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Abstract. In the paper, a solution of the time-fractional single-phase-lagging heat conduction problem in finite regions is presented. The heat 
conduction equation with the Caputo time-derivative is complemented by the Robin boundary conditions. The Laplace transform with respect 
to the time variable and an expansion in the eigenfunctions series with respect to the space variable was applied. A method for the numerical 
inversion of the Laplace transforms was used. Formulation and solution of the problem cover the heat conduction in a finite slab, hollow cylinder 
and hollow sphere. The effect of the fractional order of the Caputo derivative and the phase-lag parameter on the temperature distribution in 
a slab has been numerically investigated.
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where Γ is the Gamma function and 0 Dt
α denotes the left Caputo 

derivative of order α with respect to variable t. The left Caputo 
derivative aDt

α is defined by

aDt
α f (x, t) = 

1
Γ(m ¡ α)

t

a
∫

1
(t ¡ u)α + 1 ¡ m

∂mf (x, u)

∂um du,

	 for  m ¡ 1 < α < m

∂mf (x, t)
∂tm ,	 for  α < m 2 N

� (4)

The heat conduction equation can be derived by using the 
constitutive equation (3) and the energy conservation equa-
tion [1]

	 –∇ ¢ q(r, t) + g(r, t) = ρCp
∂T
∂t

� (5)

where g(r, t) is the volumetric rate of the heat generation, ρ is 
the density of the material and Cp is the specific heat capacity. 
Combining the constitutive equation (3) with the energy con-
servation equation (5) leads to the fractional single-phase-lag-
ging heat conduction equation. In this approach the following 
property of the Caputo derivative is used [4]

	 aDt
α(aDt

mf (t)) = aDt
α + mf (t)  for  m = 0, 1, 2, …� (6)

The analytical solution of the fractional differential equa-
tions occurring in mathematical models can be obtained only 
for some particular cases of the considered problems. The 
numerical methods for solving the fractional problems have 
been applied by many authors (for example papers [5‒6]). An 
application of the Laplace transform approach allows one to 
obtain a solution in the Laplace transform domain. For some 

1.	 Introduction

The classical theory of the heat conduction is based on the 
Fourier law [1]

	 q(r, t) = –k∇T(r, t)� (1)

where q is the heat flux vector, r is the point in the consid-
ered region, t is the time, k is the thermal conductivity of the 
material, ∇ is the gradient operator and T is the temperature. 
The Fourier law assumes simultaneous appearance of the heat 
flux and the temperature gradient. This assumption implies an 
unrealistic infinitely fast heat flow in the medium. To avoid the 
non-physical speed of the heat signal in the mathematical model 
of the heat conduction, Tzou in paper [2] has been proposed 
a generalization of the Fourier law by introducing a phase-lag 
parameter. This leads to the heat conduction model which is 
called the single-phase-lag model of the heat conduction. In this 
case, the constitutive equation (1) is replaced by the following 
relationship

	 q(r, t + τ) = –k∇T(r, t)� (2)

where τ is the phase-lag parameter. Expanding the left-hand 
side of equation (2) into the fractional Taylor series with respect 
to variable τ and taking into account two terms of this series, 
we obtain the constitutive equation in the form [3]

	 q(r, t) +  τα

Γ(1 + α)
0 Dt

αq = –k∇T(r, t),  0 < α ∙ 1� (3)

*e-mail: urszula.siedlecka@im.pcz.pl

Manuscript submitted 2018-03-05, revised 2018-07-04, initially accepted  
for publication 2018-07-25, published in April 2019.



402

U. Siedlecka

Bull.  Pol.  Ac.:  Tech.  67(2)  2019

problems, the analytical form of the inverse transforms can 
be obtained (see [7‒8]). If an analytical form of the inverse 
Laplace transforms cannot be determined, a method for the nu-
merical inversion may be applied [9‒10]. A review of numerical 
methods to the inverse Laplace transform is given in paper [11]. 
An application of numerical inversion of Laplace transforms in 
fractional calculus was presented in paper [12].

Many researchers, for investigations of the heat transfer 
in a medium, use the dual-phase-lag models [13‒14]. A par-
ticular case of these types models of heat transfer is the sin-
gle-phase-lag model. The heat conduction model based on the 
fractional single-phase-lagging approach has been used in paper 
[15]. The solution of the problem was obtained by the Laplace 
transform technique. The effect of the fractional order on tem-
perature in the thin film was investigated.

In this paper, the problem of the heat conduction in a fi-
nite region, based on the single-phase-lag model with the frac-
tional time-derivative in the heat conduction equation, has been 
studied. The solution of the problem in the Laplace transform 
domain concerns the heat conduction in a slab, hollow cylinder 
and hollow sphere. The inverse of the Laplace transforms using 
the numerical method was determined. Numerical results are 
compared with an analytical solution which was appointed for 
a fixed value of the derivative order. The presented results of 
computations concern heat conduction in a slab with a heat 
source in the form of a ramp-type function and the heat con-
duction when the ambient temperature changes sinusoidally. 
The effect of the fractional derivative order and the phase-lag 
parameter on the temperature distribution in the slab has been 
investigated.

2.	 Formulation of the problem

The heat conduction equation can be derived using constitutive 
equation (3) and energy equation (5). The obtained fractional 
single-phase-lagging equation can be written in the form

	
τα 0 Dt

α + 1T(r, t) + ∂T
∂t

 =

= κ∇2T(r, t) + κ
k
(g(r, t) + τα 0 Dt

αg(r, t))
� (7)

where τα = τα/Γ(1 + α) and κ = k/ρCp is the thermal diffu-
sivity. This time-fractional equation is a type of the general-
ized Cattaneo equation which describes an anomalous trans-
port processes [16]. According to definition (4), the time-frac-
tional derivative depends on the past state, therefore equation 
(7) presents the description of the non-local heat conduction 
[17].

Equation (7) is valid in a region which is specified by the 
considered medium. We consider the heat conduction problem 
in a slab, cylinder and sphere. In the each of three cases, we 
assume the one dimensional heat conduction (for convenience, 
we assume r = x): for the slab – in the direction of x-axis of the 
rectangular coordinate system, for the cylinder – in the radial 

direction of the cylindrical coordinate system assuming axial 
symmetry and for the sphere – in the radial direction of the 
spherical coordinate system assuming the central symmetry. 
Therefore, the operator ∇2 in equation (7) has the form [1]

	 ∇2T =  1
x p

∂
∂x

x p ∂T
∂x

,  p = 0, 1, 2� (8)

where p = 0 for the slab, p = 1 for the cylinder and p = 2 for 
the sphere.

Equation (7) is complemented by boundary and initial con-
ditions. We assume the Robin boundary conditions for the slab, 
hollow cylinder and hollow sphere:

	 k ∂T
∂x

(a, t) = – ha(Ta(t) ¡ T(a, t))� (9)

	 k ∂T
∂x

(b, t) = – hbT(b, t)� (10)

and the initial conditions in the form

	 T(x, 0) =  f (x),  ∂T
∂t

(x, 0) = h(x)� (11)

where ha and hb are convective heat transfer coefficients and 
Ta(t) is the ambient temperature.

3.	 Solution of the problem

We search a solution of the problem (7, 9‒11) in the form of 
a sum

	 T(x, t) = Ta(t)w(x) + θ (x, t)� (12)

where

	 θ (x, t) = 
i =1

1

∑Λ i(t)Φi(x)� (13)

and w(x) is defined as

	 w(x) = 

1
M0

k
hb

 + b ¡ x 	 for  p = 0

1
M1

k
bhb

 ¡ ln x
b

	 for  p = 1

1
M2

k
b2hb

 ¡  1
b

 +  1
x

	 for  p = 2

� (14)

whereas

M0 = b ¡ a +  1
ha

 +  1
hb

k , M1 = ln b
a

 +  1
aha

 +  1
bhb

k ,

M2 =  1
a

 ¡  1
b

 +  1
a2ha

 +  1
b2hb

k .
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The functions Φi(x) are solutions of the following eigen-
problem

	 1
x p

∂
∂x

x p ∂Φi(x)
∂x

 + λ i
2Φi(x) = 0� (15)

	 k ∂Φi

∂x
(a) ¡ haΦi(a) = 0� (16)

	 k ∂Φi

∂x
(b) + hbΦi(b) = 0� (17)

Using the general solution of differential equation (13) and 
utilizing conditions (16‒17), an equation serving to designate 
eigenvalues λ i, i = 1, 2, …, is obtained. The eigenfunctions 
Φi(x) corresponding to determined eigenvalue λ i, satisfy the 
orthogonality condition in the form

	
b

a
∫ x pΦi(x)Φj(x)dx = 

	0	 for  i  6= j

	Ni	 for  i = j
� (18)

where Ni is the square norm of the i-th eigenfunction defined by

	 Ni = 
b

a
∫ x p(Φi(x))

2dx.� (19)

Applying the orthogonality condition (18) to equation (13), we 
find the functions Λi(t) as

	 Λ i(t) =  1
Ni

b

a
∫ x pΦi(x)θ (x, t)dx .� (20)

In the further consideration we will use the relationship ob-
tained by using equations (9‒10) and (15‒17). We write this 
relationship in the form

	
b

a
∫ x pΦi(x)∇2θ (x, t)dx = –λ i

2
b

a
∫ x pΦi(x)θ (x, t)dx .� (21)

To derive an equation which will be used to determine 
the functions Λi(t), we multiply equation (7) by the function 
x pΦi(x) and integrate over the interval [a, b] then we utilize 
the relationship (21). As a result, we find the time-fractional 
differential equation in the form

	 τα 0 Dt
α + 1Λ i + dΛ i

dt
 + κλ i

2Λ i = Fi(t)� (22)

where

Fi(t) =  κ
Ni k

b

a
∫ x pΦi(x)(τα 0 Dt

αg(x, t) + g(x, t))dx ¡

¡  1
Ni

τα 0 Dt
α + 1Ta(t) + 

dTa(t)
dt

b

a
∫ x pΦi(x)w(x)dx .

� (23)

Similarly, multiplying both sides of equations (11) by x pΦi(x) 
and integrating over the interval [a, b], the following initial 
conditions are obtained

	

Λ i(0) =  1
Ni

b

a
∫ x pΦi(x) f (x) ¡ Ta(0)w(x) dx

dΛ i

dt
(0) = 

1
Ni

b

a
∫ x pΦi(x) h(x) ¡ 

dTa(0)

dt
w(x) dx .

� (24)

3.1. Solution of the time-fractional equation in the Laplace 
transform domain. We determine a solution of the initial 
problem (22-24) by using the Laplace transform technique. The 
Laplace transform L f (t)  = f–(s) of a function f (t) is defined as

	 f–(s) = 
1

0
∫ f (t)e–stdt � (25)

where s is a complex parameter. We utilize the property of lin-
earity of the Laplace transform and the following rule [18]

	
L{0 Dt

α f (x, t)} = sα f–(x, s) ¡ 
k = 0

m¡1

∑ sα ¡ 1 ¡ k f (k)(x, 0+),

m ¡ 1 < α ∙ m.
� (26)

After applying the Laplace transformation to equation (22) and 
using initial conditions (24), the Laplace transform of the solu-
tion of the problem (22‒24) can be written in the form

Λ
–

i = 
(τα sα + 1)

Ni(τα sα + 1 + s + κλ i
2)

b

a
∫ x pΦi(x)

κ

k
g–(x, s) + 

Λ
–

i +  f (x) dx ¡  
τα sα ¡ 1

Ni(τα sα + 1 + s + κλ i
2)

b

a
∫ x pΦi(x) ¢

Λ
–

i  ¢ 
κ

k
g(x, 0) ¡ h(x) dx ¡ 

s(τα sα + 1)
Ni(τα sα + 1 + s + κλ i

2)
 ¢

Λ
–

i  ¢ T
–
a(s)

b

a
∫ x pΦi(x)w(x)dx .

� (27)

We further assume that the function Ta(t) occurring in equa-
tion (27) has the form

	 Ta(t) = T ̂a(1 + sinωt).� (28)

Moreover, the volumetric rate of the heat generation g(x, t) is 
given in the form of a ramp-type function

	 g(x, t) = (t ¡ (t ¡ t1)H(t ¡ t1))
G1

t1
� (29)

where H(t ¡ t1) is the Heaviside function. Taking into account 
the Laplace transforms of functions (28) and assuming h(x) = 0 
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in equation (27), we present the inverse Laplace transform Λi(t) 
as

	

Λ i(t) = –
T ̂a
Ni

(Ui(t) + Vi(t))
b

a
∫ x pΦi(x)w(x)dx  +

Λ i(t) +  1
Ni

Vi(t))
b

a
∫ x pΦi(x) f (x)dx +  κG1

t1kNi
(Wi(t) ¡

Λ i(t) ¡ Wi(t ¡ t1)H(t ¡ t1))
b

a
∫ x pΦi(x)dx

� (30)

where

Ui(t) = L–1 (τα sα + 1)

(τα sα + 1 + s + κλ i
2)

sω

s2 + ω2
� (31)

Vi(t) = L–1 τα sα + 1

τα sα + 1 + s + κλ i
2

� (32)

Wi(t) = L–1 τα sα + 1

s2(τα sα + 1 + s + κλ i
2)

,� (33)

The inverse of the Laplace transforms (31‒33) can be nu-
merically determined. For some values of the order α, an an-
alytical form of these inverse transforms can be obtained. For 
α = 1 (the hyperbolic heat transfer [19‒20]), inverse transforms 
(31‒33) can be presented in the form

Ui(t) = 
κλ i

2ω

ω2 + (ταω2 ¡ κλ i
2)

2

Ui(t) +  cosωt + 
ω(1 + τα(ταω2 ¡ κλ i

2))
κλ i

2
sinωt ¡

Ui(t) ¡ e
– t

2τα ¢ 
2τα(ταω2 ¡ κλ i

2)
∆ i

sinh
t∆ i

2τα
 + Pi(t)

� (34)

	 Vi(t) = e
– t

2τα Pi(t)� (35)

Wi(t) = 
1

κ 2λ i
4

κλ i
2(t + τα) ¡ 1 ¡ e

– t
2τα  ¢

Wi(t)  ¢  κταλ i
2 3

∆i
sinh t∆ i

2τα
 + cosh t∆ i

2τα
 ¡ Pi(t)

� (36)

where Pi(t) =  1
∆i

sin h t∆i

2τα
 + cos h t∆i

2τα
, ∆ i =  1 ¡ 4τακλi

2 . 

Hence, the analytical solution of the initial problem (22‒24) for 
α = 1 is given by equations (30, 34‒36).

3.2. Solution of the eigenproblem in a rectangular coordi-
nate system. The functions Φi(x) occurring in Eq. (30) are 
obtained by solving the eigenproblem (15‒17). For the problem 
of the heat conduction in a slab ( p = 0), without loss of gener-
ality, we assume that a = 0. In this case, the functions Φi(x) are

	 Φi(x) = kλ i cosλ i x + ha sinλ i x� (37)

and the square norm of the i-th eigenfunction defined by equa-
tion (19), is given by

	
Ni =  1

2

³
b
³
ha

2 + k 2λ i
2
´
 + ha k

³
1 ¡ cos(2bλ i)

´́
 +

Ni +  1
4λi

³
–ha

2 + k 2λ i
2
´
sin(2bλ i)

� (38)

where λ i are roots of equation

	 (ha + hb)kλ cosbλ ¡ 
³
k 2λ2 ¡ hahb

´
sinbλ = 0.� (39)

We assume the initial distribution of temperature in the slab 
in the form

	 f (x) = T ̂a 1 ¡  x
b

,  x 2 [0, b] .� (40)

In this case, the function Fi(t) defined by (23) for the problem 
of the heat conduction in the slab can be rewritten as

	

Fi(t) = 
κG1

Ni k
(t + τα ¡ (t + τα ¡ t1)H(t ¡ t1)) ¢

Fi(t)  ¢  ksinλ i b + 
ha

λ i
(1 ¡ cosλ i b)  ¡ 

Fi(t) ¡ 
T ̂ahaω
Niλ i

³
τα t–αEα, b

³
–ω2t2

´
 + cosω t

´

� (41)

where Eα, β is a two-parameter Mittag-Leffler function [18].
The solution of the eigenproblem (15‒17) can be similarly 

derived for the heat conduction in a cylinder ( p = 1) and in 
a sphere ( p = 2).

4.	 Numerical examples

The solution in the Laplace transform domain, presented in 
the previous Section, will be used to investigate the effect of 
the fractional order of the Caputo derivative and the phase-lag 
parameter on the temperature distribution in a slab. The inverse 
Laplace transforms were numerically determined by using the 
Gaver formula [21]

	 f (t) ' nv 2n
n i = 0

n

∑(–1)i n
i f–((n + i)v)� (42)

where v = (ln 2)/t and n is a fixed positive integer number.
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The numerical calculations were performed for the fol-
lowing data: the width of the slab is b = 0.3 m, the thermal 
diffusivity is κ = 3.352 ¢ 10– 6 m2/s, the thermal conductivity 
is k = 16 W/(m ¢ K ), the outer heat transfer coefficients are 
ha = hb = 400 W/(m2 ¢ K), T ̂ a = 60°C, the parameters of 
the volumetric heat generation are G1 = 8.0 ¢ 104 W/m3 and 
t1 = 600 s. The computations were carried out by using the 
Mathematica package [22].

The non-dimensional temperatures T ̂  = T/T ̂a computed by 
using the Gaver formula for numerical inversion of the La-
place transforms (NILT ) and the results obtained by using the 
exact solution for α = 1.0 and various values of x ̂  = x/b and 
t ̂  = κ t/ b2 are presented in Table 1.

Table 1 
The non-dimensional temperature T ̂ (x ̂ , t ̂ ) for α = 1.0,  

computed by using the exact solution and by using numerical 
inversion of the Laplace transform (NILT)

x ̂ t ̂  = 0.1 t ̂  = 0.5 t ̂  = 1.0

Exact NILT Exact NILT Exact NILT

0 1.13109 1.13111 1.37309 1.37308 1.39375 1.39374

0.2 1.22487 1.22491 1.78681 1.78681 1.83467 1.83466

0.4 1.16470 1.16476 1.91273 1.91273 1.97608 1.97606

0.6 1.00168 1.00174 1.75484 1.75483 1.81818 1.81817

0.8 0.74068 0.74072 1.31313 1.31313 1.36098 1.36097

1.0 0.33571 0.33573 0.58361 0.58361 0.60428 0.60427

In calculations it was assumed that τ ̂  = τκ/ b2 = 0.001. The 
maximum of the relative errors jExact ¡ NILT j/Exact does 
not exceed 6 ¢ 10–5. The good accordance of these numerical 
results obtained for α = 1.0 allows one to use this method for 
numerical inversion of the Laplace transform for other values 
of the order α.

The non-dimensional temperature as a function α for dif-
ferent points of the slab x ̂  and different values of dimensionless 
time t ̂  are presented in Fig. 1. The calculations were performed 
assuming that the ambient temperature is constant Ta = 60°C. 
Changes of temperature in the slab are caused by activity of the 
heat source which is specified by equation (29). It is observed 
that the temperature in the slab is higher for the lower orders of 
the Caputo derivative occurring in the heat conduction equation. 
The small differences of the temperatures occur for the order α 
belonging to interval [0.5; 1].

The results of the numerical investigation of the effect of 
the oscillating ambient temperature on the temperature in the 
slab for different values of the order α are presented in Fig. 2. 
The calculations were performed for the slab without inner 
heat generation and with assumption that the changes of the 
ambient temperature at x = 0 according to equation (28) with 
ω = 0.001 s–1. The results for α = 0 were obtained with as-
sumption that τ ̂  = 0. Therefore, the curves for α = 0 presented 
in Figs 2a-d correspond to the classical heat transfer model. 
For other cases of the order α, the non-dimensional phase-lag 
parameter was assumed that τ ̂  = 0.001. As is expected, the 

Fig. 1. The non-dimensional temperature T ̂ (x ̂ , t ̂ ; α) as a function of 
the variable α for various values of time t ̂ : a) t ̂  = 0.1; b) t ̂  = 0.25; 

c) t ̂  = 0.5; d) t ̂  = 1.0

Fig. 2. The non-dimensional temperature T ̂ (x ̂ , t ̂) as a function of the 
variable t ̂  for various values of α and the space variable x ̂ : a) x ̂  = 0.25; 

b) x ̂  = 0.5; c) x ̂  = 0.75; d) x ̂  = 1.0

(a)

(c)

(b)

(d)

α α
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)

T ̂ (
x ̂ ,

 0
.2

5;
 α

)

α α

T ̂ (
x ̂ ,

 0
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t ̂ t ̂
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amplitudes of the temperature decrease with increasing of 
the distance from the heating boundary x = 0. The fractional 
derivative order occurring in the heat conduction model can 
be interpreted as a thermal damping coefficient which causes 
decreasing to the amplitude of the temperature changes. The 
numerical results showing the significance of the phase-lag 
parameter are assembled in Table 2. In fact, the value of this 
parameter will be chosen based on experimental data. Higher 
values of the parameter cause bigger lagging of the temperature 
growth in the considered region.

5.	 Conclusions

The solution of the fractional single-phase-lagging heat conduc-
tion problem in the form of the eigenfunctions series has been 
presented. The time-dependent coefficient of the series using 
the Laplace transform technique was determined by solving the 
time-fractional differential equation. Computational examples 
showed that the Gaver method can be used to the numerical 
inversion of the obtained Laplace transforms. It was found that 
significant influence on the temperature distribution in the slab 
has the time-fractional derivative (occurring in the heat con-
duction model) of the smaller order. It results in a decrease of 
amplitude of an oscillate temperature, i.e. it can be treated as 
a thermal damping coefficient. The higher phase-lag parameter 

occurring in the mathematical model causes the higher delay 
of the change of the temperature. Parameters characterizing the 
heat conduction (order of the fractional derivative, relaxation 
time) should be chosen for better compatibility of the tempera-
ture distribution obtained using the fractional single phase-lag 
model and experimental data (calibration of the model [17]). 
Although the presented solution has been used for numerical 
investigation of the influences of the fractional derivative order 
and the phase-lag parameter on temperature distribution in the 
slab, it can be used to analysis of the fractional heat conduction 
in the hollow cylinder and the hollow sphere.
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