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Buckling of moderately thick annular plates
subjected to torque

An attempt is made in the current research to obtain the fundamental buckling
torque and the associated buckled shape of an annular plate. The plate is subjected to a
torque on its outer edge. An isotropic homogeneous plate is considered. The governing
equations of the plate in polar coordinates are established with the aid of the Mindlin
plate theory. Deformations and stresses of the plate prior to buckling are determined
using the axisymmetric flatness conditions. Small perturbations are then applied to
construct the linearised stability equations which govern the onset of buckling. To
solve the highly coupled equations in terms of displacements and rotations, periodic
auxiliary functions and the generalised differential quadrature method are applied.
The coupled linear algebraic equations are a set of homogeneous equations dealing
with the buckling state of the plate subjected to a unique torque. Benchmark results
are given in tabular presentations for combinations of free, simply-supported, and
clamped types of boundary conditions. It is shown that the critical buckling torque
and its associated shape highly depend upon the combination of boundary conditions,
radius ratio, and the thickness ratio.

1. Introduction

Circular and annular plates under the action of a torque appear frequently
as parts of transmissions, pump rotors, and compressors. Dean [1] investigated
the elastic buckling of annular plates under uniform shearing force applied on its
edges. The mentioned work is the fundamental investigation on the stability of
annular plates under shear stresses. The theoretical investigation of this work is
limited to thin plates with both inner and outer edges clamped. Using the Galerkin
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method and the Hsu criterion, Tani et al. [2] investigated the parametric instability
of annular plates under periodic torsion. The instability regions associated with
both principal and combination parametric resonances are clarified for relatively
low frequency ranges. It is found that under the purely periodic torsion only the
combination instability region exists, while under the simultaneous action of the
static torsion the principal instability region exists too. The circumferential phase
difference of two vibration modes excited simultaneously at the resonance is also
found to change remarkably the relative width of the instability region. Tani [3] also
theoretically analyzed the dynamic stability of clamped, polar orthotropic annular
plates under the action of pulsating torsion where the effect of the static torsion was
taken into consideration by the Galerkin method. Durban and Stavsky [4] presented
an analytical closed-form solution for the critical buckling shear stress of thin polar
orthotropic annular plates using the classical plate theory formulation. Detailed
results for the critical load are provided for a wide range of material parameters,
plate geometry, and various boundary conditions.

For plates with variable thickness, Irie et al. [5] obtained the frequencies and
buckling loads of annular plate subjected to a torque. Numerical results of this
study are obtained according to the Ritz method. For this purpose, the transverse
deflection of an annular plate is written in a series of the deflection functions of a
uniform thickness annular platewithout the action of a torque. The kinetic and strain
energies of the plate are evaluated analytically and the frequency equation of the
plate is derived using the stationary value of the Lagrange functional. The present
method is applied to annular plates with two types of radial thickness variation, i.e.,
power law and exponential, and the natural frequencies (the frequency parameters)
and the divergence torques are calculated numerically. As a result, the effects
of the varying thickness, inner to outer radii ratio, and the boundary conditions
may be explored. In another study, Irie et al. [6] reported the buckling loads
of uniform thickness annular plates subjected to a torque. The buckling torques
and the buckling wave numbers in the circumferential direction are reported for
different radius ratios and for all combinations of clamped, simply supported, and
free boundary conditions. These values have been obtained by the Ritz method.
The numerical results of this study, however, are limited to the case of thin plates
where the effects of transverse shear stresses are ignored. The obtained numerical
results, therefore, may not be accurate for moderately thick and thick plates.

Zajączkowski [7] presented an investigation on the parametric instability of
elastic annular plates subjected to periodic torques on both inner and outer edges.
Instability charts are provided in graphical presentations.Doki andTani [8] analysed
the interactive buckling of annular plates made from a polar orthotropic material
under the combined action of radial and shear stresses. This study is limited to the
case of annular plates with both edges clamped. The deflected shape of the plate
is written as a series of shape functions, where each one satisfies the clamping
conditions. The Galerkin method is applied to the governing stability equation
of the plate to reach a standard eigenvalue problem. Hamada and Harima [9]
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applied the conventional finite difference method to the governing equations of a
shear deformable plate to extract the shear buckling stresses of annular plates with
arbitrary combination of edge supports. Various combinations of clamped, simply-
supported, and free edges are examined. In this research, also an experimental
investigation is performed for plates with both edges clamped. Ore and Durban
[10] analysed the buckling of a torque-loaded annular plate considering the elasto-
plastic material behaviour for the plate. This study covers both clamped and simply
supported edges. The governing equations consist of the classical stability equation
of thin plates in conjunction with the small strain J2 flow rule of plasticity or the
deformation theory of plasticity. This study also presents an experimental procedure
to obtain the critical shear loads.

Chang-jun and Xiao-an [11, 12] studied the buckling and post-buckling of
annular plates subjected to in-plane shear. The post-buckling analysis is based on
the Liapunov-Schmidt procedure and perturbation expansions in a small param-
eter to seek the bifurcation solutions of the non-linear boundary value problem
and to study the post-buckling behaviour of an annular plate under shear forces.
Singhatanadgid and Ungbhakorn [13] derived the similitude invariants and scaling
laws for buckling of polar orthotropic annular plates subjected to torsional loads
and/or radial compression. Buckling behaviours of the prototype with complicated
boundary conditions, of which a theoretical solution is not available, can be pre-
dicted from the experimental result on the model. Torsional vibration behaviour is
studied by Wu [14]. An analytical model is developed, and the natural frequencies
and mode shapes are calculated for the torsional vibration under different bound-
ary conditions. An exact procedure is developed to obtain the torsional frequencies
of the plate in terms of the Bessel functions. Maretic et al. [15] investigated the
transverse vibration of a thin annular plate which is clamped at its inner edge to a
rigid shaft, while its outer edge is clamped to a rigid cylinder. The shaft and the
outer edge of the plate are loaded by torques of the same intensity, but of opposite
directions. The whole structure rotates at a constant angular speed. The majority of
the work is devoted to the influence of the applied torque on the natural frequencies.
Simultaneous interaction of the forces due to rotation and shear stresses caused by
torque are investigated.

The above literature survey and further investigation of the available works
through the open literature reveals that a comprehensive study on the asymmetrical
buckling of shear deformable annular plates under the action of shear stresses is not
reported so far. To this end, an annular plate which is subjected to a torque on its
outer edge is considered.Mindlin plate theory is used to estimate the components of
displacement field. The equations associated with the primary state and buckling
state are obtained. The critical state of the plate are obtained by means of the
generalised differential quadrature method. The provided solution method may be
used for arbitrary combinations of free, clamped, and simply supported boundary
conditions. Tabulated numerical results provide the critical buckling torque as
function of the thickness ratio, radius ratio, and boundary conditions.
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2. Theoretical formulation

An isotropic homogeneous annular plate is under investigation. Inner radius,
outer radius, and thickness of the plate are denoted by b, a, and h. Polar coordinates
system (r, θ, z) is applied to the plate where the origin is located at the midsur-
face center of the plate. In the present research, the radial, circumferential and
through-the-thickness directions of the plate are denoted by r , θ, and z represent,
respectively.

Mindlin plate theory is used in the current research to obtain the components
of the displacement field in the annular plate. This theory is accurate enough in pre-
diction of the global characteristics of beams, plates, and shells. Using the Mindlin
plate theory, the three components of the displacement field may be expressed
in terms of displacement of the mid-surface and also cross-section rotations as
[16–18]

u(r, θ, z) = u0(r, θ) + zφr (r, θ),

v(r, θ, z) = v0(r, θ) + zφθ (r, θ), (1)

w(r, θ, z) = w0(r, θ),

where as usual, in Eqs. (1) u, v, and w represent the radial, circumferential, and
through-the-thickness displacement components, respectively. A subscript 0 in-
dicates the characteristics of the mid-surface. As usual, φr and φθ stand for the
transverse normal rotations about θ and r axes, respectively. In all of themanuscript,
same as Eq. (1) a letter after comma means the partial derivative with respect to
that letter.

The strain field of an annular plate suitable for first order shear deformation
plate theory are expressed as [16, 17]

εrr = u,r +
1
2
w2
,r ,

εθθ =
1
r

u +
1
r
v,θ +

1
2r2w

2
,θ ,

γrθ =
1
r

u,θ + v,r −
1
r
v +

1
r
w,θw,r , (2)

γrz = u,z + w,r ,

γzθ =
1
r
w,θ + v,z .

In Eq. (2), radial and circumferential strains are denoted by εrr and εθθ . Besides,
the components of the shear strain are shown by γrθ , γrz , and γzθ .
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The constitutive equation of the plate under linear elastic deformation are
as [16]




σrr

σθθ

τrθ

τrz

τzθ




=



Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66






εrr

εθθ

γrθ

γrz

γzθ




, (3)

where in the above equation Qi j , i, j = 1, 2, 4, 5, 6 are the material stiffness coeffi-
cients. For an isotropic homogeneous material, these coefficients may be obtained
in terms of the Young modulus E and Poisson’s ratio ν as

Q11 = Q22 =
E

1 − ν2 , Q12 = νQ11 ,

Q44 = Q55 = Q66 =
E

2(1 + ν)
.

(4)

2.1. Stress resultants

Stress resultants of the plate may be revealed upon integration of the stress
field through the thickness of the plate [19]. Therefore, the stress resultants of the
plate under first order shear deformation plate theory take the form

(Nrr, Nθθ, Nrθ ) =

+h/2∫
−h/2

(σrr, σθθ, τrθ ) d z,

(Mrr, Mθθ, Mrθ ) =

+h/2∫
−h/2

z(σrr, σθθ, τrθ ) d z, (5)

(Qr,Qθ ) =

+h/2∫
−h/2

(τrz, τzθ ) d z.

Definition of stress resultants in terms of mid-surface degrees of freedom may be
achieved by substitution of Eq. (3) into Eqs. (5) with the aid of Eqs. (1) and (2).
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Therefore one has




Nrr

Nθθ
Nrθ



=



A11 A12 0
A12 A22 0
0 0 A66






u0,r +
1
2
w2

0,r

1
r
v0,θ +

1
r

u0 +
1

2r2w
2
0,θ

1
r

u0,θ + v0,r −
1
r
v0 +

1
r
w0,rw0,θ




,




Mrr

Mθθ

Mrθ



=



D11 D12 0
D12 D22 0
0 0 D66






φr,r

1
r
φr +

1
r
φθ,θ

1
r
φr,θ + φθ,r −

1
r
φθ




, (6)




Qr

Qθ



=



A55 0
0 A44






w0,r + φr

1
r
w0,θ + φθ



.

For an isotropic homogeneous material, the extensional stiffnesses Ai j and the
bending sitffnesses Di j may be written in terms of the Young’s modulus, plate
thickness and Poisson’s ratio. These constants are as follows

A11 = A22 =
Eh

1 − ν2 , A12 =
νEh

1 − ν2 , A44 = A55 = A66 =
Eh

2(1 + ν)
,

D11 = D22 =
Eh3

12(1 − ν2)
, D12 =

νEh3

12(1 − ν2)
, D66 =

Eh3

24(1 + ν)
.

(7)

2.2. Equilibrium equations and boundary conditions

Static version of theHamilton principle, also known as the virtual displacement
principle, may be used to obtain the nonlinear equilibrium equations of the plate
[19]. The total virtual energy of the plate consists of two parts. The first part, which
is the virtual strain energy, and the second one, which is the potential energy due
to the applied torque on the outer edge of the annular plate. Consequently for an
equilibrium position, the following identity should be satisfied

a∫
b

2π∫
0

+h/2∫
−h/2

(
σrrδεrr + σθθδεθθ + τrθδγrθ + τzθδγzθ + τrzδγrz

)
r d z dθ dr

−
T

2πa2

2π∫
0

rδv0��r=a dθ = 0. (8)
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With the aid of proper mathematical manipulations and simplifications, the
governing equilibrium equations of the plate are obtained as follows

δu0 : Nrr,r +
1
r

Nrθ,θ +
1
r

(Nrr − Nθθ ) = 0,

δv0 :
1
r

Nθθ,θ + Nrθ,r +
2
r

Nrθ = 0,

δw0 : Qr,r +
1
r

Qθ,θ +
1
r

Qr + Nrrw0,rr + Nθθ

(
1
r
w0,r +

1
r2w0,θθ

)
+ 2Nrθ

(
1
r
w0,rθ −

1
r2w0,θ

)
= 0,

δφr : Mrr,r +
1
r

Mrθ,θ +
1
r

(Mrr − Mθθ ) −Qr = 0,

δφθ :
1
r

Mθθ,θ + Mrθ,r +
2
r

Mrθ −Qθ = 0.

(9)

The boundary conditions of the plate may be obtained through the process
of applying the Green-Gauss theorem to the total virtual energy of the plate.
The boundary conditions are two sets. The in-plane and out-of-plane boundary
conditions. The in-plane boundary conditions of the plate for the current problem
are as follows

r = b : u0 = v0 = 0,

r = a : u0 = Nrθ −
T

2πa2 = 0.
(10)

The above boundary conditions indicate a plate which is subjected to a con-
servative torque on the outer edge while the inner edge is restrained against radial
and circumferential displacements.

The out-of-plane boundary conditions are used for the onset of buckling. Three
different types of boundary conditions are used in this study, which are clamped
(C), simply supported (S), and free (F). The out-of plane boundary conditions for
each type may be expressed as

S : w0 = Mrr = φθ = 0,
C : w0 = φr = φθ = 0,
F : rQr + r Nrrw0,r + Nrθw0,θ = Mrr = Mrθ = 0.

(11)

3. Prebuckling analysis

An accurate and correct prebuckling analysis is a vital step to obtain the
buckling load and shape of the plate. Prebuckling analysis should be done to
designate the stresses and deformations of the plate before and also at the onset
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of buckling. Only flat pre-buckling configurations are taken into account, where
the classical bifurcation buckling may be extracted under such circumstances.
Consequently, in prebuckling state, w0

0 = φ0
r = φ0

θ = 0 where a superscript 0
indicates the prebuckling state of the plate. It is of worth-noting that, to obtain the
prebuckling state of the plate, solution of the first two equations is sufficient.

Due to the presence of a constant torque, symmetrical geometry, and bound-
ary conditions the prebuckling deformations are also symmetric. The prebuckling
stresses of the plate should be obtained according to the first two of the equilib-
rium equations under symmetrical deformations. These equations in prebuckling
state are

N0
rr,r +

1
r

(N0
rr − N0

θθ ) = 0,

N0
rθ,r +

2
r

N0
rθ = 0,

(12)

The second equation is a simple ordinary differential equation in terms of N0
rθ .

Recalling the boundary conditions 2πa2N0
rθ (a) = T , the solution of this equation

may be expressed as 2πr2N0
rθ (a) = T . This equation also may be written in terms

of tangential displacement v0
0 which is a second order equation whose solution,

recalling the boundary conditions (10), takes the form

v0
0 =

T (1 + ν)
2πb2rEh

(
r2 − b2

)
. (13)

Similarly, the first of Eqs. (12) results in a simple homogeneous differential equation
for u0

0 as
du02

0
dr2 +

1
r

du0
0

dr
−

1
r2 u0

0 = 0. (14)

Recalling the boundary conditions u0
0(a) = u0

0(b) = 0, the solution of the above
equation may be written as

u0
0 = 0. (15)

Using Eqs. (13) and (15), the stress resultants of the prebuckling state may be
obtained as

N0
rr = 0,

N0
θθ = 0,

N0
rθ =

T
2πr2 ,

(16)

The above equation accepts the fact that, prior to buckling and due to an applied
torque, only an in-plane shear stress is induced and the components of radial and
circumferential stresses are equal to zero.
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4. Stability equations

Stability equations govern the onset of buckling of the plate. These equations
may be obtained using the small perturbations or the adjacent equilibrium criterion
[22, 23]. A plate whose displacement field in prebuckling state are u0

0, v
0
0 , w

0
0,

φ0
r , and φ0

θ is considered. Small perturbations are applied to the components of
the prebuckling state which are denoted by u1

0, v
1
0 , w

1
0, φ

1
r , and φ1

θ . Consequently,
components of displacement on the secondary equilibrium path are

u0 = u0
0 + u1

0 ,

v0 = v0
0 + v

1
0 ,

w0 = w0
0 + w

1
0 ,

φr = φ
0
r + φ

1
r ,

φθ = φ
0
θ + φ

1
θ .

(17)

The incremental displacement which are shown by a superscript 1 are suf-
ficiently small since only the buckling state in under investigation. Similar to
displacements, the incremental stress resultants are also obtained [22, 23]. The
governing stability equations which govern the onset of buckling take the form

N1
rr,r +

1
r

N1
rθ,θ +

1
r

(
N1
rr − N1

θθ

)
= 0,

N1
rθ,r +

1
r

N1
θθ,θ +

2
r

N1
rθ = 0,

Q1
r,r +

1
r

Q1
θ,θ +

1
r

Q1
r + N0

rrw
1
0,rr + N0

θθ

(
1
r
w1

0,r +
1
r2w

1
0,θθ

)
+ 2N0

rθ

(
1
r
w1

0,rθ −
1
r2w

1
0,θ

)
= 0,

M1
rr,r +

1
r

M1
rθ,θ +

1
r

(
M1

rr − M1
θθ

)
−Q1

r = 0,

M1
rθ,r +

1
r

M1
θθ,θ +

2
r

M1
rθ −Q1

θ = 0.

(18)

The expression of the stability equations in terms of the displacements may be
obtained easily as
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A11

(
u1

0,rr +
1
r

u1
0,r +

1
r
v1

0,rθ −
1
r2 u1

0 −
1
r2 v

1
0,θ

)
+ A66

(
1
r2 u1

0,θθ −
1
r
v1

0,rθ −
1
r2 v

1
0,θ

)
= 0,

A11

(
1
r

u1
0,rθ +

1
r2 u1

0,θ +
1
r2 v

1
0,θθ

)
+ A66

(
−

1
r2 u1

0,rθ −
1
r

u1
0,rθ +

1
r
v1

0,r −
1
r2 v

1
0 + v

1
0,rr

)
= 0,

A66

(
φ1
r,r +

1
r
φ1
θ,θ +

1
r
φ1
r +

1
r2w

1
0,θθ + w

1
0,rr +

1
r
w1
,r

)
+

T
πr2

(
1
r
w1

0,rθ −
1
r2w

1
0,θ

)
= 0,

D11

(
φ1
r,rr +

1
r
φ1
r,r +

1
r
φ1
θ,rθ −

1
r2 φ

1
r −

1
r2 φ

1
θ,θ

)
+ D66

(
1
r2 φ

1
r,θθ −

1
r
φ1
θ,rθ −

1
r2 φ

1
θ,θ

)
− A66

(
φ1
r + w

1
0,r

)
= 0,

D11

(
1
r
φ1
r,rθ +

1
r2 φ

1
r,θ +

1
r2 φ

1
θ,θθ

)
+ D66

(
1
r2 φ

1
r,θ −

1
r
φ1
r,rθ +

1
r
φ1
θ,r

−
1
r2 φ

1
θ + φ

1
θ,rr

)
− A66

(
φ1
θ +

1
r
w1

0,θ

)
= 0.

(19)

Eqs. (19) are a set of linearised equations in terms of the displacement com-
ponents. These equations act as a set of homogeneous equations in terms of the
incremental displacements where the applied torque T acts as an eigenvalue. It
is observed that the first two stability equations are written only in terms of the
in-plane displacements and the last three ones are expressed only in terms of
the out-of-plane displacement components. Such decoupling is expected since the
stretching-bending coupling stiffnesses are absent for an isotropic homogeneous
material. Consequently, the last three equations are adequate to analyse the buckling
load and shape of the annular plate subjected to torque.

5. Solution procedure

Since the geometry of the plate is periodic (a complete annular plate which
occupies the domain 0 < θ < 2π), the displacement components and cross sections
rotations should be periodic functions [16, 17, 20, 21, 24]. Therefore each of these
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components take the form

w1
0 (r, θ) = W c

n (r) cos(nθ) +W s
n (r) sin(nθ),

ϕ1
r (r, θ) = Φc

n(r) cos(nθ) + Φs
n(r) sin(nθ),

ϕ1
θ (r, θ) = Ψc

n (r) cos(nθ) + Ψs
n(r) sin(nθ),

(20)

where number of nodal diameters is denoted by n. Inserting the Eqs. (20) into
the last three governing equations (19) and collecting the coefficients sin(nθ) and
cos(nθ), separately, the following six homogeneous coupled ordinary differential
equations are obtained

A66

(
Φ

c
n,r +

n
r
Ψ

s
n +

1
r
Φ

c
n −

n2

r2 W c
n +W c

n,rr +
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The following dimensionless quantities are introduced and are used in the rest of
the work
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With the aid of the newly defined parameters (22), stability equations (21) change to
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Six highly coupled are provided in the above equations. These equations are homo-
geneous and have non-constant coefficients. Obtaining the exact solution for these
equations, even if exists, is not straightforward. Therefore, a numerical strategy is
preferred in this study. Generalised differential quadrature (GDQ)method as a pow-
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erful tool is used to discretise the partial differential equations (23). The process is
not repeated in here, meanwhile one may refer to the available works, see e.g. [25].

Distribution of nodal points is one of the main parameters in the GDQmethod.
Distribution according to Chebyshev-Gauss-Lobatto rule has shown excellent ac-
curacy. In the current research also Chebyshev-Gauss-Lobatto distribution grid is
used which yields

si = β +
1 − β

2

{
1 − cos

(
i − 1
N − 1

π

)}
, i = 1, 2, . . . , N (24)

here the number of nodal points in GDQ method is denoted by N . Upon applying
the GDQ method to Eqs. (23), a linear system of equations is achieved where the
eigenvalue parameter is τ. After imposing the boundary conditions the eigenvalue
problem takes the form

(KE − τKG) X = 0. (25)

In Eq. (25), the elastic stiffness matrix is denoted by KE while the geometric
stiffness matrix induced by uniform torque τ = 1 is denoted by KG . The mentioned
system should be solved an as eigenvalue problem to reach the critical buckling
torque, critical buckling circumferential lode number and also buckling shape of
the annular plate.

6. Numerical results and discussion

The process provided in the previous sections is used herein to discuss the
critical states of an annular plate under the action of torque. In this section, the
nondimensional torque parameter is introduced according to the definition of Irie
et al. [6] which is equal to

λcr =
1

2π
τcr =

6(1 − ν2)T
πEh3 . (26)

All of the numerical results and inputs data are in a dimensionless form and
therefore the elasticity modulus of the plate is not needed to be known, however,
Poisson’s ratio affects the numerical results and is chosen as ν = 0.3.

The following convention is established for the boundary conditions. For in-
stance, an F-S plate indicates an annular plate which is free at inner edge while
is simply-supported at the outer edge. After examination of convergence of the
critical buckling load parameter up to three digits, the number of nodal points in
the generalised differential quadrature method is set equal to N = 32 point.

For the case of thin annular plates, a comparison study is provided firstly.
Afterwards, the critical buckling torques and the associated mode numbers are ob-
tained for shear deformable annular plates with various combinations of boundary
conditions.
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6.1. Comparison studies

Comparison study of this research is confined to the case of thin annular
plates. Irie et al. [6] reported the critical buckling torque and its associated mode
number for thin plates with 8 different combinations of boundary conditions. This
comparison is performed in Table 1. To model a thin plate the thickness to radius
ratio in set as δ = 0.001. As seen, both critical buckling torques and the number
of nodal diameters at the onset of buckling are in reasonable agreement with the
results of Irie et al. [6] which are obtained via a Ritz method.

Table 1.
Comparison of the non-dimensional critical buckling torque parameter λcr with those of Irie et al.

[6]. Number of nodal diameters at the onset of buckling is provided in parenthesis
B.Cs. Source β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5 β = 0.6 β = 0.7

C-C
Present 17.454(2) 35.982(3) 61.955(3) 106.271(4) 186.051(6) 341.101(7) 697.480(11)

Irie et al. [6] 17.55(2) 36.02(3) 61.97(3) 106.3(4) 186.1(6) 341.2(7) 697.7(11)

S-S
Present 11.288(1) 21.323(2) 37.083(2) 63.401(3) 110.620(4) 202.305(5) 414.444(7)

Irie et al. [6] 11.38(1) 21.35(2) 37.10(2) 63.41(3) 110.6(4) 202.3(5) 414.5(7)

C-S
Present 15.346(2) 29.353(2) 51.052(3) 87.262(4) 150.108(5) 273.920(6) 556.735(9)

Irie et al. [6] 15.41(2) 29.37(2) 51.06(3) 87.27(4) 150.1(5) 274.0(6) 556.8(9)

S-C
Present 13.899(2) 25.800(2) 47.149(3) 81.310(3) 142.799(4) 262.297(6) 541.256(9)

Irie et al. [6] 14.05(2) 25.85(2) 47.18(3) 81.33(3) 142.8(4) 262.3(6) 541.4(9)

F-C
Present 3.326(1) 6.026(1) 10.536(1) 19.304(1) 31.939(2) 59.440(3) 121.828(4)

Irie et al. [6] 3.436(1) 6.092(1) 10.60(1) 19.37(1) 32.05(2) 59.63(3) 122.1(4)

F-S
Present 2.784(1) 4.6384(1) 7.282(1) 11.528(1) 18.991(1) 33.604(1) 63.959(2)

Irie et al. [6] 2.905(1) 4.701(1) 7.330(1) 11.57(1) 19.03(1) 33.64(1) 64.03(2)

C-F
Present 5.134(1) 8.307(2) 12.782(2) 21.286(2) 35.763(3) 64.832(4) 128.774(5)

Irie et al. [6] 5.137(1) 8.324(2) 12.80(2) 21.30(2) 35.80(3) 64.91(4) 128.9(5)

S-F
Present 2.875(1) 4.686(1) 7.319(1) 11.485(2) 17.252(2) 28.791(2) 55.761(2)

Irie et al. [6] 2.811(1) 4.689(1) 7.319(1) 11.50(2) 17.26(2) 28.79(2) 55.73(2)

6.2. Parametric studies

After validating the present formulation for the case of thin plates, results are
given for the case of moderately thick and thick plates.

Table 2 provides the critical buckling torque parameter for different combina-
tions of boundary conditions, different thickness to radius ratios, and various inner
to outer radius ratios. Numerical results from this study reveal that, for all types of
boundary conditions, as the inner radius increases (β parameter increases) the criti-
cal buckling torque increases. Such trend is expected since the local flexural rigidity
of the boundary conditions is more sensed when two boundaries are close to each
other. Also, for different combinations of boundary conditions with the increase in
the inner radius, number of nodal diameters also increases. It is observed that the
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Table 2.
Non-dimensionless critical torque parameter λcr in annular shaped plates with different

combinations of boundary conditions, various inner to outer radius ratios, and thickness to outer
radius ratios. The number of nodal diameters is denoted in parenthesis

B.Cs. δ β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5 β = 0.6 β = 0.7

C-C

0.001 17.454(2) 35.982(3) 61.955(3) 106.271(4) 186.051(6) 341.101(7) 697.480(11)
0.02 16.808(2) 35.041(3) 60.431(3) 103.241(4) 178.986(6) 322.848(8) 635.728(11)
0.05 14.229(2) 30.993(3) 53.758(3) 90.260(4) 150.414(6) 254.246(8) 444.826(11)
0.10 9.144(2) 22.134(3) 39.261(3) 63.654(4) 98.436(6) 149.938(8) 223.078(13)

C-S

0.001 15.346(2) 29.353(2) 51.052(3) 87.262(4) 150.108(5) 273.920(6) 556.735(9)
0.02 14.872(2) 28.775(2) 50.065(3) 85.337(4) 145.946(5) 263.448(6) 521.530(9)
0.05 12.925(2) 26.181(2) 45.615(3) 76.769(4) 128.017(5) 220.267(7) 396.431(10)
0.10 8.752(2) 20.111(2) 35.135(3) 57.421(4) 90.769(5) 141.452(7) 217.010(11)

S-C

0.001 13.899(2) 25.800(2) 47.149(3) 81.310(3) 142.799(4) 262.297(6) 541.256(9)
0.02 13.588(2) 25.439(2) 46.438(3) 79.979(3) 139.577(5) 253.409(6) 509.559(9)
0.05 12.122(2) 23.696(2) 43.030(3) 73.685(3) 124.172(5) 215.782(6) 392.895(9)
0.10 8.454(2) 19.012(2) 34.090(3) 56.361(4) 89.694(5) 140.687(7) 216.458(11)

S-S

0.001 11.288(1) 21.323(2) 37.083(2) 63.401(3) 110.620(4) 202.305(5) 414.444(7)
0.02 11.117(1) 21.092(2) 36.729(2) 62.658(3) 108.910(4) 197.893(5) 399.325(7)
0.05 10.298(1) 19.952(2) 34.976(2) 59.025(3) 100.749(4) 177.662(5) 334.526(8)
0.10 8.084(2) 16.689(2) 29.912(2) 48.947(3) 79.632(4) 128.870(6) 207.371(10)

F-S

0.001 2.784(1) 4.6384(1) 7.282(1) 11.528(1) 18.991(1) 33.604(1) 63.959(2)
0.02 2.658(1) 4.543(1) 7.176(1) 11.375(1) 18.743(1) 33.136(1) 62.637(2)
0.05 2.382(1) 4.294(1) 6.907(1) 11.010(1) 18.160(1) 31.993(1) 59.267(2)
0.10 1.889(1) 3.798(1) 6.335(1) 10.204(1) 16.815(1) 29.072(1) 51.450(2)

F-C

0.001 3.326(1) 6.026(1) 10.536(1) 19.304(1) 31.939(2) 59.440(3) 121.828(4)
0.02 3.166(1) 5.895(1) 10.361(1) 18.937(2) 31.320(2) 57.961(3) 117.738(4)
0.05 2.810(1) 5.551(1) 9.904(1) 17.899(2) 29.607(2) 53.709(3) 105.451(4)
0.10 2.176(1) 4.820(1) 8.877(1) 15.565(2) 25.626(2) 44.210(3) 80.175(5)

S-F

0.001 2.875(1) 4.686(1) 7.319(1) 11.485(2) 17.252(2) 28.791(2) 55.761(2)
0.02 2.857(1) 4.669(1) 7.293(1) 11.408(2) 17.121(2) 28.521(2) 55.029(2)
0.05 2.772(1) 4.598(1) 7.203(1) 11.210(2) 16.776(2) 27.775(2) 52.875(2)
0.10 2.522(1) 4.373(1) 6.914(1) 10.645(2) 15.806(2) 25.731(2) 47.254(2)

C-F

0.001 5.134(1) 8.307(2) 12.782(2) 21.286(2) 35.763(3) 64.832(4) 128.774(5)
0.02 5.072(1) 8.223(2) 12.656(2) 21.068(2) 35.249(3) 63.523(4) 124.896(5)
0.05 4.794(1) 7.932(2) 12.215(2) 20.276(2) 33.524(3) 59.195(4) 112.078(5)
0.10 4.078(1) 7.181(2) 11.030(2) 18.125(2) 29.174(3) 49.133(4) 85.778(5)

critical buckling load parameter is highly dependent on the thickness ratio. Such
effect is ignored in classical plate theory. The effect of thickness is more observed in
plates with clamped edge and is less sensed in plates with free edge. Unlike the clas-
sical plate theory results, in the analysis under first-order shear deformation plate
theory the number of nodal diameters is dependent on the thickness ratio. The fact
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that thickness may change the buckled shape of the plate is observed for thick
plates with small β ratio while for moderately thick plates with higher β ratios this
condition is more severe. Consequently, to achieve a reliable design and distinguish
the number of critical points in a plate, the Mindlin plate theory is preferred.

Figures 1 to 3 depict the buckled shape of, in order, C-C, F-C, and C-F plates
with various β ratios where the δ ratio is set equal to 0.05. It is verified that buckled

(a) (b)

(c) (d)

Fig. 1. Buckling configurations of C-C plates with δ = 0.05 subjected to torque for various β ratios.
(a) β = 0.1, n = 2, λcr = 14.229, (b) β = 0.2, n = 3, λcr = 30.993, (c) β = 0.3, n = 3, λcr = 53.758,

(d) β = 0.4, n = 4, λcr = 90.260

(a) (b)

(c) (d)

Fig. 2. Buckling configurations of F-C plates with δ = 0.05 subjected to torque for various β ratios.
(a) β = 0.1, n = 1, λcr = 2.810, (b) β = 0.2, n = 1, λcr = 5.551, (c) β = 0.3, n = 1, λcr = 9.904,

(d) β = 0.4, n = 2, λcr = 17.899
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(a)

(b)

(c)

(d)

Fig. 3. Buckling configurations of C-F plates with δ = 0.05 subjected to torque for various β ratios.
(a) β = 0.1, n = 1, λcr = 4.794, (b) β = 0.2, n = 2, λcr = 7.932, (c) β = 0.3, n = 2, λcr = 12.215,

(d) β = 0.5, n = 3, λcr = 33.524

shape is highly dependent on the β ratio. Also it is seen that boundary conditions
are satisfied at the supports of the plate.

7. Conclusion

An investigation is performed to analyse the asymmetrical buckling behaviour
of annular plates subjected to a torque on the outer edge. Analysis is carried out
using the first order shear deformation plate theory and the von-Kármán type of
geometrical nonlinearity. The three partial differential equations are expressed in
a new presentation which consists of six ordinary differential equations. These
equations are solved as an eigenvalue problem using the generalised differential
quadrature method. Followings are the general conclusions of the present study
• Buckling torque of the plate is highly dependent on the radii of the plate.

In general, as the inner to outer radius ratio increases, the critical buckling torque
increases too.
•The shape of the plate at the onset of buckling is highly dependent on the inner

to outer radius ratio. For various combinations of boundary conditions, increasing
the β ratio may increase the number of nodal diameters.
•Among the eight different combinations of boundary conditions, the buckling

load from maximum to minimum belongs to C-C, C-S, S-C, S-S, C-F, F-C, S-F,
and F-S plates.
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• The critical buckling load depends on the thickness ratio. This fact is ignored
in the classical plate theory. Dependency of the buckling load to thickness is more
observed in plates with at least one edge clamped and is less revealed in plates with
free edge.
• The number of nodal diameters which is a main factor in the buckled shape of

the plate is highly dependent to the thickness ratio. This fact is ignored in analysis
under classical plate theory. In general, increasing the thickness may increase the
number of nodal diameters at the onset of buckling.

Manuscript received by Editorial Board, January 14, 2019;
final version, April 14, 2019.
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