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Numerical error bound of optimal control
for homogeneous linear systems

ADNAN DARAGHMEH and NAJT QATANANI

In this article we focus on the balanced truncation linear quadratic regulator (LQR) with
constrained states and inputs. For closed-loop, we want to use the LQR to find an optimal control
that minimizes the objective function which called “the quadratic cost function” with respect
to the constraints on the states and the control input. In order to do that we have used formal
asymptotes for the Pontryagin maximum principle (PMP) and we introduce an approach using
the so called The Hamiltonian Function and the underlying algebraic Riccati equation. The
theoretical results are validated numerically to show that the model order reduction based on
open-loop balancing can also give good closed-loop performance.
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1. Introduction

Balanced model reduction of linear control systems have attracted a lot of
attention in the last decades, both in terms of the development of the theory as
well as in terms of concrete applications to problems in science, engineering,
chemical and biological phenomena [3]. More precisely the semi-discretization
of partial differential equation describing physical phenomena lead to the well-
known representation of a linear time-invariant (LTT) system

X = Ax + Bu,
y=Cx+ Du, (D)
x(0) = xo,

where A € R B € R™™_(C € RP*" and DP*™ are constant matrices. The order
n of the system ranges from a few tens to several hundreds as in control problems
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for large flexible space structures. A common feature of the model used is that it
is high dimensional and display a variety of time scales. If the time scales in the
system are well separated, it is possible to eliminate the fast degrees of freedom
and to derive low-ordered reduced models, using averaging and homogenization
techniques. Homogenization of linear control systems has been widely studied
by various authors using different mathematical tools [2, 4, 10, 16]. In many
applications, however, an explicit smallness parameter that characterizes the time
scales present in the dynamics is not available, so that perturbative methods such
as averaging or homogenization can not be applied.

Balanced model reduction going back to Moore [18] provides a rational
basis for perturbation approximation [24] and includes easily computable error
bounds [12]; see also [3,25] and the reference given there. The general idea
of balanced model reduction is to restrict the system to the subspace of easily
controllable and observable states which can be determined by the Hankel singular
values associated with the system. All these methods give the stable reduced
systems and guarantee the upper bound of the error reduction,i.e that is xg = 0.

In fact a number of methods have been presented in the literature to re-
duce the the order of infinite dimentional linear time-invariant systems such as
balanced truncation [12], Hankel norm approximation [24] and singular pertur-
bation approximation [20]. All these methods give the stable reduced systems
and guarantee the upper bound of the error reduction.

Although balanced truncation and singular perturbation approximation meth-
ods give the same of the upper bound of error reduction in the case when the
dynamical system is homogeneous, but the characteristics of both methods are
contrary to each other [17].

It has been shown that the reduced systems by balanced truncation have a
smaller error at high frequencies, and tend to be larger at low frequencies. Fur-
thermore, the reduced systems through the singular perturbation approximation
method behave otherwise, i.e. the error goes to zero at low frequencies and tend
to be large at high frequencies.

The balanced truncation and Hankel norm approximation techniques have
been generalized to infinite dimensional systems [6,23]. Curtain and Glover [6]
generalized the balanced truncation techniques to infinite-dimensional systems
and the upper bound of the error reduction can be found in [13].

In [7], it has been shown that the reduced systems through balanced trunca-
tion method in infinite dimensional systems preserve the behavior of the original
system in infinite frequency. More often this condition is not desirable in appli-
cations. Therefore, it is necessary to improve the singular perturbation approxi-
mation method so that it can be applied to infinite dimensional systems.

Many of the properties of the singular perturbation approximation method
can be connected through balanced reciprocal system as shown in [20].
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For finite time-horizon optimal problems, among the most actively investi-
gated singularly perturbed optimal control problems is the linear quadratic regu-
lator problems. Most of these approaches are based on the singularly perturbed
differential Riccati equation. An alternative approach via boundary value prob-
lems is presented in [21]. Its relationship with the Riccati approach is analyzed
in [22].

In this article we introduce one of the most important methods in control
problems, that is The Linear Quadratic Regulator(LQR). We are interested in
the case of the linear quadratic regulator with constrained states and inputs. For
closed-loop, we want to use the LQR to find an optimal control that minimizes
the objective function which called “the quadratic cost function” with respect
to the constraints on the states and the control input. In order to do that we
have used formal asymptotes for the Pontryagin maximum principle (PMP) and
we introduce an approach using the so called The Hamiltonian Function and
the underlying algebraic Riccati equation. The theoretical results are validated
numerically to show that the model order reduction based on open-loop balancing
can also give good closed-loop performance.

The paper is organized as follows: In Section 2 the linear quadratic regulator
(LQR) is introduced. Section 3 contains the main theoretical results of the optimal
control for the original and reduced systems using the balanced truncation method.
Numerical results which shows the validity of theoretical results are presented in
section 4 and conclusions are drawn in section 5.

2. Linear quadratic regulator optimal control (LQR)

We start by considering the following continuous linear dynamical system
defined as:

X = Ax + Bu,
y =Cx, (2
x(0) = xo,

where A, B and C are a constant matrices and x, u are the state and the input of
the system respectively and x(0) represents the initial condition [8, 9].

We assume that the linear system described by equation (2) is controllable
and observable.

The quadratic cost function J is defined by the following equation:

J =

| =

f (»"y +u" Ru) dt 3)
0
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or, equivalently

(o)

J = %f (xTQx + uTRu) dz, 4)
0

where Q = CTC > 0 is a positive semi definite matrix representing the cost
penalty of the states and R > 0 is a positive definite matrix that represents the
cost penalty of the input.
We want to find an optimal control u that minimizes the quadratic cost function
J subject to the constraint
X = Ax + Bu.

The optimal control can be denoted by u#* such that:
Jw*) < J(u), VuelL?

and the constraint equation X = Ax + Bu has a solution.
If we substitute the value of ™ in the constraint equation, we have that:

X = Ax + Bu"*

and the optimal solution of this equation is denoted by x*.
Now, we introduce an approach that depends on the Hamiltonian function
defined in the following form:

1
H=> (xTQx n uTRu) + AT (Ax + Bu), (5)

where 1 € R" is called the costate variable.
The following theorem describes the way in which we can find the optimal
control that minimizes the quadratic cost function J in equations (3) and (4).

Theorem 1 [14, 19] (Maximum Principle) If x*, u* is optimal (or a solution of
the LOR), then there exists a solution 1* € R" such that:

. _OH

x_a/l, (6)

. 0H

Al=-= 7
P (7)

and the minimality condition of the Hamiltonian
H(x u*, A1) < H(x",u, %)

holds for all u € R™.

For more details on the proof (see [14, 19]).
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If H is a differentiable function, then to minimize H with respect to u we can
find our optimal control input.
The following condition must be true to find such u that is:

0H
—=0 8
o 8)
if we solve equation (8), we obtain the following control:
u=-R'BTA. 9)

From theorem (1) and equation (9), we have the following canonical differential
equations that form a linear system (or Hamiltonian system) written as:
. OH
xX=—
0A

= Ax - BR'B"2, x(0) = xq,

0H

0x

=—Qx- AT

Since the terminal cost is not defined, then there is no constraint on the final value
of A.

This is a coupled system, linear in x and A, of order 2n X 2n.
These control equations can be written in matrix form as:

i A -BR'B”
T = S (1n
A -0 -A A

It is not easy to solve the system described in equation (11), so we guess the

solution of this system or the relation between x and A in the form:

A = Px, (12)

(10)
/.l =

where P € R,

We introduce now an important differential equation in the linear quadratic
regulator problem that is called Matrix Riccati Equation (MRE) and to derive
this equation, we start from equation (12) and use (10) in the following way:

A = Px,
A=Px+ PX,
—Qx — ATA = Px + P(Ax - BR™'BT ),
—Qx — ATPx = Px + PAx - PBR'BT Px,
Px + PAx + ATPx - PBR'BTPx + Qx = 0.
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From the final step, we obtain the MRE written as:
P=-PA-A"P+PBR'B'P-Q. (13)

Since we have an infinite time horizon, there is no information about the terminal
cost and hence A has no constraint. In this case the steady state solution P of a so
called Algebraic Riccati Equation (ARE) can be used instead of P(¢) [19].

In case when the time approaches infinity, we have:

lim P = 0.

[—00

By using the limit above, we get another differential equation called Algebraic
Riccati Equation (ARE), written as:

PA+ATP-PBR'BTP+Q =0, (14)

where P is the unique positive-definite solution.

We want now to find a state feedback control u that can be used to move any
state x to the origin, so we let the system evolve in a closed-loop [11,19].

If we find the solution P of the ARE (14), then the optimal control « that can
be used to minimize the quadratic cost function J is written as:

u=-R'BTPx. (15)

By substituting equation (15) into the original system described by equation (2),
we get the following equation:

¥ = (A—R‘IBTP)x. (16)

Since the matrix A — BK is stable, we have closed-loop poles formed by the
eigenvalues of this matrix [11].

If we solve equation (16) and find the optimal solution x, then we can find our
optimal control u that can be used to find a minimum value of the quadratic cost
function J described in equations (3) and (4).

The LOR method can be illustrated by the following algorithm:
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1. We start with the linear dynamical system:

X = Ax + Bu,
y =Cx,
x(0) = xo.

2. We assume that this system is controllable.
3. We define the quadratic cost function as:

(o)

J:%f( TQx+uTRu) dr.
0

4. We choose Q = QT > Osuchthat Q = CTCand R = R” > 0.
5. We find the constant solution P of the ARE:

PA+ATP-PBR'BTP+0Q =0.
6. We find the optimal control u such that:
u=-R'B"Px.
7. We write the original system in the form:

x=(A-R'B'P)x.

3. Optimal control for a reduced system using the balanced truncation method

In [8], we applied the singular perturbation linear quadratic regulator to find
an optimal control for the reduced system.

In this section we introduce an approach to find the optimal control of the
reduced system using the Balance Truncation optimal control.

Consider the full linear time-invariant dynamical system defined by the fol-

lowing form:
& An 1A12 5\, B
.| = u,
z Ay —Axn |\ 2 B,
€

(17)
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We can rewrite the original system in equation (17) in another form as:

X = A11x + A12Z + Blu,
. (18)
€7 = €Ay1X + Az + €Bhu.

If we apply the balanced truncation method to reduce the original system de-
scribed by equation (18), we get the following reduced system form:

Xr = Aux, + By,

b Cix (19)
r — ClAr .

From equation (19), to find an optimal control for the reduced system, we
start by defining the quadratic cost function J for the original system (17) as:

1 o0
=3 f y+uTRu dt (20)
0
or equivalently
1 o0
Ef (x"Qx +u" Ru) dt, 1)
0

where Q = CTC > 0and R > 0.
Our optimal control u for the original system is defined as:

u=-R" (B BZT)P(’ZC). (22)

The matrix P is the solution of the following Algebraic Riccati Equation:
PA+A"P-PBR'B'P+Q =0. (23)
The next step now is to find a reduced Riccati equation for the full Riccati equation

(23) when € = 0.
To avoid the unboundness when € = 0, we choose the solution P in the form:

P eP
p= ( Lo ) . (24)
€P, €Px»
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By substituting equation (24) into equation (23), we get:
Py €Pp\ (An An
GP{Z EP22 AQ] %Azz

T AT
Au A21 ( P ePlz)
+ 1
T T T
Al ;Azz €P), €Pn

(25)
_ P1; €P12) B, R (Bf Bg) ( Pl; eP»
€P12 €P22 Bz EP12 €P22
cr )
1
+ (¢ &) =o.
T
( G
After solving equation (25), we obtain the following equations:
0= P11A + €P1pAy + A{1Pll (26)
+ €Al Pl — (P11By + eP1aBy)R™' (Bl Py + eBIPL) + Cl Cy,
0= P11A12 + P12A22 + 6A1T1P12 (27)
+ €Al Py, — (P11 By + €P1,By)R™' (eBT Ppy + €BY Pyy) + CI G,
0= EP1T2A11 + EP22A21 + ATZP“
(28)
+ A3, Pl, — (ePl,B| + €P»By)R™'B] P11 + €B) Pl,) + C} C1,
0= EP{ZAU + P22A22 + 6A{2P12
(29)

+ AS, Py — (€P],Bi + €PnBy)R'€B] Py + €B) Pp) + C; Cs .

Now, if we set € = 0 in equations (26)—(29), we obtain the following reduced
system Riccati Equations:

— —_T — _ —
P11A11+A1T1P11—P1131R IBITP11+C1TC1 =0, (30)
Pi1A12 + P1pAxn + C{ Gy = 0, 3D
Aglﬁll + AgzﬁIZ + C2TC1 = 0, (32)

Py A + AL Py + CiCy = 0. (33)
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Assumption 1 The pair (A1, By) is controllable and Py isa unique positive
semidefinite solution of equation (30) such that:

Ay - BiR'BTPy,
is stable.

According to [8], we can use P; ; instead of P;; to rewrite the feedback control
in equation (22) as:

ﬁll fﬁlZ X
— -1 T T
u=-R"(B Bz)< 7 )(Z)

eP, €P22 (34)

= _R! (B]Tﬁll + 632 P12) X — R7! (GBITFQ + 635?22) Z

Using equation (34), we obtain a new form of the original system described
by equation (18) such that:

X = (A11 - BlR_1 (BITFU + 635?12)) X

+ (A12 - BlR_1 (EB{FQ + EBZTﬁzz)) Z,
— _ (35)
€7 = (61421 - EBzR_l (B{PH + EBzTPu)) X

+ (A22 - GBzR_l (63{?12 + 635?22)) <

If the above system is asymptotically stable and equation (34) holds, then we have
a solution x(¢) and z(¢) for this system with O(e€) of the optimal solution [15].
We are going now to define the quadratic cost function for the reduced order
model system described in equation (34).
Let J be the quadratic cost function of the reduced system in equation (19)
defined as:

- 1 ~
Jzif y+uTRu dr (36)
0
or equivalently,
-1 TAz, -Tp-
J = Ef (¥"Qx + " Ra) dt, (37)
0

where 0 = CT'C > 0and R=R > 0.
The optimal feedback control for the reduced order model is defined as:

i=-R'B'Px, (38)
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where P is the solution of the Algebraic Riccati Equation for the reduced order
model and given as:

PA +ATP-PBIR'BI[P+ClCi=0. (39)

From theorem [1, 8], we see that the two solutions P;; and P are both identical.

Hence we conclude that P\, is the reduced Riccati Equation (30) and it is the
same as P which is the solution of the reduced system.

By substituting the feedback control equation (38) into the reduced system
(19), we get:

#=(An-BR'BP)x,, (40)

where we have assumed that the matrix (A;; — BR‘IBITﬁ) is stable.

If we solve equation (40) of the reduced system, then we can use the solution
x(t) to find the optimal control. This optimal control can be used to find the
optimality of J.

4. Numerical illustration

In this section we include all results obtained by the balanced truncation tech-
nique to determine the order of the reduced model. We consider the Building
model system from the SLICOT library [5] with n = 48 degrees of freedom. We
start by applying the standard balanced truncation to the system with homoge-
neous initial conditions x = 0. The optimal controls U; for the original system and
u, for the reduced order system are computed and the size of the reduced model
is r¢ = 2. The optimal control is computed by using the results in section (3).
The solution of the Riccati equation P of the full system is computed and used
to find the value of U;. We apply the balanced truncation approach presented in
section (3) to find the solution of the Riccati equation P, of the reduced system.
Since the first block Py of P is equal to the value of P,, so we can extend P using
P, as the first block and the rest blocks are zero to obtain a new solution of the
Riccati equation denoted by Pq;.

Figure (1) represents the plots of the two optimal controls Uy, u, and (U; —u,)
using the balanced truncation method.

Finally, Table (1) contains the values of ||U; — u,||z, and ||P11 — 1311|| L, by
applying the balanced truncation to the building model.
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The optimal cantral U1 ,urand (U1-ur)

Table 1: The L? norm of (U; — u,) and (Py; — Py;) of the building model

w10 The optimal controls and their differences

I |'. 1 1 1

1
0 2 4 51 a 10
The time t

12

Figure 1: The optimal controls of the building model

rs U1 —ull, BT ||P11 —PHHL2
8.0741x10715 3.4098x107~°
1.1778x1071 3.2719%107°
3.6256x1071° 3.7787x107°
8.7808x107!7 1.3664x107°
10 9.0881x10~!7 1.2910x107~°
12 1.6477x10718 1.1948x107~°
18 1.9097x10719 3.5177x1071°
20 5.2767x10720 1.7128x10710
26 1.6078x1072! 4.0415%x10712

5. Conclusions

Many physical, mechanical and artificial processes can be described by dy-
namical systems, which can be used for simulation or control. In this article, we
have discussed the balanced truncation of the linear quadratic regulator (LQR)
systems on open-loop balancing of controllability and observability properties.
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In fact, for open-loop control problems, the L? error bound for both the balanced
truncation (BT) and the singular perturbation approximation (SPA) for systems
with homogeneous initial condition is the same. For finite time-horizon opti-
mal problems, among the most actively investigated singular perturbed optimal
control problems is the linear quadratic regulator problems. Most of these ap-
proaches are based on the singularly perturbed differential Riccati equation. In
this work, our main approach is to use the LQR to find an optimal control that
minimizes the quadratic cost function with respect to the constrains on the states
and the control input. This approach shows clearly that the balanced truncation
gives good closed-loop performance in comparison to the singular perturbation.
Moreover, we use the solutions of the Riccati equations to find the L? norm of
the difference between the optimal control for both original and reduced systems.
The credibility of this approach has been tested by numerical experiment, illus-
trating that the optimal control of the reduced system can be used to approximate
the optimal control of the original system. Even though our approach remained
purely formal, we have given some numerical evidence that open-loop balancing
can give good closed-loop performance.
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