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A PREDICATION ANALYSIS OF THE FACTORS INFLUENCING MINIMUM IGNITION 
TEMPERATURE OF COAL DUST CLOUD BASED ON PRINCIPAL COMPONENT ANALYSIS 

AND SUPPORT VECTOR MACHINE

PROGNOZOWANIE CZYNNIKÓW WARUNKUJĄCYCH MINIMALNĄ TEMPERATURĘ 
ZAPŁONU PYŁU WĘGLOWEGO W OPARCIU O ANALIZĘ SKŁADNIKÓW I REGRESJĘ 

METODĄ WEKTORÓW NOŚNYCH

To investigate the  effect of different proximate index on minimum ignition temperature(MIT) of coal 
dust cloud, 30 types of coal specimens with different characteristics were chosen. A two-furnace automatic 
coal proximate analyzer was employed to determine the indexes for moisture content, ash content, volatile 
matter, fixed carbon and MIT of different types of coal specimens. As the calculated results showed that 
these indexes exhibited high correlation, a principal component analysis (PCA) was adopted to extract 
principal components for multiple factors affecting MIT of coal dust, and then, the effect of the indexes for 
each type of coal on MIT of coal dust was analyzed. Based on experimental data, support vector machine 
(SVM) regression model was constructed to predicate the MIT of coal dust, having a predicating error 
below 10%. This method can be applied in the predication of the MIT for coal dust, which is beneficial 
to the assessment of the risk induced by coal dust explosion (CDE).

Keywords: Coal dust explosion, minimum ignition temperature, principal component analysis, SVM 
predication

Badanie wpływu współczynnika odległości na minimalną temperaturę zapłonu pyłu węglowego 
przeprowadzono z wykorzystaniem 30 próbek węgli o różnych właściwościach. Przy użyciu dwu-pal-
nikowego analizatora, określono podstawowe parametry analizowanych węgli: wilgotność, zawartość 
popiołów, zawartość substancji lotnych, poziom zawartości węgla C oraz minimalną temperaturę zapłonu. 
Wyniki obliczeń wykazują ścisłą korelację pomiędzy tymi wielkościami, analiza składu pozwoliła na 
wyodrębnienie podstawowych składników, określono także czynniki warunkujące wysokość minimalnej 
temperatury zapłonu dla poszczególnych rodzajów węgli. Do analizy danych eksperymentalnych wyko-
rzystano model regresji metodą wektorów nośnych w celu obliczenia minimalnej temperatury zapłonu, 
a błąd jej oszacowania wynosi poniżej 10%. Metodę powyższą stosować można do prognozowania 
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wysokości minimalnej temperatury zapłonu, co jest ważnym aspektem w ocenie ryzyka wybuchu 
pyłu węglowego.

Słowa kluczowe: wybuch pyłu węglowego, minimalna temperatura zapłonu, analiza podstawowych 
składników, prognozowanie z wykorzystaniem regresji metodą wektorów nośnych 

1. Introduction

CDE disaster is one of major calamity accidents happened in coal mines. The coal dust 
cloud involving air and coal d ust are often encountered in the mining process of coal mine, and 
rapidly oxidized under the effect of heat sources including high temperature or a certain ignition 
energy, eventually, explosion is produced. The MIT of coal dust is an important characteristic 
parameter of CDE and an important index used in evaluating the sensitivity of CDE, also provides 
an important basis for coal dust and explosion prevention (Babrauskas, 2003; Cashdollar, 2000; 
Deng, 2014; Eckhoff, 2003).

Illustrative case studies and past accident analyses reflect the high frequency, geographic 
spread, and damage potential of dust explosions across the world. The sources and triggers of dust 
explosions, and the measures with which different factors associated with dust explosions can 
be quantified are reviewed alongside dust explosion mechanism by Abbasi (2007). One hundred 
and six coal dust explosion accidents that occurred in China between the years of 1949 and 2007 
were investigated through statistical methods so as to review the overall situation and provide 
quantitative information on coal dust explosions. Statistical characteristics about accident-related 
factors such as space, time, volatile ratio of coal dust, ignition sources, and accident categories 
were analyzed by Zheng et al. (2009). Zhang (1993) extended the energy equations of Krishna 
and Berlad to include coal volatile matter (VM) release and the homogeneous ignition of VM in 
the gas phase of the cloud. The effects of particle size on the ignition temperature and ambient 
oxygen concentration on ignition mechanisms, predicted by this extension, are then examined. 
The influence of humidity on dust explosions of metallic and organic materials was studied by 
TRaoré (2009). Nifuku (2006, 2007) investigated the ignitability of aluminium and magnesium 
dusts, the relations between particle size and the minimum explosive concentration, the minimum 
ignition energy, the ignition temperature of the dust cloud, etc. were studied experimentally. An 
investigation of the ignition behaviour of iron sulphide dusts has been undertaken by Amyotte 
(2003), Commercial samples of FeS and FeS 2 and mine samples of pyrrhotite and pyrite were 
tested for minimum ignition temperature (MIT) using a device known as the BAM oven. The MIT 
of three coal dusts was studied by Wu et al. (2016, 2014), a modified steady-state mathematical 
model based on heterogeneous reaction was presented to interpret the observed experimental 
phenomena and estimate the ignition mechanism of coal dust cloud under MIT conditions. An 
experimental study into the hot surface ignition of coal dust layers was conducted by Prabha-
kar et al. (1998), the effect of admixed the dust layer ignition temperature was analyzed using 
a steady-state thermal explosion model. Danzi et al. (2015) conducted the experiment of MITs of 
the mixing of two different combustible dusts by using a Godbert Greenwald furnace and a hot 
plate, the experiment data showed that MITs increased as the inert content was increased. Li et al. 
(2011) studied the coal dust explosion characteristics of anthracite, bituminous coal and lignite, 
the characteristic parameters of coal dust explosion under different experimental conditions were 
obtained, and the quantitative evaluation was conducted. The minimum ignition temperatures 
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(MIT) of hybrid mixtures had been investigated by Addai et al. (2016, 2016) performing several 
series of tests in a modified Godbert-Greenwald furnace. Further, seven mathematical models 
for prediction of the minimum ignition temperatures (MIT) of dust/air mixtures were presented 
of which three were selected for further study and verified by the experimental results based on 
the availability of the input quantities needed and their applicability. Mittal and Guha (1997) pre-
sented a model developed for determining the minimum ignition temperature for an organic dust 
cloud, polyethylene, simulating the conditions in the furnace. The model correlates the particle 
size, as well as the dust concentration with the minimum ignition temperatures, the results of the 
computations were compared with the experimental values in his study. Many groups of Mg-Al 
alloy dust were used to test MIT by Wang (2016) using Godbert-Greenwald furnace, based on 
the nonlinear fitting in regression analysis and evaluation of six indexes, the model equation of 
the influence of concentration and particle size on MIT was fitted by R language and 1st Opt.

Most scholars only carry out qualitative analysis around the minimum ignition temperature 
of coal dust cloud and the factors affecting the minimum ignition temperature of coal dust cloud, 
and the quantitative research such as principal component analysis method was ignored.

If the minimum ignition temperature of coal dust cloud can be quantitatively controlled 
by changing the composition of coal dust, it will be helpful to the study of preventing coal dust 
explosion and coal dust explosion suppressor and so on. In this paper, the MIT measurement 
device of coal dust cloud and two-furnace automatic coal proximate analyzer were adopted to 
investigate the MIT of coal dust cloud and the indexes of proximate analysis, fitting and analyz-
ing data by PCA and SVM regression analysis.

2. Experiments and methods

2.1. The collection and preparation of coal specimens 

To satisfy the universality demands of experimental results, 30 types of coal specimens with 
different characteristics were chosen and numbered successively. The specimens were obtained 
from the advancing working face and mining face in the coal mines of different regions. 

a. The surface of the coal seam was cleaned before sampling, and then two parallel lines 
were drawn along the vertical direction of coal seam. The vertical distance between two 
parallel lines is 150 mm when the thickness of the coal seam is smaller than 1m, while 
it is 100 mm when the thickness of the coal specimens exceeded 1 m.

b. The sites for storing the coal specimens were cleaned so as to be free from the pollution.
c. The obtained samples after removing gangue were packaged for use.

Subjected to relevant national standards aforementioned, a jaw crusher and multi-functional 
hermetically-sealed sample preparation machine were used to conduct ultrafine grinding on coal 
specimens, as demonstrated in Fig. 1. Afterwards, an automatic sieving machine was utilized to 
screen the coal dust with a grain size of smaller than 0.074 mm, and then, three-slot receptacle 
was adopted to split the samples into three parts, with an aim for determination of the indexes 
for the MIT and the proximate analysis of coal samples, as well as the storage of coal samples. 

Before the experiment, the coal sample was placed in 105°C constant temperature drying 
box for two hours to remove the external moisture, and the dried sample was placed in the silica 
gel drying dish.



338

At the same time, the laboratory was equipped with the experimental screens with a aperture 
of 58 μm ~ (200) mesh, 48 μm ~ (300) mesh, 38 μm ~ (400) mesh, and 25 μm ~ (500) mesh. 
Mesh number is t  he approximate number of sieve openings per linear inch. The aperture of screen 
mesh decreases with the increase of mesh number. Because of the difference of the opening rate 
and the thickness of the mesh, the national standards and regulations are different. 

Fig. 1. The coal specimens and corresponding crushing device

2.2. The test of the MIT for coal dust

According to the standard of the determination of the minimum ignition temperature of dust 
cloud for GB/T16429-1996 Coal samples, FCY-II dust cloud MIT measurement device is used, 
as shown in Fig. 2. This instrument adopts photoelectric detection technology and intelligent dust 
spray control system. The measurement of ignition temperature of coal dust cloud is carried out 
automatically. The schematic diagram of the device is shown in figure 3. The device consists of 
a heating furnace, pressure dusting system, temperature control system and temperature recording 
system. The furnace is installed in a hood that is not affected by air flow and can pump out coal 
dust and toxic and harmful gases. The heated quartz in the heating furnace is installed vertically, 
and the external wall has a total resistance of 13 Ω on heating electrical wire, of which the mid-
dle and lower parts are respectively provided with thermocouples connected to the temperature 
controller and the temperature recorder. the lower end of the heated quartz is connected with the 
atmosphere, and the upper end is connected to the dust storage device through an adapter. The 
furnace is mounted on a support seat with a mirror mounted on the bottom of the heated quartz 

Fig. 2. Minimum ignition temperature meter of dust cloud
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tube to observe the internal condition of the heated quartz tube. The pressure dusting system 
consists of a small air compressor, a gas storage tank (500 mL), U-tube, solenoid valve and dust 
storage device. The air compressor is connected to the solenoid valve to control and record the 
temperature of heating furnace by temperature controller and temperature recorder, and to control 
the dust injection pressure through U-tube.

Fig. 3. Principle diagram of minimum ignition temperature measurement device for dust clouds. 
1. heating furnace; 2. connecting head; 3. dust accumulator; 4. solenoid  valve; 5. gas storage tank; 

6. gate valve; 7. U tube; 8. stable power supply; 9. temperature control instrument; 10. temperature recorder

2.2.1. Test method for minimum ignition temperature of coal dust cloud

In the experiment, 0.1 g coal dust was loaded into the dust s  torage device with electronic 
balance weighing, and the temperature of the heating furnace was set to 500°C, and the dust 
injection pressure was set to 10 kPa. When the solenoid valve was opened, the dust was injected 
into the furnace, and the burning situation of coal dust cloud was observed by reflecting mirror. 
If there was no ignition, raising the furnace temperature gradually at the step of 50°C, and redo-
ing the experiment with the coal dust of the same quality until the furnace temperature reaches 
the upper limit of the instrument.

When a tongue of flame was observed, changing the coal dust quality and dust injection 
pressure until the most intense ignition occurred. When coal dust cloud was on fire at its most 
intense, keeping the coal dust mass and jet pressure constanted, and reducing the temperature of 
the heating furnace gradually at the step of 20°C, until there were 10 experiments without flames. 
According to GB / T 16429-1996, in the experiment, the quanlity of coal dust was selected from 
0.01 g, 0.02 g, 0.03 g, 0.05 g, 0.1 g, 0.2 g, 0.3 g, 0.5 g, 1 g, 2 g and 3 g, and the dust pressure 
was selected from 2 kPa, 3 kPa, 5 kPa, 10 kPa, 20 kPa, 30 kPa, 50 kPa,the allowable deviation is 
±5%.If the temperature drops at 300°C with no flame, then the temperature setting of the furnace 
was reduced gradually by 10°C each ti  me to increase the measuring accuracy.
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It should be noted that the maximum temperature of the device is 990°C, the upper limit of 
ignition temperature is set to 900°C in this experiment. To ensure the normal use of the device 
and the safety of the experiment process, if the dust is not exploded at 900°C, the experiment 
will not be continued. 

2.2.2. determination standard of ignition and determination of minimum 
ignition temperature of coal dust cloud

A high resolution camera was installed in the outside of the observation chamber. The camera 
which pointing at the reflector fixed in the bottom of the observation chamber can realize the 
real-time monitoring and recording of videos for coal dust explosion. Through observing the im-
age captured in the slow playback of video at 1/8 magnification, flame length of dust cloud was 
recorded as illustrated in Fig. 4. When flame erupts or delays to erupt according to the observation 
result of the reflector, the flame length greater than 3mm was judged as ignition.

The coal dust cloud measured by the above method is on fire, if the minimum temperature 
of the furnace is greater than 300°C,the final result minus 20°C; if the minimum temperature 
of the furnace is less than or equal to 300°C,the final result minus 10°C, that is the minimum 
ignition temperature of coal dust cloud. Because the temperature recorder works to record the 
thermocouple’s temperature in real time, there is a certain deviation from the internal temperature 
of the furnace, so the correction of the result can make it more close to the real situation. In order 
to eliminate the accidental error of the experiment, each experiment of each coal sample must 
be repeated five times. If the results of this five experiments are ignition, the minimum ignition 
of the coal dust cloud can be further confirmed.

Fig. 4. The image for the flame length of coal specimens

2.3. The proximate analysis of coal specimens

The proximate indexes included the moistur e content , ash content, volatile matter and fixed 
carbon of coal were used, among which, the fixed carbon content was calculated using a sub-
traction method. Based on ASTM standard D7582-12, a two-furnace automatic coal proximate 
analyzer integrating the functions of electronic temperature control and automatic weighing was 
used to measure the moisture content, ash content, and volatile matter, as illustrated in Fig. 5. 
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Fig. 5. Two-furnace automatic coal proximate analyzer

2.3.1. The determination of moisture content

The moisture content of the samples was cond ucted according to ASTM standard D3173 
using moisture meter of the two-furnace  automatic coal pr oximate analyzer. Heat the empty 
capsules under the conditions at which the sample is to be dried, place the cover on the capsule, 
cool over a desiccant for l5 to 30 min, and weigh. Dip out with a spatula from the sample bottle 
approximately 1 g of the sample, afterwards, put this quickly into the capsule, close, and weigh 
at once to the nearest ±0. 1 mg.

After removing the covers, quickly place the capsules in a preheated oven (at 107°C ) through 
which passes a current of dry air. Close the oven at once and heat for 1 h. Open the oven, cover 
the capsules quickly, cool in a desiccator over desiccant, and weigh as soon as the capsules have 
reached room temperature.

Calculate the percent moisture in the analysis sample as follows:

   % [( ) / ] 1 00,Moisture in analysis s A B Aample   (1)

where:
A = grams of sample used and
B = grams of sample after hearing.

2.3.2. The determination of ash content 

According to ASTM standard D3174, Ash is the residue remaining after burning the coal 
sample. Using the dried coal from the moist  ure determinat ion in part 2.3.1. After removing 
the cover, place the capsule containing the sample in a cold furnace and heat gradually at such 
a rate that the temperature reaches 450 to 500°C in 1 h. Then heat coal samples so that a final 
temperature of 700 to 750°C is reached by the end of the second hour. Continue to heat at the 
final temperature for additional 2 h, if the sample reaches a constant weight at 700 to 750°C in 
less than 4 h, the 4-h time limit can be reduced.

Finally, remove the capsule from the muffle, place the cover on the capsule, cool under 
conditions to minimize moisture pickup, and weigh. As for nonreactive coals may require ad-
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ditional time. If unburned carbon particles are observed, or if duplicate results are suspect, the 
samples should be returned to the furnace for sufficient time to reach a constant weight (±0.001 g). 

Calculate the ash percent in the analysis sample as follows:

 % [( ) /   0, ] 10in analysis sampAsh A B Cle   (2)

where:
A = weight of capsule, cover and ash residue, g,
B = weight of empty capsule and cover, g,
C = weight of analysis sample used, g.

2.3.3. The measurement of volatile matter

According to ASTM standard D3175, Volatile matter is determined by establishing the mass 
loss resulting from heating a coal under rigidly controlled conditions. The measured mass loss, 
corrected for moisture as determined in part 2.3.1 establishes the volatile matter content. The 
experiments use the test device of volatile matter in the two-furnace automatic coal proximate 
analyzer.

Record the mass of the crucible and cover to the nearest ± 0.0001 g. Dip out with a spatula 
from the sample bottle approximately 1 g of the sample. Put this quickly into the capsule, close, 
and weigh to the nearest 0. 1 mg. Then close with the cover which fits closely enough so that 
the carbon deposit from coals does not burn away from the underside. Record the total mass of 
the crucible, sample and cover to the nearest ± 0.0001 g again. Afterwards, place the crucible on 
nickel-chromium wire supports and insert directly into the furnace chamber, which is maintained 
at a temperature of 950 + 20°C, and lower immediately to the 950°C zone. After heating for 
a total of exactly 7 min, remove the crucible from the furnace and without disturbing the cover, 
allow it to cool.

To ensure uniformity of results, keep the cooling period constant and do not prolong 
beyond l5 min. The percentage loss in weight minus the percent moisture in accordance with 
Test Method D3173, is the volatile matter. Calculate the percent volatile matter in the analysis 
samples as follows:

    , % [( ) / ( )] 100in analysis sVolatile matter B Campl Ae B D   (3)

where:
A = mass of crucible and cover, g,
B = mass of crucible and cover and contents before heating, g,
C = mass of crucible and cover and contents after heating, g,
D = moisture in analysis sample, %, as determined by part 2.3.1.

3. The PCA process

3.1. Multi-index correlation analysis 

The aim of this study was to reveal the influences of the indexes for the proximate analy-
sis on MIT of coal. Based on the experiment of measuring the indexes in Part 2.2, six indexes 
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measured are air-dried moisture Mad (X1)%, air-dried ash Aad (X2)%, dry-base ash Ad (X3)%, 
air-dried volatile matter Vad (X4)%, dry-base volatile matter Vd (X5)%, and air-dried fixed carbon 
FCad (X6)%.

To avoid the correlation among different indexes which influences the analysis results, these 
indexes were used as variables to conduct correlation analysis, and the data were performed 
dimension reduction so as to employ fewer new variables to reflect all data information. Due 
to the work limits, the first ten types of coal samples among the 30 types of coal samples were 
carried out PCA, with observation matrix X for the six indexes as follows: 

 

1,1 1,1 1,1

1,1 1,1 1,1

1,1 1,1 1,1

1.80 15.20 15.80 6.10 6.40 76.90
0.22 14.80 15.20 10.10 10.30 74.88
0.62 18.10 18.30 13.30 13.50 67.98
0.55 19.60 19.40 17.10 17.20 62.75
1.30 12.70 13.30 22.30 23.30 63.

x x x
x x x

X

x x x

70
1.90 22.00 23.20 23.60 25.70 52.50
1.54 7.30 7.50 30.40 32.10 60.76
2.30 14.70 15.70 36.50 39.10 46.50
2.80 7.00 7.70 38.20 41.60 52.00
1.70 4.60 4.70 42.70 45.10 51.00

 

 

X is 10×6 matrix; other six columns respectively represent 6 indexes, while 10 rows reflect 
ten types of different coal samples. Based on the test of the MIT for coal dust illustrated in Sec-
tion 2.2, the MITs Xt of coal dust are displayed in Table I.

By performing correlation analysis of X1, X2, X3, X4, X5, X6 with Xt, the relevant coefficients 
were obtained as shown in Table II.

TABLE I

The MIT of 10 types of coal specimens

Coal specimens No. 1 2 3 4 5 6 7 8 9 10
MIT °C 851 820 605 581 546 543 525 485 437 412

TABLE  II

Correlation coefficients

X1 X2 X3 X4 X5 X6 Xt

X1 1.0000 –0.4020 –0.3498 0.6612 0.6846 –0.6588 –0.5246
X2 –0.4020 1.0000 0.9975 –0.6531 –0.6476 0.2707 0.3564
X3 –0.3498 0.9975 1.0000 –0.6303 –0.6226 0.2403 0.3420
X4 0.6612 –0.6531 –0.6303 1.0000 0.9993 –0.9044 –0.8662
X5 0.6846 –0.6476 –0.6226 0.9993 1.0000 –0.9084 –0.8635
X6 –0.6588 0.2707 0.2403 –0.9044 –0.9084 1.0000 0.8958
Xt –0.5264 0.3564 0.3420 –0.8662 –0.8635 0.8958 1.0000
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According to the correlation coefficients shown in Table II, autocorrelation coefficient of 
various variables lives up to 0.8958, indicating that there are remarkable autocorrelation among 
variables. To make the data in processing free from overlapping to a certain degree, PCA was 
used to eliminate autocorrelation so as to realize the data dimension reduction (Li, 2015). The 
most of correlation coefficients of the MIT Xt with X1, X2, X3, X4, X5 and X6 are higher than 0.3, 
the highest correlation reaches 0.8958, suggesting there is significant correlation the MIT and 
the indexes used in proximate analysis of coals.

3.2. PCA of multi-indexes

PCA is a statistic method for dimension reduction. It uses orthogonal transformation to 
let first largest variance of data projected on the new coordinate system locating at the first 
coordinate (the first principal component), while the second largest variance is placed on the 
second coordinate (Second principal component), the same to other variances. PCA cannot also 
reduce the dimension number of data sets, but also make data sets contribute to most prominent 
characteristics of variance.

The covariance matrix S of the samples based on the matrix X is written as:

 

0.6633 1.8809 1.6687 6.7819 7.6296 5.5643
1.8809 33.0089 33.5644 47.2544 50.9133 16.1264
1.6687 33.5644 46.4893 46.4893 49.8993 14.5936

6.7819 47.2544 158.5890 158.5890 172.2112 118.1165
7.6296 50.9133 172.2112 1

S

72.2112 187.2734 128.9275
5.5643 16.1264 118.1165 118.1165 128.9275 107.5543

 

 

The results show that the diagonal element difference was largest in the matrix S: The 
principal components extracted based on the matrix S tend to focus on the variables with large 
variances, resulting in false results. Hence, the principal components were extracted based on 
the matrix of correlation coefficients for samples, and the correlation coefficient matrix R is 
obtained as follows:

 

1.0000 0.4020 0.3598 0.6612 0.6846 0.6588
0.4020 1.0000 0.9975 0.6531 0.6476 0.2707
0.3598 0.9975 1.0000 0.6306 0.6226 0.2403

0.6612 0.6531 0.6303 1.0000 0.9993 0.9044
0.6846 0.6476 0.6226 0.9993 1.0000 0.9084
0.

R

6588 0.2707 0.2403 0.9044 0.9084 1.0000

 

 

Principal components were carried out on the six indexes influencing the MIT Xt of coal 
dust based on R, as shown in Table III.

According to Table 3, first principal component – eigenvalue is 4.2646, which is able to 
explain 71.08% of all data information; while the second eigenvalue is 1.2878, accounting for 
21.4% of all data information; the third principal component – eigenvalue is 0.4462, demonstrat-
ing 7.44% of all data information. As seen in the Table, the cumulative contribution rate of first 
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three principal components lives up to 99.97%, indicating they can nearly reflect all information 
of the six indexes, therefore, the first three principal components were chosen in the analysis. 

TABLE I V

Unit orthogonal eigenvectors

Standardized variables e1
* e2

* e3
*

x1
* –0.3587 0.2762 0.8896

x2
* 0.3755 0.5549 –0.0631

x3
* 0.3630 0.5828 –0.0046

x4
* –0.4710 0.1310 –0.2667

x5
* –0.4722 0.1434 –0.2236

x6
* 0.3921 –0.4882 0.2889

The coefficients of each variable in the first standardized principal components (corre-
sponding Unit orthogonal eigenvectors are e1

*, e2
* and e3

* ), as displayed in Where xi
* denotes 

the standardized variable corresponding to xi (i = 1,2, ...,6), the first three principal components 
were derived as follows:

 

* * * *
1 1 2 3 4

* *
5 6

0.3587 0.3755 0.3630 0.4710

0.4722 0.3921

F x x x x

x x
 
 

 

* * * *
2 1 2 3 4

* *
5 6

0.2762 0.5549 0.5828 0.1310

0.1434 0.4882

F x x x x

x x
 
 

 

* * * *
3 1 2 3 4

* *
5 6

0.8896 0.0631 0.0046 0.2667

0.2236 0.2889

F x x x x

x x
 
 

3.3. The multivariate PAC

The first principal component F1 reflects 71.08% of all data information, the correspond-
ing eigenvectors, represent the contribution rates of each dimensional data to the first principal 
component. The symbols and absolute values respectively indicate the natures and values of the 
contribution of each dimensional data to the first principal component. In F1 function, the coef-
ficients in the front of x4

* and x5
* are larger and negative, which means volatile matter content 

TABLE II I

The results of PCA

Principal 
components Eigenvalue Contribution rate of 

variance /%
Cumulative variance 
contribution rate /%

F1 4.2646 71.08 71.08
F2 1.2878 21.46 92.54
F3 0.4462 7.44 99.97
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exerts greatest influence on the MIT of coal dust, namely, the higher the volatile matter content, 
the lower the MIT, the more possibility inducing CDE, F1 is therefore considered volatile matter 
factor; for the second principal component, x2

* and x3
* in the function F2 are larger and positive, 

suggesting the higher the ash content, the higher the MIT, F2 is therefore defined ash content fac-
tor; while the coefficients in F3 excluding x1

* and x6
* in the third principal component function F3 

are all negative and have absolute values, proving the higher moisture content and fixed carbon, 
the higher MIT of coal dust, hence, F3 is defined as moisture content and fixed carbon factors.

4. The SVM predication of the MIT for coal dust

4.1. SVM regression algorithm

SVM is seen as a machine learning method constructed based on statistical learning theory. 
Unlike the neural network approaches which are based on empirical risk minimization principle 
of conventional, SVM follows structural risk minimization principle and it can deal with the 
high-dimensional nonlinear issues of small sample size, therefore it can be well used in regres-
sion predication.

Assumed that the training sample sets is {xi yi}, where input variable is xi  Rn, while out-
put variable is yi  R, i = 1, 2, ..., l, l refers to the number of training samples, R is real number, 
while n represents vector dimensions. The basic idea of SVM regression is to use preselected 
nonlinear value  for mapping input variables into a high- dimensional eigenspace F in which 
a linear regression function is adopted to carry out linear regression. It is an approach used for 
transforming low-dimensional nonlinear issues into high-dimensional linear issue. The process 
of the approach can be divided into two steps:

a. A nonlinear mapping datum is used to transformed input variables to a high-dimensional 
eigenspace F;

b. Based on linear characteristics of mapping variables in eigenspace, the linear regression 
is conducted and its function is written as 

 
T( ) ( )f x x b  (4)

 where ω is weight and b is deviation.

The objective is to seek suitable ω and b based on risk function minimization. As  (x) is 
preselected nonlinear mapping function, it is a constant, hence optimal regression function based 
on SVM is minimization objective function on the basis of structural risk minimization principle 
and expressed as
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Where, C is penalty factor, to compromise belief risk and empirical risk, the larger the C value, the 
higher fitting capability the C data. ξi, ξi

* are relaxation factors, i = 1,2…l, ε is the minimized value. 
Lagrangian function is introduced as
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Where αi and γ are Lagrange mu ltiplier.
Partial differentials are solved using ω, ξ, ξ * and b in Eq. (7) as follows:
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By eliminating ω and γ, α is calculated and f (x) equation is expressed as:
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i i i j
i j

f x x x b  (9)

To effectively solve the Eq. (9) aforeme ntioned, kernel function k(xi,xj) =  (xi) (xj) is 
introduced to reflect the similarity of support vectors and unknown samples, while support vec-
tor regression issue is converted into a quadratic programming issue to further acquire SVM 
regression function as
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, 1
( ) ( ) ( , )

l

i i i j
i j

f x k x x b
 
 (10)

4.2. The predication of the MIT for coal dust

Based on the six measured indexes of proximate analysis (air-dried moisture Mad (X1)%, 
air-dried ash Aad (X2)%, dry-base ash Ad (X3)%, air-dried volatile matter Vad (X4)%, dry-base 
volatile matter Vd (X5)%, and air-dried fixed carbon FCad (X6)%), as well as MIT Xt, SVM 
algorithm was used to establish a regression model.

The process of SVM training and predication of the MIT for coal dust was described as 
follows:

(1) The preparation of data sets
The data formats supported by SVM were constructed by taking the seven indexes afore-

mentioned of the coal samples No. 11-30 as training samples, and the seven indexes for the coal 
samples No. 1-10 as predication samples.
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(2) Input and output setting
X denotes input, while Y represents output.

 
1 2 3 4 5 6, , , , ,

t

X X X X X X X
Y X

 
 

(3) The compiling of the program
Two function – svm_train and svm_pridect were used: among which, svm_train function was 

adopted to train and predicate samples; while svm_pridect function was used for test (Wang, 2013).

(4) The predicated results
There are 20 samples being created and trained in total to conduct model training. The 

predication accuracy based on training samples is 100%.
The created model was used to predicate the coal samples No. 1-10, with the results as il-

lustrated in Fig. 6. The errors of predicated data and raw data are displayed in Table V.

Fig. 6. The predicating performance

TABLE V

The errors

Coal specimens No. Sample data Predicated values Errors Percentage error %
1 851 823 28 3.40
2 820 798 22 2.76
3 605 630 –25 3.97
4 581 552 29 5.25
5 546 560 –14 2.50
6 543 526 17 3.23
7 525 499 26 5.21
8 485 520 –35 6.73
9 437 450 –13 2.89
10 489 456 33 7.24
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According to the error comparison in the table, the error of the predicated results using SVM 
was mainly in the range of 2% ~ 4%, the highest error was 7.24%.

5. Conclusions 

The following conclusions are obtained in the research:
• The PCA was conducted on the indexes of multi-component coals by extracting three 

principal components (volatile matter, ash content, as well as moisture content and fixed 
carbon. Among them, volatile matter accounted for 71.08% of all the data, which meant 
volatile matter content played primary role in decreasing MIT.

• The SVM regression model built in the research for forecasting proximate indexes of 
coal dust and the MIT had a small forecasting error, which confirmed that the model can 
be applied in the predication of the MIT for coal dust.
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