiently large to apply
any limit approximation. Thus, regardless of the fact that nonparametric tests are not as powerful
as parametric ones, the results obtained from the nonparametric procedure seem to provide, at
least from a formal point of view, a more reliable basis for any conclusion.

The specific type of objects visible in the pictures of granular materials, i.e. a lot of tiny
elements of a varying shape with darker fields (pores) between them, requires a slightly different
approach to be taken to analysis. For example, confirmation of whether or not two different pictures
of a given material represent the same material does not have to be so obvious to automatic vision
systems. Most importantly, the obtained results lead to a conclusion that the proposed statistical
approach, although it still requires further improvements, can provide a basis for the development
of a quick inspection method for detecting differences between photographed granular materials
used in various processes.
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The PID and consequently the determined p—value (pva, pvk, pvt, pvw — depending on the
test performed) are influenced by many factors related to the physical properties of the examined
objects (grains). Generally, these values depend on the PID located in the grain (objects) and the
pore areas (Fig. 14a).

Grain (object)
Moisture

Species

Surface morphology

N | (oollution)
4 Value of pva,
pvk, pvt, pyw
Grain shape

Grain size

Grain size distribution

Pore

Fig. 14. The factors affecting the pixel intensity distribution: a) part of the analysed image; b) main factors.

The PID of grains can depend on moisture, species, impurities, surface morphology. However,
the PID located in the pore area is a derivative of physical properties such as shape and size of
grains.

Therefore, any stabilized process, e.g. dosing of a certain granular material, can be disturbed
by changing one of the factors listed in Fig. 14b. This will change the PID of the entire image. By
testing (comparing) the distributions obtained according to the procedure of Subsection 3.2 with
the reference distributions for a given granular material, similarities or differences can be found
in relation to the reference material (Fig. 15).

Discrimination

Ok €= of granular = Control
materials -
photos of | ixel i - Reference
material (during r:ixbe‘iﬁon of (a.?,.iis,,g [Respective p-values distributions
the process) the process) calculation

Camera = 1

\ Statistical tests
wap| with Bonferroni
correction

Granular
material

Fig. 15. A schematic of “on line” system application to the discrimination of plant granular materials.

5. Software facilities

All computations were performed by applying suitable procedures implemented by the authors
in R programming language (http://www.r-project.org), offering an open-source platform for
various methods of data analysis, including statistical inference techniques and data mining tools.
The source codes can be downloaded by the reader from our website (http://www2.im.uj.edu.pl/
PiotrKoscielniak/granular_code.R) under the terms of the GNU General Public License.
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Nomenclature, symbols and abbreviations

ANOVA — Analysis of Variance

DIA — Digital Image Analysis

PID — Pixel Intensity Distribution

Yj,ki  — thenumber of pixels with pixel intensity i for k-th photo in j-th group
Sk — sum of pixels for k-th photo in j-th group

djk — PID for k-th photo in j-th group

Hy, — null hypothesis

pva, pvk, pvt, pyw — respective p-values, i.e., the smallest significant levels at which Hy is rejected, for
ANOVA, Kruskal-Wallis test, t-test and Wilcoxon test.
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